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Derivation with respect to u

£ 0—=yR'Z+(XPB)R'Z-ZR'y+ (Z)YR'XB+ (Z)R'XZu+ (Zu)R'Z+2G'u=0

ou
—2y'R'Z +2Z'R'XB+2Z' R Zu+2G 'u =0
Z'R'XB+Z'R'Zu+ G 'u=Z'R 'y
The two solution can be reorganized in a matrix system of equations
X'R'X X'R'Z ] { i
U

=2
Z'R'X Z'R'Z+G™! Z'R™y
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K: Kinship matrix, square matrix positive definite
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Introduction - Objective

« La prédiction c’est du pognon» (Picsou)

« La prédiction est un art difficile ...
Surtout lorsqu’il s’agit de I'avenir» (Pierre Dac)

« Ceux qui savent se taisent. Ceux qui ne
savent pas prédisent » (Lao-Tseu)



Introduction — Philosophie : étaler I'apprentissage
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Introduction

* Basics: Element of probability

* Vocabulary: Matrix algebra

e Recapitulation: linear model

* Generalized linear model

e Linear mixed model: BLUE, BLUP

* Mixed model equation

* Animal (pedigree) BLUP model

* G BLUP model

* Regularization methods: Ridge regression, LASSO



Elements of probability



Probability space

« Mathematics is the logic of certainty. Probability is the logic of uncertainty »
(an Harvard professor)

Probability space ({), F, P)
Q: Univers (set of all possible values) Ex Q = {1, 2, 3,4,5, 6}

F: Event space: set of events, a set of outcome in the sample space Ex F = {2, 4, 6} (die lands on an
even number) or F = {5} (die land on 5)

P : Probability function. A function that assign a probability (hnumber betwe
in the event space.

P(F={5})=1/6

P(F={2,4,6})=P2U4U6)=1/2



Expectation of a random variable

X is a random variable defined on a proability space ({, F, P)

If X takes values x4, x5, ..., x,, with probability p;, p,, ..., Pn

Then,

X1 %01+ X5 * Do+ 2y .
E(X) =21 %P1 + Xy %Dy + -+ + xp, % p,, = P2 7272 n"Pn (Denominator = 1)
p1tp2t ..+Dn

Correspond to the average in a large (infinite sample)

1
E(x) = - i=1 Xi




Expectation of a random variable - Exercise

Let us assume that

P(A)=p
P(@a)=g=1-p A
In a F2, we have the following frequencies and phenotype

F2
P(AA) = p? (Ph = «a)
P(Aa) = 2pq (Ph = d) d
P(aa) = g* (Ph = -a)

Show that E[Ph] = a™*(p - q) + 2pqd

Aa

dd




Expectation of a random variable — Exercise (Answer)

Let us assume that

P(A)=p
Pla)=gq=1-p

In a F2, we have the following frequencies and phenotype

P(AA) = p* (Ph = a)
P(Aa) = 2pq (Ph = d)
P(aa) = g* (Ph = -a)

E[Ph] = a* p? + 2pqd - a*q?
E[Ph] = a* (p* — q°)+ 2pqd
E[Ph] =a* (p + q)(p — @)+ 2pqd
E[Ph] = a* 1*(p — q)+ 2pqd
E[Ph] = a*(p - q) + 2pqd

F2

A a
) A
AA Aa
»  »
Aa aa




Variance of a random variable

X is a random variable defined on a proability space ({, F, P)

The variance V(X) is the expected value of the squared deviation from the mean
VX) = E[(X —w?]

The variance expression can be expanded as follow:
(X — E[X])’]

= E[X* — 2X E[X] + E[X]|

= E[X?] - 2E[X]| E[X] + E[X]?

=E[X*] - E[X]’

Var(X) = Cov(X, X). cov(X,Y) = E [(X — E[X])(Y — E[Y])]




Expectation and variance of a Bernoulli random variable

Let us assume a Bernoulli variable with the Following probability density function

(1—p ifx=0 T @
PX=x)=3 p ifx=1 1p @
. 0 Otherwise |

Show that the expectation and variance of such variable are equal to p and p(1-p),
respectively

E[X]=p

VIX]=p(1-p)=pg



Expectation and variance of a Bernoulli random variable

Let us assume a Bernoulli variable with the Following probability density function

(1—p ifx=0 T @
PX=x)=3 p ifx=1 1p @
. 0 Otherwise |

E[X]=Pr(X=1)-1+Pr(X=0)-0=p-1+q-0=p.

E[X?]=Pr(X=1)-124+Pr(X=0)-0)=p-1> +¢q- 0> =p=E[X]

From this follows

Var[X] = E[X?] - E[X]? =E[X]| - E[X]? =p — p* = p(1 — p) = pg"®



Probability density function — discrete variable

Probability space (€, F, P)

P : Probability function. A function that assign a probability (number between 0 and
1) to each events in the event space.

Ex: Poisson distribution: describe the number of observation of a certain
phenomenon with known expectation (1) over a certain period of time
independently of the previous measurement.

Probability density function (pdf)
Ake=4

P(X = k) =—

In R: dpois(x =k, lambda = 1)

E[X]
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Probability density function — continuous variable

Density

Normal distribution
From discrete to continuous (go to limit)
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Probability density function (pdf)
1 1 /x — u\?
PIX = xl,0%) = ——exp5 (1) ]

UB

EX] =/, xf(x)dx = u

Var(X) = E[X?] - 4 = ( / mf*-f(m)d:c) i = g2

o



Probability density function — continuous variable

Normal distribution

Cumulative distribution function (cdf)

Fy(0) = PIX < xlu,0%) = ¢ (-

Pla<X <b)= Fy(b) — Fx(a)

In R: pnorm()

)

I
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1
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Expectation and variance properties

E(aX) = aE(X)
E(aX + bY) = aE(X) + bE(Y)
V(aX) = a*V(X)

V(AX) = AV(X)A’



Exercises

Elements of probability
Ex 1

The probability of a recombination between two region of the genome A and B separated by 1 centiMorgan can be modeled by a Poisson
distribution. Let us assume that after analyzing all the data available on in your laboratory on your favourite species, you could observe on average
0.7 recombination over such a segment. In your next analysis you discover that on several point of your genome you have 2 recombination per

centiMorgan. What is the probability of such an observation.

