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Al-Khwârizmî (789)
« il faut que 4x² - 5x + 5x + 7 = 15 + 5x , donc 4x² + 7 = 15 + 5x »



Introduction - Objective

𝐾: Kinship matrix, square matrix positive definite



Introduction - Objective

« Ceux qui savent se taisent. Ceux qui ne
savent pas prédisent » (Lao-Tseu)

« La prédiction est un art difficile …
Surtout lorsqu’il s’agit de l’avenir» (Pierre Dac)

« La prédiction c’est du pognon» (Picsou)



Introduction – Philosophie : étaler l’apprentissage



Introduction

• Basics: Element of probability
• Vocabulary: Matrix algebra
• Recapitulation: linear model
• Generalized linear model 
• Linear mixed model: BLUE, BLUP
• Mixed model equation
• Animal (pedigree) BLUP model
• G BLUP model
• Regularization methods: Ridge regression, LASSO



Elements of probability



Probability space

« Mathematics is the logic of certainty. Probability is the logic of uncertainty »
(an Harvard professor)

Probability space (Ω, 𝐹, 𝑃)

Ω: Univers (set of all possible values) Ex Ω = 1, 2, 3, 4, 5, 6

𝐹: Event space: set of events, a set of outcome in the sample space Ex F = 2, 4, 6 (die lands on an 
even number) or F = 5 (die land on 5)

𝑃 : Probability function. A function that assign a probability (number between 0 and 1) to each events
in the event space.

P(F = 5 ) = 1/6

P(F = 2, 4, 6 ) = P(2 U 4 U 6) = 1/2



Expectation of a random variable

𝑋 is a random variable defined on a proability space (Ω, 𝐹, 𝑃)

If 𝑋 takes values 𝑥1, 𝑥2, … , 𝑥𝑛 with probability 𝑝1, 𝑝2, … , 𝑝𝑛

Then,

𝐸 𝑋 = 𝑥1 ∗ 𝑝1 + 𝑥2 ∗ 𝑝2 +⋯+ 𝑥𝑛 ∗ 𝑝𝑛 =
𝑥1∗𝑝1+𝑥2∗𝑝2+⋯+𝑥𝑛∗𝑝𝑛

𝑝1+𝑝2+ …+𝑝𝑛
(Denominator = 1)

𝐸 𝑋 = σ𝑖=1
𝑛 𝑥𝑖 ∗ 𝑝_𝑖

Correspond to the average in a large (infinite sample)

𝐸 𝑥 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖



Expectation of a random variable - Exercise

A

a

A a

AA Aa

aaAa

F2

Let us assume that

P(A) = p
P(a) = q = 1 – p

In a F2, we have the following frequencies and phenotype

P(AA) = 𝑝2 (Ph = 𝛼)
P(Aa) = 2𝑝𝑞 (Ph = 𝑑)
P(aa) = 𝑞2 (Ph = -𝛼)

Show that E[Ph] = 𝛼*(𝑝 - 𝑞) + 2𝑝𝑞𝑑



Expectation of a random variable – Exercise (Answer)

A

a

A a

AA Aa

aaAa

F2

Let us assume that

P(A) = p
P(a) = q = 1 – p

In a F2, we have the following frequencies and phenotype

P(AA) = 𝑝2 (Ph = 𝛼)
P(Aa) = 2𝑝𝑞 (Ph = 𝑑)
P(aa) = 𝑞2 (Ph = -𝛼)

E[Ph] = 𝛼* 𝑝2 + 2𝑝𝑞𝑑 - 𝛼*𝑞2

E[Ph] = 𝛼* (𝑝2 − 𝑞2)+ 2𝑝𝑞𝑑
E[Ph] = 𝛼* (𝑝 + 𝑞)(𝑝 − 𝑞)+ 2𝑝𝑞𝑑
E[Ph] = 𝛼* 1*(𝑝 − 𝑞)+ 2𝑝𝑞𝑑
E[Ph] = 𝛼*(𝑝 - 𝑞) + 2𝑝𝑞𝑑



Variance of a random variable

𝑋 is a random variable defined on a proability space (Ω, 𝐹, 𝑃)