Ex 2

Using the cumulative distribution function, calculate the probability that a random variable distributed with a N(O, 1) distribution fall between -1.96

and 1.96.



Matrix algebra



Matrix algebra

Matrices can be seen as a system of linear equations. For example:

3r1 + 4x9 + 43 + 64 = —10

Or1 + 29 — 13 — 64 = 20
lzy + 1x9 + 123 — 1024 = 2

21 +9x9 + 223 + 1lxa = —10

34 4 6\ [z [-10
9 2 —1 —6 zo | | 20
1 1 1 -10 zs | | 2
20 2 1/ \z/) \-10



Matrix algebra

Matrices help to summary information and solve this kind of systems

]

¥ <- matrix(c(3, 4, 4, &,

Beta <- solve (X, v)

X %*% matrix(Beta, ncol = 1)
i [,1]
#+# [1,] -10
#+ [2,] 20
#+ [3,] 2
## [4,] -10



Matrix basic operations — Addition, substraction, transpose

We can add or substract matrices of same size. Let us assume

a a b b
A ( 1,1 1,2) and B — ( 1.1 1?2)
asi1 a2 ba1 boo

Then

a1 +0b ais + b a1 —b a9 — b
A+B— ( 11 +b11 a2 1,2) and A_ B— ( 11— big aip 1,2)

asy +ba1  ass +boo as1 —ba1 ags —bao

A <- matrix(c(2, 4, 6, T), 2)

B <- matrix(c(1l, 3, 1, 3), 2)

A+B

## 11 [ 2]

$¢ [1,] 37

## [2,] 7 10

A-B

## 11 [ 2]

## [1,] 5

85 [2,] 4

Properties: A+B=B+A;A-BzB-A

A+(B+C)=(A+B)+C;A-(B-C)#(A-B)-C



Matrix basic operations — Addition, substraction, transpose

A <- matrix(c(l, 2 4), 2, byrow = TRUE)
A
% 11 [,2]
[1,] 1 2
# [2,] 4
t(R)
## 11 [, 2]
## [1,] 1 3
## [2,] 2 4
Properties
(A') = A
(AB) = B'A’

(ABC) = C'B'A'

Trace: sum of the diagonal elements. In R: sum(diag(A))



Matrix basic operations — Multiplication

N D | | Ci1 = A1/ By =aqq *byg +aqp x byy +ay3 * bzg

. — Cy3 = Ay B3 = ayq * byz + ayp * byz + az3 * bsz

m
Cij = Ai" B] = zk_l Ajk * bk]



Matrix basic operations — Multiplication

A <- matrix(c(5, &6, 1, 2,

9, 5, 3, 8,

1, 1, 3, 5), nrow = 3, ncol = 4, byrow = TRUE)
B <- matrix(c(2, 5, 8,

1, 3, 5,

4, 5, o,

8, 3, 2), nrow = 4, ncol = 3, byrow = TRUE)
C <- matrix (NA, nrow = nrow(A), ncol = ncol(B))

for(i in l:nrow(A)){
for(j in l:ncol(B)){
Cli, j1 <= sum(aAfi, 1 * B[, J1)

## [,11 [,2]1 [,3]
$# [1,1 33 60 90
$# [2,] 99 99 131
$## [3,] 55 38 41
c2

+# /11 2] [,3]
$# [1,] 38 60 90
$## [2,] 99 99 131
$#[3,] 55 38 41



Matrix basic operations — Multiplication

Properties

AB # BA (in most of the cases)

(AB) = B'A’

(AB)C = A(BC) if Neoi(A) = Nyow(B) and Neoi(B) = Nyow(C)
AA T =1

(AB)"' = A 'B!



Matrix basic operations — Multiplication inner product

C=AB
The inner product of two vectors is a scalar. Two vectors are orthogonal if their inner product is equal to 0.

A <— c(3, 4, ©6)
B < c(-2, 0, 1)

A %% B

#4# ;L]
## [1,] 0
t(A) %*% B
#4# ;1]
## [1,] 0

Equivalent of the inner product for matrices.

A <- matrix(l:4, 2)

B <- matrix(5:8, 2)

sum(diag (£t (A) %*% B))

## [1] 70



Matrix basic operations — Multiplication outer product

C=AF
Compared to the inner product that results in a scalar, the outer product results in a N x [N matrix

A <- c(3, 4, 6)
B <- c(-2, 0, 1)

A %*% t(B)

## 11 0,21 [, 3]
#* [2,] -8 0 4
#+ [3,] -12 0 6



Matrix basic operations — Multiplication Hadamar product

A_(a b) and B_(E f) then jiloj‘fi_(ﬂ'e bf)
c d g h cg dh

library (matrixzcalc)

A < matrix(l:4, 2)

B <— matrix(c(1l, 1, 2, 2), 2}
C<-B*A

# 11 [, 2]

## [1,] 1 6

## [2,] 2z 8
hadamard.prod (B, A)

# 11 [, 2]

¥+ [1,] 1 6

#+ [2,] 2 8



Matrix basic operations — Multiplication Kronecker product

[ I R s =

4
##
¥
##
##

<— matrix(l:4, 2)
<— matrix(c(l, 1, 2,
<- B %x% A
11 2] [,3]
[1,] 1 3 2
[2,] 2 4 4
[3,] 1 3 2
[4,] 2 4 4

A (an am) ?
az a
A®B— (GllB
a1 B
(511 b12 )
a1 _—
A®B— 21 b
- (511 b12 )
ba1 b
a11bin  anbia
b b
AwB— | onba oubx
az1bi1  azabia
a21b21  a21b22

( b11
ba1
algf3)
as B

aiz (

b11
b21

a12bny
ai2b21
as by
as2ba1

b12
ba2

)

bio )
bao
b12 )
bao
a12b12
a12b22

a22b19
a22b22



Matrix basic operations — Determinant

The determinant det(A) or | A| is a scalar values that is a function of the entries of a square matrix

@ b':ad—bc
c d

Properties
det(A') = det(A)
det(AB) = det(A) * det(DB)

m <— matrix(c(3, 1, 7, -4), 2, 2)

det (m)



Matrix basic operations — Determinant

let assume the following block matrix with sub-matrices A, B,C,Dofdimensionsm Xm,. mXmn,nXm,andn X N
det (A B)
C D
If A is invertible.
A B
det ( ) — det(A) * det(D — CA™'B)
C D

If I is invertible

det (A B ) — det(D) * det(A — BD71C)
C D



Matrix basic operations — Inversion

An x n matrix A is said to be invertible (or nonsingular) if there existe a n X 1. B matrix such that

AB=BA=1,
where I, is the identity matrix. If this is the case, B is denoted A1 and is called the inverse of A
. . . . 11 .
If A is an invertible matrix, then A™" = det(A) adj(A)

o a b 1 1 d —b _ 1 d —b
Forexampe,fora2><2fl(c d)A det(A}(_c a)ad_bﬂ e a )

if the determinant is equal to 0, the inverse does not exist. If det(A) — 0, A is singular, no unique inverse exists but generalized inverse do.

Properties

(A1) 1=4
(A.f)—l — (A—l)r
(AB) 1 =B14"1

A <- matrix(c(3, 1, 7, -4), 2, 2)
Ai <- solve(Rd)



Matrix basic operations — Eigenvalue decomposition

The eigendecomposition of a matrix is the factorisation into a canonical form (unique form), whereby the matrix is represented in terms of its
eigenvalues and eigenvectors. Only diagonalisable matrix can be factorized in this way.

The eigenvectors v of dimension 1 and scalar values A can be defined with the following equation
Av = A\v

Geometrically, the eigenvectors are the vectors that elongate or shrinks A and amount they elongate/shrink is the eigen value.

Let A be a n X n square matrix with 1 linearly independent eigenvectors. Then, A can be factorized as
A =UDU'
where U is the n X n matrix of eigenvectors of A and I a diagonal matrix whose diagonal elements are the eigenvalues.
Properties
det(A) = [T A
tr(A) => A

Usage: Reduce the matrix dimensionality
simplified and faster computation



Matrix basic operations — Eigenvalue decomposition

A <- matrix(c(1l0,

Jdr Uy =
0 )

## [,1]
## [1,] 13.750797
## [2,] -4.771235
## [3,] 31.18021%

ESvectors([, 1] * Esvalues[1]



Matrix basic operations — Cholesky decomposition

The cholesky decomposition or factorisation is the decomposition of a Hermitian positive-definite matrix A into the product of a lower triangular
matrix L and its conjugate transpose L*

A=LL"

It has application to increase the efficiency of linear equations numerical solutions search. It is also used in Monte Carlo simulations to simulate
system with multiple correlated variables. The covariance matrix is decomposed to give the lower triangular matrix L. The product Lu where u is
an uncorrelated sample is a sample vector with covariance properties of the system. For example, for the simulation of a genetic effect in a multi-

environment setting.

¥ s risrncrs matrriy b

M
[1h]
]
|

|
t
[
[

-t

5G <- matrix(c (50, 40, 25,

40, 50, 15,

25, 15, 50), 3)
K <- matrix(0.5, 5, 5)

diag(K) <- rep(l, nrow(K))

SGE <- 5G %x% K

T o o a = ] ~frm = 7 5m o § e — 5 oL
=0 1= LUWSL Ll ftgilliyie UL -

L <— chol (SGE)

AL ST FTT F oS T ~F e

Cu A 3 1 3 0 Iy AP B SN L



Matrix algebra - Exercises

Ex 1
Calculate the following matrix B = ((A’)_1)2 with

- (32)
2 3
Ex 2

Z7'

A. Using the provided marker matrix X, calculate a kinship matrix using the van Raden method K = m, where Z is the centered

marker matrix with z;; = Tj; — 2p; and p; frequency of the ith marker.

B. Using the microbenchmark package compare the speed of inversion of the kinship matrix using standard function slove () and cholesky
decomposition cholinv2 () . Sometimes, the inversion of a kinship matrix is problematic because it is singular. It is possible to solve the

problem by adding a small digit (e.g. 10E-4) to the diagonal.



Matrix algebra - Exercises

Ex 3

A. It is possible to express a kinship symmetric matrix K = X X using the eigen decomposition K = UDU’. Using the fact that U is an
orthogonal matrix with the following property U’ = U1, showthat K} = UD1U".

Calculate in R the inverse of the kinship using K 1 = UD~1U’

B. To speed-up the computation, it is convenient to only select the ‘top’ principal component that correspond to a certain value (e.g.
p = 0.995). Perform the eigen decomposition on the K matrix and select only the top PC that correspond to 0.995. What is the rank
reduction?

C. Calculate a simple G-BLUP model using the rrerLur package and the first phenotype. to compare the estimation of the genetic variance.
You can use the following code



Linear models



Linear model

We can express the linear model as such ¥y = u + X8 + e, where € ~ N(O, o'g).

From that the variance (covariance) structure of the model is V (y| X ) = ncrg

1 0
V(y|X) = o2
0 1

The fact that the off-diagonal elements are equal to zero means that we assume that given the predictor X the observation y are uncorrelated.



Linear model — Ordinary least squares

We derive an expression for the 3 using the ordinary least squared method (OLS).

Let us assume the following model

y=a-+ PBr+e

To find the ordinary least square estimates, we want to find the regression line that minimize the error between the observation ¥y and the
prediction y = & + ﬁ’:n

So we want to minimize the error

e=y-j=y—a-fz

This correspond to the following optimization problem

e

argmin SS, — argmin Z € = argmin Z(y — & — Bz)?
&"'é &?JBA &'JBA

Least Square Method

THE MATH EXPERT




Linear model — Ordinary least squares

Before deriving the previous expression, let us introduce the following relationships that will be useful for the demonstration
SSee = » (zi — Z)(z; — T) Z[ — (z; — T)T]
DICELEES DORLE

T

:E (:ci—;t:)mz—:ﬁg (z; — )
T

:§ (x; —Z)x; — T *0
1=1
T 1 n n
E 2 = 2 = 1
1=1 i=1 i=1 n i—1
T

— 3:3 nz’
1=1

Similarly we can show that
n T



Linear model — Ordinary least squares

Then we can optimize S'S, with respect to &.