The variance V(𝑋) is the expected value of the squared deviation from the mean

V 𝑋 = 𝐸[ 𝑋 − 𝜇 2]

The variance expression can be expanded as follow:



Expectation and variance of a Bernoulli random variable

Let us assume a Bernoulli variable with the Following probability density function

𝑃 𝑋 = 𝑥 = ቐ
1 − 𝑝
𝑝
0

𝑖𝑓 𝑥 = 0
𝑖𝑓 𝑥 = 1
𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0 1

1

p

1-p

Show that the expectation and variance of such variable are equal to p and p(1-p),
respectively

E[X] = p

V[X] = p (1 -p) = pq



Expectation and variance of a Bernoulli random variable

Let us assume a Bernoulli variable with the Following probability density function

𝑃 𝑋 = 𝑥 = ቐ
1 − 𝑝
𝑝
0

𝑖𝑓 𝑥 = 0
𝑖𝑓 𝑥 = 1
𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0 1

1

p

1-p



Probability density function – discrete variable

Probability space (Ω, 𝐹, 𝑃)

𝑃 : Probability function. A function that assign a probability (number between 0 and 
1) to each events in the event space.

Ex: Poisson distribution: describe the number of observation of a certain 
phenomenon with known expectation (𝜆) over a certain period of time 
independently of the previous measurement.

Probability density function (pdf)

𝑃 𝑋 = 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
In R: dpois(x = k, lambda = 𝜆)

E X = V 𝑋 = 𝜆



Probability density function – continuous variable

Normal distribution
From discrete to continuous (go to limit)

Probability density function (pdf)

𝑃 𝑋 = 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎2
exp

1

2
[
𝑥 − 𝜇

𝜎

2

]

E X = 𝐿𝐵
𝑈𝐵

𝑥𝑓 𝑥 𝑑𝑥 = 𝜇



Probability density function – continuous variable

Normal distribution

Cumulative distribution function (cdf)

𝐹𝑋 𝑥 = 𝑃 𝑋 ≤ 𝑥|𝜇, 𝜎2 = 𝜙
𝑥 − 𝜇

𝜎

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝐹𝑋 𝑏 − 𝐹𝑋(𝑎)

In R: pnorm()



Expectation and variance properties

𝐸 𝑎𝑋 = 𝑎𝐸 𝑋

𝐸 𝑎𝑋 + 𝑏𝑌 = 𝑎𝐸 𝑋 + 𝑏𝐸 𝑌

V 𝑎𝑋 = 𝑎2𝑉 𝑋

V 𝐴𝑋 = 𝐴𝑉 𝑋 𝐴′



Exercises



Matrix algebra



Matrix algebra

Matrices can be seen as a system of linear equations. For example:



Matrices help to summary information and solve this kind of systems

Matrix algebra



Matrix basic operations – Addition, substraction, transpose

Properties: A + B = B + A ; A - B ≠ B - A  
A + (B + C) = (A + B) + C ; A - (B - C) ≠ (A - B) - C  



Matrix basic operations – Addition, substraction, transpose

Trace: sum of the diagonal elements. In R: sum(diag(A))



Matrix basic operations – Multiplication

  

     

 

 

 

 

 

 
𝐶11 = 𝐴1.