BSSE mn ) . (s X R T
Y 2y — & —Bri)x (1) =Y yi—na—BY =z

0SS n R A
— :U:}»Zyi—na—ﬁme =0
da i—1 i—1

df(x)/x=0



Linear model — Ordinary least squares

Then we can derive 3

0SS,

s

op

-5 xl)

i=1 i=1
mn R mn R n
—2() yiwi —n(y — BT) Y wi— B )zl
=1 =1 i=1
1 mn R T R 1
—2(2@*@3—?13}2@ —npzT r; — 3 :r:f)
i=1 i=1 i=1 i=1
mn . n mn
_2(Zygmi—n§§:—ﬁ$(2$§—ni ;1:3])
i=1 i=1 i=1
—2(SS$y — ;SSSM)
— 0= 55,y — 855, =0
B _ SSzy _ ?:1(333' Z)(yi —Y) _ Oy
SS.. S (zi — z)(x; — T) o2



Linear model — Ordinary least squares Matrix notation

Let us start from the same linear model written in matrix notation
y=Xp+e€

We want to find the solution ,5’ that minimize eg —eée=(y— XB)(y— XB)

ee=(y— XB)'(y — XB)
=y - BX)(y— XB)
=yy—yXB—-p'X'y+p'X'Xp
=y'y—28'X"y+ ' X' XP
In the last line we use the fact that y’Xﬁ is a scalar because yiannxp,Bpxl and the property that the transpose of a scalar is the scalar itself so
Yy XB=(y'Xp) =p'X"y

We can derive with respect to 3 and equal to zero

Oe'e

95 —0—-2X'y+2X'XB=0= X'XB=X"y

Which give the following solution

f=(X'X)"X"y



Linear model — Ordinary least squares Matrix notation

We can calculate the variance of 3

V() =V((X'X) ' X"y)
X'X) I X'V(y)[(X'X) X' hereweuse V(Az)= AV(z)A
X'X)X'(X' X)X TV (y)

X'xX) 1 xX'(xX)Y(xX'x)yHYvy) (X’X)"! issymmetricso (X'X)7!=((X'X)"lY
X'X) X' X(X'X)V(y)
X'X)
X'X)



Maximum likelihood principle

, 1 1 /x — u\?
P(x=x|u,a>=mexp§[( —5) |

P(szl)ZO,S
P(XZXZ)ZO,S
PX=xy NnX=x,)=05%0,5

Likelihood function

n
L=PX=x; NX=x,N-NX=x,) = 1_[ P(X = x;|u, 0?)
i=1



Maximum likelihood principle

Likelihood function

n
L=PX=x; NX=x,N-NX=x,) = 1_[ P(X = x;|u, 0?)
i=1




Maximum likelihood principle -illustration

Likelihood function

P(X =19 — 0|p = football match)

p = PSG — Marseille

p = PSG — Montceau—Les—Mines

x [} . - -
= ! A g
A (ool LU F T
= - | ,
,(. i
|
-~ ~

.1 _.I:‘
4! P
. A4

- . | o #«:ﬂi‘if
p= parameter value that maximise the Likelihood given the assumed distribution WIS NI | '
Mentceauznews:com




Linear model — Maximum likelihood estimation

Let us start again from the same model
y = XB + ewhere e ~ N(0,Ic?)

Given the above model, y follows the following distribution

This means that the form of ¥ distribution given X and (3 is

f(ylX,B) =

L(y| X, B)

1 y—Xp

3

)’]

=] P(Y =)
i=1

=] rwlX, 8)
i—1

) g g emp[—l({y_Xﬁ)g)]
il A/ 2mo? 2 0’52

S exp| — l({y—Xﬁ)?)]
i-1 \/ 2mo? E ol
n 1 1, (y— XB)?

k= ;log{ 2mro? )~ E((y o2 . )



Linear model — Maximum likelihood estimation

To obtain the expression for 3 we can derive L with respect to 3 and find an optimum
L - 1 0 (y— XB)?
A Z 0_ = (y B)
BJB i—1 2 aﬁ "3-62
. Z yQ—ZXBy‘i_Xg,@Q
— 38

o

:——Z——2X’y+25XX

zlgf

i=1

BX'X — X'y=0—= Bur = (X'X) X'y

We can notice that By/1, = BoLs



Linear models - Exercises

Ex1

Given the expression of the predicted values as § = X3 and the expression of V(Ef) = (X'X) o2 showthat V(3) = X(X'X) 1 X'52

Ex2: Function for OLS estimation

Create your own OLS estimate function. Test it using the iris data to calculate the following model
Sepal. Length — Species + Petal. Length. The model contain no general intercept but one intercept per species. compare with the Im()
function.

Ex3: Regression on parents

Different methods exist to calculate the heritability. A famous method is the parent offspring regression.

Yo :a+ﬁop*yp+e

In the abscence of environmental effect, it can be shown that

h? =2 x ,Bo.p (for single parent regression)

h? = ﬂap (for average or mid-parent regression)

Using the Galton data that can be found there https://ytliu0.github.io/Stat390EF-R-Independent-Study-archive/RMarkdownExercises/Galton.txt

1. Calculate the heritability using single parent regression
2. Calculate the heritability using mid parent regression



Recap

Matrix (+-*Inv, eigen, Cholesky)

Linear model
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Genearlized Least squares



Genarlized least square model

We can express the linear model as suchy = 1 + X3 + e, where e ~ N(O, 082).
From that the variance (covariance) structure of the model is V (y| X) = I,02
1 0
V(ylX) = ", o
0 1

The fact that the off-diagonal elements are equal to zero means that we assume that given the predictor X the observation y are uncorrelated.

We can introduce the generalized least square model ¥y = u + X8 -+ e as an extension of the linear model where the variables are not
considered independent anymore

e~ N(0,V).

V is a variance covariance structure where off diagonal elements are non-null.

V1,1 VUln

V(ylX) =



Genarlized least square model

Using that, we can derive an expression for (3 in the generalized linear model setting.
Since V' is a VCOV matrix V as well as its inverse V 1 are squared positive definite matrices. We know that such a matrix can be re-expressed
using the Cholesky decomposition
V =LL
V—l — (LLF)—].
V—l — (LI)—IL—I
V_l — (L—l)rL—l

We can transform the linear model matrix expression by multiplying both side with L1 which gives

Lly=L1'XB+ L e
j=XB+¢

where, § = L1y, X = L 'X and & = L le



Genarlized least square model

8= (X'X)x"y

Since § = X8 + € has the same form as the linear model, we can use the OLS expression to express B LS

Bers = (X JE') X'y
= (L~ ) IX) LX) Ly
= (X"(L7YYL'X)" 1X"(L‘l)"L‘ly
= (X'V1IX) " x'v1ly

In a similar way as 3 y1,g, we can show that the variance of B¢ is

V(Bars) = (X'Vix)™!



Exercise

Ex 1: Fast GWAS with approximate GLS estimate

Let us remember that Bgrs = (X'V 1 X))~ X’V ~1y. A popular method to increase the speed of GWAS computation is to obtain an
estimation of variance copmpnents (03 and 052) using the following model

y=pn+2Zg+e
where,
g~ N(0, Kcrg) and K is a kinship matrix e ~ N (0, Io2)

The estimation of 092 and 062 allow to reconstruct V' (The VCOV of the model) without QTL term, and then to insert V' in the B¢ formula to
estimate the value of the QTL at each position, which will give us an approximation of the following model

y=p+ XB+2Zg+e
where X is the QTL term and 3 is the QTL effect. The estimation of the significance of 3 allows to build a Manhattan plot.

1. Derive the variance expression of Yy

2. using the example geno and pheno data estimate the variance components O'g and 062 using the following code from the regress package



B=(X"X)"X'y

Since § = X3 + € has the same form as the linear model, we can use the OLS expression to express BaLs

Bers = (X X) X'y
(L' X)L X)L X)Ly
= (XL L' X)" X’(L‘l)’L“ly
= X'V X)XV

In a similar way as 31,5, we can show that the variance of B is

V(Bers) = (X'V1x)™!



Mixed models



Introduction

XV.—The Correlation between Relatives on the Supposition of Mendelian Inherit-
ance. © By R. A. Fisher, BA. Communicated by Professor J. ARTHUR
TromsoN. (With Four Figures in Text.)

(MS, received June 15, 1918. Read July 8, 1918. Issued separately October 1, 1918))

of the mean square error. When there are two independent causes of variability
capable of producing in an otherwise uniform population distributions with standard
deviations oy and oy, it is found that the distribution, when both causes act together,
has a standard deviation /o®+a,% It is therefore desirable in analysing the
causes of variability to deal with the square of the standard deviation as the
measure of variability. We shall term this quantity the Variance of the normal
population to which it refers, and we may now ascribe to the constituent causes
fractions or percentages of the total variance which they together produce. It

Concept of analysis of variance (ANOVA)
Partition of the variance into different term: genetic, environmental, GxE

Seminal thoughts about the concept of mixed model: modelling second
moment (variance) of the normal distribution.



Mixed models justification

Take the dependency between observations into consideration

V(y|X) = V(ylX) =

0 1 Un,1

Multiple source of dependency between observations: Shared environment/conditions, time (longitudinal

data), (genetic) relatedness, etc.

sulsesiiv Gl N
e I
¥

Uln

Un,n




Mixed models justification

Take the dependency between observations into consideration

f?frb@? o= NN .
. A 'i.z?.." g &
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Mixed models justification

Advantages

- Reduce the residual variability (error)
- Important to form test statistic

1 0 V1.1 Ul,n
V(y|X) = V(ylX) =
0 1 Un,1 Un,n
B (X'X)" X'y t . XVIX)TX'vTly |
= ~ = ~X

v(g) — X'vix)t

\/@ JX'1a2X)™



Mixed models justification

Model the two moments of the distribution (expectation and variance)

y=X+Zu+e

Fixed terms (f3): fixed constant
affect the first moment of the
distribution (Expectation, central
tendency)

Random terms (u): term defined by
a distribution (e.g. u~N (0, 62))
affect the second moment of the
distribution (Variation, dispersion)



Mixed model general formulation

Let us start from general mixed model formulation:
y=XB+ Zu+e [l
Where,
u~ N(0,G)
and

e ~ N(0,R)

u 1 e€: The two random terms are independent (cov(u, e) = 0)



Mixed model general formulation

e ~ N0, R)

Properties of y distribution

Ely] = E[XB| + E|Zu| + Elé|
= XB+ ZE[u| + 0
=XB+Zx0+0
= XA

Vly] = VIXB] + V|Zu| + Ve
=0+ ZV[ulZ' + R
=0+ ZGZ'+ R

V=Z2GZ' +R

Hence,

y~ MVN(XB,V)



Multivariate normal distribution - Intermezzo

Let us start to introduce the multivariate normal distribution (MVN). Let us assume a random vector (a:l, Lo,y ..., :Bn) of independent variables
that are univariate normal. For example for two random variables

I NN(U,O'%)
L9 NN(U,O'%)

The MVN describe the joint distribution of those variables: MV N (u, 3) where . is the vector of means (f41, ft2, - - - , ltr ) @nd X is the
variance covariance matrix

2
( oy 012 O1n \
021
¥ =
2
\ O-nl o-n ) U @ Para matn

plY)
(x)d




Multivariate normal distribution - Intermezzo

For example for two variables &1, T we have

2
M1 0 012
p(ZEl,iBg)NMVN(( ),( 2))
M2 021 0,
The MVN has the following probability distribution function (pdf):

p(T1,T2,...,T,) = (Qﬁ)”/zdet(z})uze:cp(—%(m — )z —p)

One important property of the MVN with two variables (1, Z2) is that the conditional expectation of 1 given Ty can be expressed as:

Elzi|zs] = p1 + 012(03) (22 — p2)



Mixed models — BLUE estimation

PAf:  p(zy,20,...,2,) = (27r)*"/2det(2)—1/zemp(—%(CC —w)'E 7 (z — p))

We can find an expression for the fixed term coefficient 3 by optimizing the likelihood function with respect to 3. Let us start from the pdf

3 1
f X, 8,V) = 2m)"2|V| VP exp| - 5= XB)'V "y - XB)]

We can express the likelihood of a certain variable state and transform the expression using the lograrithm function

log(L(y| X, B)) = L o Zzog ~ XB)'V ' (y — XB)



Mixed models — BLUE estimation

To obtain the expression for 3 we can derive L with respect to 3 and find an optimum
E ———(y—XB)V i (y- X
3 5 Z 5 aﬁ B)V ' (y— XPB)
— Z—y V iy —2Xp'V ly+ X'V 1XB
= = Z—o— 2X'V ly+28X'VIX

8% 00— 2X'Vly £ 28XV X =0
1=1

BX'VIX-X'Vy=0= Bun = (X'V'X)"' X'V "y

We can notice that Byrpr = BarLs



Mixed models — BLUP prediction

As their names indicate, the BLUP are predictions. The best (less biased) prediction is the conditional expectation. For example, E[Y|X}. This
correspond to the definition of a linear regression. In the mixed model setting, the BLUP are the best linear predictor of u given the observed data

y,sou = FElulyl.