′ 𝐵.1 = 𝑎11 ∗ 𝑏11 + 𝑎12 ∗ 𝑏21 + 𝑎13 ∗ 𝑏31

𝐶23 = 𝐴2.
′ 𝐵.3 = 𝑎21 ∗ 𝑏13 + 𝑎22 ∗ 𝑏23 + 𝑎23 ∗ 𝑏33

𝐶𝑖𝑗 = 𝐴𝑖 .
′ 𝐵.𝑗 =

𝑘=1

𝑚

𝑎𝑖𝑘 ∗ 𝑏𝑘𝑗



Matrix basic operations – Multiplication



Matrix basic operations – Multiplication



Matrix basic operations – Multiplication inner product



Matrix basic operations – Multiplication outer product



Matrix basic operations – Multiplication Hadamar product



Matrix basic operations – Multiplication Kronecker product



Matrix basic operations – Determinant



Matrix basic operations – Determinant



Matrix basic operations – Inversion



Matrix basic operations – Eigenvalue decomposition

Usage: Reduce the matrix dimensionality
simplified and faster computation



Matrix basic operations – Eigenvalue decomposition



Matrix basic operations – Cholesky decomposition



Matrix algebra - Exercises



Matrix algebra - Exercises



Linear models



Linear model



Linear model – Ordinary least squares



Linear model – Ordinary least squares



Linear model – Ordinary least squares

df(x)/x = 0



Linear model – Ordinary least squares



Linear model – Ordinary least squares Matrix notation



Linear model – Ordinary least squares Matrix notation



Maximum likelihood principle

𝑃 𝑋 = 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎2
exp

1

2
[
𝑥 − 𝜇

𝜎

2

]

𝑃 𝑋 = 𝑥1 = 0,5
𝑃 𝑋 = 𝑥2 = 0,5

𝑃 𝑋 = 𝑥1 ∩ 𝑋 = 𝑥2 = 0,5 ∗ 0,5

Likelihood function

𝐿 = 𝑃 𝑋 = 𝑥1 ∩ 𝑋 = 𝑥2 ∩⋯∩ 𝑋 = 𝑥𝑛 = ෑ
𝑖=1

𝑛

𝑃 𝑋 = 𝑥𝑖|𝜇, 𝜎
2



Maximum likelihood principle

Likelihood function

𝐿 = 𝑃 𝑋 = 𝑥1 ∩ 𝑋 = 𝑥2 ∩⋯∩ 𝑋 = 𝑥𝑛 = ෑ
𝑖=1

𝑛

𝑃 𝑋 = 𝑥𝑖|𝜇, 𝜎
2

𝑑𝐿

𝑑𝑝
= 0

𝑝



Maximum likelihood principle -illustration

Likelihood function

𝑃 𝑋 = 19 − 0|𝑝 = 𝑓𝑜𝑜𝑡𝑏𝑎𝑙𝑙 𝑚𝑎𝑡𝑐ℎ

𝑝 = 𝑃𝑆𝐺 −𝑀𝑎𝑟𝑠𝑒𝑖𝑙𝑙𝑒

𝑝 = 𝑃𝑆𝐺 − Montceau−Les−Mines

p= parameter value that maximise the Likelihood given the assumed distribution



Linear model – Maximum likelihood estimation



Linear model – Maximum likelihood estimation



Linear models - Exercises



Recap

Probability (P space, pdf, E, V)

Matrix (+-*Inv, eigen, Cholesky)
Linear model

Linear mixed model



Exercises

Probabilité

Ex: 1

Matrix:

Ex: 2

Ex 3: très motivé

Model linéaire

Ex 1: formule



Genearlized Least squares



Genarlized least square model



Genarlized least square model



Genarlized least square model



Exercise





Mixed models



Introduction

Concept of analysis of variance (ANOVA)

Partition of the variance into different term: genetic, environmental, GxE

Seminal thoughts about the concept of mixed model: modelling second 
moment (variance) of the normal distribution.



Mixed models justification

Take the dependency between observations into consideration

Multiple source of dependency between observations: Shared environment/conditions, time (longitudinal 
data), (genetic) relatedness, etc.



Mixed models justification

Take the dependency between observations into consideration

𝜎𝐸1
2

𝜎𝐸2
2

𝜎𝐸12



Mixed models justification

Advantages

- Reduce the residual variability (error)
- Important to form test statistic

መ𝛽

𝑉 መ𝛽

=
(𝑋′𝑋)−1𝑋′𝑦

(𝑋′𝐼𝜎𝑒
2𝑋)−1

~𝑡
መ𝛽2

𝑉 መ𝛽
=
(𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑦

(𝑋′𝑉−1𝑋)−1
~𝜒2



Mixed models justification

Model the two moments of the distribution (expectation and variance)

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑒
Fixed terms (𝛽): fixed constant 
affect the first moment of the 
distribution (Expectation, central 
tendency)