To derive an expression for the BLUP, we can use the joint distribution of the random term u and the observations .

()27 (x) (ze 5 )

The expectation and variance of u and y are already defined. The covariance cov(u, y) = E[(u — E(u))'(y — E(y))] can be developped

cov(u,y) = E[(u — E(u)) (y — E(y))]
= E[(u — 0)'(XB + Zu — XP)]
= E[(u) (Zu)]
= ZE[u'u]

— ZG here weused V(u)= E[u*] — E[u)* = Eu/u] — 0
Using the property of the MVN (E[zy |®2] = p1 + 012(03) ' (x2 — p2)), we can derive the conditional expectation of u given ¥

u = Eluly] =0+ GZ'V(y — XB)
= GZ'(ZGZ' + R) '(y — XB)



Mixed models equations derivation

The strategy consisting of adjusting for the estimated fixed effect, get the residuals and estimate the random effect produce biased estimate for
both fixed and random effects.

An improved strategy proposed by Henderson is to simultaneously estimate the fixed and the random effects. For that we need to optimize the
values of 3 and u from their joint distribution expression.

To get an expression for the joint distribution of 4 and u, we can use the property that f(x,y) = g(«|y)h(y). So in our case we have

f(y,u) = g(ylu) * h(u)

for the distribution of y|u is equivalent to the distribution of € because knowing 4 makes the term fixed so the only random part in

y= XpB+ Zu+ eise. So g(y|u) = g(e). Therefore
F(y,u) = g(e) x h(u)

where

1, L,
gle) = Cxexp| — §e'R ‘e] and h(u) =C *exp|— Eu’G tul

Therefore, the joint distribution is

1
f(y,u) =L = C x exp| — E(e'R_le +u' G )]



Mixed models equations derivation

1
L =log(L) = log(C) — E(B’R_le +u'G )
LxeR'et+uG'u
Lx(y—XB—Zu)R ' (y— XB—Zu) +uG'u (e=y— XB— Zu)
Lox(y—XB—Zu)R ' (y—XB— Zu) + 4G 'u
If we develop the expression
Lox(y—XB—Zu)R ' (y— XB— Zu) +u'G 'u
YR 'Yy —yR'XB -y R ' Zu
—(XB)R 'y + (XB)R'XB + (XB)R ' Zu
— (Zu)R 'y + (Zu)R'XB + (Zu)R™ ' Zu + v G 'u



Mixed models equations derivation

Lo(y—XB—Zu)R ' (y— XB— Zu) +u'G 'u
YRy —oyR'XB -y R ' Zu
— (XB)R 'y + (XB)R™' XB + (XB)R™ Zu
—(Zuw)R 'y + (Zu)R ' XB+ (Zu)R ' Zu +u' G u

Derivation with respect to 3

a% 0= 9y R'X-X'Rly+ XB'R'X+XR'XB+X'R ' Zu+ (Zu)R1X =0
—2X'R Yy +2X'R'XB+2X'R' Zu=0

X'R'XB+X'R'Zu=X'R 'y
Derivation with respect to u

a£ — 0=y R 'Z+(XB'R'Z-Z'R'y+ (Z)R'XB+(Z)R'XZu+ (Zu)R'Z +2G'u=0
U
— 2R 'Z+2Z'R'XB+2Z'R ' Zu+2G 'u=0
Z'R'XB+Z'R'Zu+G'u=Z'R 'y

The two solution can be reorganized in a matrix system of equations

X'R'X X'R'Z ] {,@]

pe
Z'R'X Z'R'Z+G 1

Z'R Yy

u



Mixed models equations

‘X'R'X  X'R'Z ][g
Z'R'X Z'R'Z+G'] |a

Ry
Z'R 'y

Estimation of the variance component R and G using for example REML

Then estimation of the BLUE/BLUP by inserting the variance estimates in the MM equations




Fixed/random?

y=XB+Zu+e [l
y = u + design (rep, block) + treatment (fertilisation) + geno + e

Fixed terms

Question: le terme (env, rep, géno) est-il divisé en un nombre (réduit) de catégories

clairement identifiables pour lesquels le chercheur/sélectionneur a un intérét
particulier

Ex: level of fertilization: low nitrogen vs high nitrogen: Experiment is specifically
designed to know this constrast

Estimation of the BLUE (Best linear unbiased effect)



Fixed/random?

y = u + design (rep, block) + treatment (fertilisation) + geno + e
Random terms

Question:

e Les différents niveaux du termes peuvent-ils étre considérés comme provenant d’'une population plus générale
ou une distribution probabiliste (ex genol, geno2, ... genoN sont des entités d’une population plus large
représentant la diversité génétique)

* le terme est-il divisé en un (grand) nombre de catégories peu identifiées (ex: block 1 ~ block 2 ~ block 3 petites
différences entre les blocks).

 « Nuisance » terme to control the variability associated to a large number of unidentified effects : ex:
experimental design terms.

 Userandom term if you specifically target to model dependence between observation (e.g. hierarchichal or
clustered analyses).

* Control for the randomness associated with the distribution/population + interest in the realized values ->
Estimation of the BLUP (Best linear unbiased predictor)



Fixed/random?

Extra considerations
- Y (dependent variable) and e (error term) are always random

- The definition of a terms can depends of the next usage. For example, in a two-
stage analysis, if the second stage model use a random (fixed) genetic term, in the

first stage (adjusted mean computation) you should calculate random BLUP (fixed
BLUE).

- Random terms use less degree of freedom. Fixed term k levels degrees of freedom.
Random term 1 degree of freedom.

- Computationally easier to estimate fixed effects. So if your model fail to converge
consider passing some terms as fixed.



Exercise

143

OATS
Variety Trial.

Nitrogenous Fertiliser: Sulphate of Ammonia at four levels.
R O—Gt. Harpenden, 1931

E
A B C
M G Vv G Vv M Vv G M
Ceommre e ':IF“_ e e — s Ceoesme e
|
3 } 2 3 t 2 3 1 1 2 + I 2 E3 1 1 I 2 3 l 2 2 4+
3}111424433'1323!4 4l113i
| | |
M Vv G M \Y G G M A"
— e, pr—— — . —— —— —— — . —_—— ——
| 8 | 1 2 3 2 I 4 1 I k) 1 ‘ 3 1 l 4 3 1 2 | 1 4 l 3 l
4‘2141i3 324'2 2|3 244‘31{2'
TSRS i E F
Svystem oy RerrLication : 6 randomised blocks of 3 plots, Varieties (main plots) : V=Victory.
each sub-divided into 4. G =Golden Rain II.
AxzA oF Eacr Pror: 1/80th acre. M = Marvellous.
TraruexTs (sub plots) : Seed sown : February 25th.
1= No Nitrogen. QOats Harvested : August 18-20th,
2=S/Amm. at the rate of 0.2 cwt, N per acre, Previous crop : Tem Ley : 1st crop taken for hay ,

3==S/Amm. at the rate of 0.4 cwt. N per acre.
4=S/Amm. at the rate of 0.6 cwt. N per acre,
Manures applied : Feb. 256-26th.

aftermath eaten off by sheep given turnips and corn.



Mixed models equations - simplification

The following mixed model
y=XB+Zu+e u~N(0,G) e~ N(0,R)

is associated with the follosing MM equations

s

u

[X’R—lX X'R'Z } [,3]

[X’R_ly}
Z'RX Z'R1Z+aG1

ZJR—ly

Let us assume now that B = ICJ'EQ, Then the MM reduce to that expression (multiplication by R on both sides)

ox zzrea] 2= [20]
Z'X Z'Z+a2G | |al | Z'



Animal or pedigree BLUP model

X'X X'Z B X'y
Z'X Z'Z+a2G7] |

Let us rewrite the random term of the mixed model to consider that the covariance between two individual is proportional to their (genetic)

relatedness
y=Xp+Zu+e u~ N(0,G= Ac2) e~ N(0,I02)
Where the A matrix represent the expected (genetic) relatedness between individual infered from pedigree records.
We can replace the GG term in the MM equation
X'X X'Z é
72X Z2'Z+ %A [u



Animal or pedigree BLUP model

Generations.

Own .

Father’s
Grandfather’s
Great-grand father’s

Great-great-grandfather’s

Half 2nd
Cousin.

ea

1;123
]xﬂﬁﬂ
lfﬁlﬂ

lflﬂﬂl

Half 1st
Cousin.

]
.rfl g

1/?52
ey
Yian

Yase

Half

Ancestral

Brother. Line. Brother. | 1st Cousin. | 2nd Cousin.
' ] e /s e
s e s e 1/34
ig 4 e s Yive
1!3:: IIH 11,”: t}‘“ 1/255
gy Y s Yy fore

Gl | G2 | [.] | Gn
G1 1 0,5 0,5 0,5
G2 1 0,25 | 0,25
[...] 1 0,25
Gn 1




Genomic G-BLUP model

Fa

u

X'X X'Z ] [,3] B [X’y]
Z'X Z'Z+o2G! | Zy

Similarly, We can replace the genetic relatedness matrix based on pedigree A by a kinship matrix based on marker scores K.

In that case, we have the following mixed model

y=XB+Zu+e u~ N(0,Ko?) e~ N(0,Ic?)

)
Z'y

That correspond to the following MM equations/solutions

—1

A

-

X'X X'Z
Z'X Z'Z+ CK-!
Tg




Genomic G-BLUP model

P G L1 L2 L3 L4

~ Similar (50%)

~ Similar (75%)

Genotypic (marker) similarity should cause phenotypic similarity



Genomic G-BLUP model

Compared to the A matrix, K allows to differentiate between individual with the same expectd co-ancestry
coefficient (e.g. two sibs) due to the allele Mendelian sampling

A: Expected co-ancestry K: Realized or molecular co-ancestry

Gl | G2 [...] | Gn Gl | G2 [...] | Gn
Gl | 1 05 | 0,5 | 05 Gl 1 |042 058|048
G2 1 0,25 | 0,25 G2 1 0,2 | 0,28
[...] 1 10,25 [...] 1 10,24
Gn 1 Gn 1




Regularization methods



Rank deficiency

Let us start from the basic linear regression model

y=p+XB+e

For which we can obtain the OLS estimator
-1
B=(X'X)"X"y

The matrix of predictor variable X is of dimension 7 X p. If the matrix is not full rank rank(X) # p, we can not invert X’ X because

det(X' X) = 0.

library (Matrix)

X <- matrix(c(l, 4, 5,
3, 6, 4,

4, 3, 7), nrow = 3, byrow = TRUE)

r <— rankMatrix(X)

det (crossprod (X))

## [1] 4225



Rank deficiency

Let us start from the basic linear regression model
y=p+Xp+e
For which we can obtain the OLS estimator
B=(X'X)"X"y
The matrix of predictor variable X is of dimension n X p. If the matrix is not full rank rank(X) # p, we can not invert X’ X because

det(X'X) = 0.