Random terms (𝑢): term defined by 
a distribution (e.g. 𝑢~𝑁(0, 𝜎𝑢

2)) 
affect the second moment of the 
distribution (Variation, dispersion)



Mixed model general formulation

𝑢 ⊥ 𝜖: The two random terms are independent (cov(u, e) = 0)



Mixed model general formulation

Properties of y distribution



Multivariate normal distribution - Intermezzo



Multivariate normal distribution - Intermezzo



Mixed models – BLUE estimation

Pdf:



Mixed models – BLUE estimation



Mixed models – BLUP prediction



Mixed models equations derivation



Mixed models equations derivation



Mixed models equations derivation



Mixed models equations

Estimation of the variance component R and G using for example REML

Then estimation of the BLUE/BLUP by inserting the variance estimates in the MM equations



Fixed/random?

y = u + design (rep, block) +  treatment (fertilisation) + geno + e

Fixed terms

Question: le terme (env, rep, géno) est-il divisé en un nombre (réduit) de catégories 
clairement identifiables pour lesquels le chercheur/sélectionneur a un intérêt 
particulier

Ex: level of fertilization: low nitrogen vs high nitrogen: Experiment is specifically
designed to know this constrast

Estimation of the BLUE (Best linear unbiased effect)



Fixed/random?

y = u + design (rep, block) +  treatment (fertilisation) + geno + e

Random terms

Question: 

• Les différents niveaux du termes peuvent-ils être considérés comme provenant d’une population plus générale 
ou une distribution probabiliste (ex geno1, geno2, … genoN sont des entités d’une population plus large 
représentant la diversité génétique)

• le terme est-il divisé en un (grand) nombre de catégories peu identifiées (ex: block 1 ~ block 2 ~ block 3 petites 
différences entre les blocks). 

• « Nuisance » terme to control the variability associated to a large number of unidentified effects : ex: 
experimental design terms.

• Use random term if you specifically target to model dependence between observation (e.g. hierarchichal or 
clustered analyses).

• Control for the randomness associated with the distribution/population + interest in the realized values -> 
Estimation of the BLUP (Best linear unbiased predictor)



Fixed/random?

Extra considerations

- Y (dependent variable) and e (error term) are always random

- The definition of a terms can depends of the next usage. For example, in a two-
stage analysis, if the second stage model use a random (fixed) genetic term, in the 
first stage (adjusted mean computation) you should calculate random BLUP (fixed
BLUE).

- Random terms use less degree of freedom. Fixed term k levels degrees of freedom. 
Random term 1 degree of freedom.

- Computationally easier to estimate fixed effects. So if your model fail to converge 
consider passing some terms as fixed.



Exercise



Mixed models equations - simplification



Animal or pedigree BLUP model



Animal or pedigree BLUP model

G1 G2 […] Gn

G1 1 0,5 0,5 0,5

G2 1 0,25 0,25

[…] 1 0,25

Gn 1

𝜎𝑔
2



Genomic G-BLUP model



Genomic G-BLUP model

Genotypic (marker) similarity should cause phenotypic similarity



Genomic G-BLUP model

Compared to the A matrix, K allows to differentiate between individual with the same expectd co-ancestry
coefficient (e.g. two sibs) due to the allele Mendelian sampling

G1 G2 […] Gn

G1 1 0,5 0,5 0,5

G2 1 0,25 0,25

[…] 1 0,25

Gn 1

A: Expected co-ancestry K: Realized or molecular co-ancestry

G1 G2 […] Gn

G1 1 0,42 0,58 0,48

G2 1 0,2 0,28

[…] 1 0,24

Gn 1



Regularization methods



Rank deficiency



Rank deficiency



Rank deficiency (n << p)



Ridge regression a solution to rank deficiency (n << p)



Ridge regression a solution to rank deficiency (n << p)



Relationship beta Ridge beta OLS



Relationship Ridge regression and mixed mode estimation



Relationship Ridge regression and mixed mode estimation



Relationship Ridge regression and mixed mode estimation



LASSO: Least absolute shrinkage and selection operator



Elastic net