X2 <- matrix(c(l, 2, 5
4, 8, 7), nrow = 3, byrow = TRUE)

r <- rankMatrix(X2)
det (crossprod (X2))

## [1]1 O



Rank deficiency (n << p)

B=(X'X)"X"y
The matrix of predictor variable X is of dimension n X p. If the matrix is not full rank rank(X) # p, we can not invert X’ X because

det(X'X) =0

X3 <- matrix(c(l, 4, 5, 7,

nrow = 3, byrow = TRUE)

r <- rankMatrix(X3)
det (crossprod (X3))

## [1] 9.814372e-11
The rank of a matrix X can be obtained by calculating the number of non-zero eigenvalues of the X' X matrix

X3 <- matrix(c(l, 4, 5, 7,

4, 3, 7, 1), nrow = 3, byrow = TRUE)

r <- rankMatrix(X3)
sum (round (eigen (crossprod (X3)) $Svalues, 10) != 0)

## [1] 3



Ridge regression a solution to rank deficiency (n << p)

Regularization methods are solution to calculate regressions with highly correlated predictors which include rank deficient predictor matrix. A
solution for this problem to still be able to estimate the rank deficient model is to impose a constraint on the estimated effects. In that case, it is
possible to define shrinked 3 by imposing a Lo penalty on the 3 estimates

P
1Bll3 = B3+...+BF <X or Y BF<A
j=1

This gives the following expression for the parameters estimates that can be develop to a generic formula for bridge estimators

n p p

BRidge — argmin Z(yi — KM — Zﬁjmﬁ)z + )\Z,ﬁﬂ
] 1

A _ P
5Rz’dge — a.rgénin RSS + A Zl ﬁ:ﬂ

BRid’ge — argénin :RSS—i_ AHﬁ‘ ‘3]

- i p
Biridge = argmin [RSS+ XY |8"] with ¥ >0 and X>0
B ) T



Ridge regression a solution to rank deficiency (n << p)

We can re-write the Ridge loss function to minimize in matrix notation
L(BA) = (y—XB)(y—XB)+A8'B
=y'y—26X'y+ X' XB+ BB
Then we can derive and find the maximum
OL(B,A)

op
—X'XB+Br=X"y
BX'X + M) =Xy

=0-2X'y+2X'XB+2BX=0

So
Brige = (X' X + M) X"y

The estimation constraint \ is added to the diagonal of X’ X . The value of A can be estimated by cross-validation for a range of values (see
exercise).



Relationship beta Ridge beta OLS

Let us start from the general expression of Beta Ridge
Bridge = (X'X + A1) 7' X'y
We can rewrite this expression to let emerge the expression of Spors = (X'X)_ley

ﬁRidge(X’X + /\I) — X"y

Bridge(X'X + AD)(X'X) ! = (X'X) ' X"y
Bridge (X' X(X'X)™' + MX'X)™) = Bors
Bridge(I + MX'X)™") = Bors

Bridge = (I + M(X'X) ™) Bors
5
o-f —_ _
Bridge = (I + —5 (X' X)) BoLs
a
B

The larger the variance explained by the parameters o'g >> cr,E2 the more the beta explain the whole variation. This implies that

crf2 —+0 A—0,and )BRidge = BoLs. So, the more the predictor explain the variation the less they are shrunk.

On the other hand the more G'EQ = 0’3, the more the parameters are imprecise and therefore shrunk.

2

€
2

a
[

The amount of shrinkage is inversely propotional to and proportional to X'X. Ridge regression tend to apply a similar amount of shrinkage to

parameters that are correlated.



Relationship Ridge regression and mixed mode estimation

We have seen that the general mixed model
y=XB+Zu+e u~N(0,Go7) e~ N(0,Ic?)

can be expressed with the following system of equations
-1

)
Z'y

A

-

X'X X'Z
72X 2'Z+ %G

Similarly the regression model

can be expressed with the following system of equations

3 X'l, X'X+4+ X'y



Relationship Ridge regression and mixed mode estimation

y=u+XpB+e
where we assume this time that the 3 is random. So,
B~ N(0,021,) €~ N(0,Io?)
the variance of y, V(y) = V(XB) + V(e) = XX'o7 + Io?

From that model we can derive a joint distribution for the [ﬁ y| vector
2 2 !
0 ozl o X
(5)NMVN(( ) - s )
Y 0 0 X XX'oj+ Ioe
where

cov(B,y) = E[(B — E(B))'(y — E(y))] = E[(8)'(X'B)] = X'E[p*] = 03 X'
Then, we can use the property of the conditional expectation of the bivariate MVN distribution.
Elz:|zs] = p1 + 012(03) " (22 — p2)
So
E[Bly] = Bpruvp =0+ UBXI(XX! 2+1Ic2)'(y—0)
o2(XX'o% + Icre) LX'y
= (XX'o% + —ZI)_IX'y

o
5]
= (XX’UE, + M) X'y



Relationship Ridge regression and mixed mode estimation

E[ﬁ'y] = Bprup = 0+ O’E,X!(XXFO% + IO'E)_I(y — 0)
= O'IE(XX’O'E + Io2) ' X'y

2
= (XX'o2+ 1) X'y
A
= (XX'a2+ A)' X'y

This expression can be compared to the BLUP expression from the GBLUP model

A~

= (Z'Z+AK )7 (y— XB)
Derived from the GBLUP model
y=XB+Zu+e u~ N(0,Ko;) e~ N(0,Ic2)

2
There exista A = J—; such that RR estimates is equivalent to the BLUP estimate.
]

According to Hayes et al. (2009), the BLUP model using K — XTX with X the (normalized) marker matrix is equivalent to a regression with

markers specified as random effects

p
y=Y Bi+e with B;~ N(0,0°/p)
j=1



LASSO: Least absolute shrinkage and selection operator

The Ridge estimator does perform any variable selection, which means that all estimates get a non-zero value. The logic of the Ridge regression
can be extended to perform variable selection by using a L; penality

P
Bll; = |Bi]+---+|Bpl <A or Z\Bﬂ <A
=1

Therefore we can define least absolute shrinkage and selection operator (LASSO)

. p
ﬁLASSO — al‘g;nln [RSS ‘l‘ AZ |/Bj|:|
j=1

Brasso = arg;nin [RSS + /\||ﬁ||1]

It correspond to the following matrix notation loss function

L(B,A) = (y — XB)'(y — XB) + All Bl

Interpretation: The higher the value of A the fewer the non-zero parameters. The LASSO cannot select a larger number of predictors p than the
sample size N if p >> IN. The LASSO parameter select one parameter among the higly correlated ones and discard the rest.



Elastic net

The elastic net is a solution to address the limitation of the LASSO by preserving parameters (SNP) selection while allowing the selection of more
than N predictors. It balance the Ls (Ridge) and L; (LASSO) penalty via the parameter «v. The elastic net select at the level of grouped
parameter. It select or not group of parameters that are correlated.

B Enet = arg;nin [RSS + (1 —a)||Bl3 + a||B|1]

The elastic net penalty is controlled by ¢ and bridges the gap between the LASSO (o = 1) and the Ridge regression (o = 0).



