

institut

Master eau

~ Montpellier

Eau & Agriculture

Master thesis presented by: Clara KNOPS

Internship supervisor: Jérémy LAVARENNE

Project Members: Victor-Hugo NENWALA Ibrahim NJOUENWET

Thesis advisor: Jean-Stéphane BAILLY

Exploration of the statistical relationships between rainfall indices and cotton yields in northern Cameroon, to strengthen the resilience of farmers to climate change.

Members of the jury: Jean-Stéphane **BAILLY** Gilles **BELAUD** Flavie **CERNESSON** Jérémy **LAVARENNE** Frédéric **ROSSEL**

Financed by the **INNOVACC** project

Thesis presented by: Clara KNOPS Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion

- **III. Materiels and Methods**
- VI. Corrigendum
- **VII.** Conclusion

CONTEXT

Thesis presented by: Clara KNOPS Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion

Northern **Cameroon:**

- North and Far North regions
- 900 to 1300 mm of rainfall
- 21 to 35 °C

Thesis presented by: Clara KNOPS Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion 3

Conditions:

Economic Significance:

Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion Thesis presented by: Clara KNOPS

Exploration of the statistical relationships between rainfall indices and cotton yields

Context regarding the Master thesis

<u>25 indices</u> analysed between <u>1991 and</u> <u>2010:</u>

Thesis presented by: Clara KNOPS Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion

Spatial aggregated cotton yield and index values for the entire area for every year

Temporal aggregated cotton yield and index values for each sector for the entire time

Correlation between <u>seasonal rainfall amount</u> and cotton yields:

Why do we have a negative impact in the temporal dimension while having a positive one in the spatial dimension?

Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion Thesis presented by: Clara KNOPS

Spatial dimension:

Pearson = 0.53

all years

OBJECTIVE

I. Understanding the spatial distribution of seasonal rainfall and cotton yields

II. Gaining insights into the satistical relationships for single sectors

Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion Thesis presented by: Clara KNOPS

MATERIALS and METHODS

Thesis presented by: Clara KNOPS Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion

RESULTS

Thesis presented by: Clara KNOPS Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion

Mindif:

- 900 kg/ha
- 850 mm

Ngong:

- 1200 kg/ha
- 1150 mm

Sorombeo:

- 1500 kg/ha
- 1350 mm

Correlation between seasonal rainfall amount and cotton yields:

Mindif:

Ngong:

Pearson = 0.12

Pearson = -0.59

Thesis presented by: Clara KNOPS Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion

Sorombeo:

Pearson = -0.46

*Cotton yield in kg/ha and season rainfall amount in mm

Seasonal rainfall amount detached from cotton yields

Thesis presented by: Clara KNOPS

Strong impact of seasonal rainfall amount on cotton yields

Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion 12 Thesis presented by: Clara KNOPS

• Two distinct patterns in North and Far North regions

Thesis presented by: Clara KNOPS Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion 13

Thesis presented by: Clara KNOPS Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion

- Floods
 - -> N-leaching
 - -> Water logging

Why do we have a negative impact in the temporal dimension while having a positive one in the spatial dimension?

Temporal dimension

Region's vulnerability to interannual variability

Average cotton vields of SODECOTON sectors of northern Cameroo Cotton Yield (kg/ha) <= 800 800 - 1000 **III 1000 - 1200 1200 - 1400 —** > 1400

12°0'0.00"E 12°30'0.00"E 13°0'0.00"E 13°30'0.00"E 1

Sector-specific characteristics

Thesis presented by: Clara KNOPS Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion

Spatial dimension

Loss of interannual variability and spatial characteristics

Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion Thesis presented by: Clara KNOPS

CORRIGENDUM

Thesis presented by: Clara KNOPS Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion 18

CONCLUSION

- Cotton is the main cash crop for northern Cameroon, but suffering under climate change and interannual rainfall variability
- Analysis of the statistical relationship between 25 seasonal rainfall indices and cotton yields
 Seasonal rainfall amount, rain and wet days, dry days and spells, as well as seasonal parameters
- Seasonal rainfall amount, rain and wet days, dry days and spel display strong impacts on cotton yields
- Importance of regional characteristics and year-to-year changes in rainfall
- Influence of cotton varieties and natural hazards
- Foresight into the potential scenarios of cotton yield variability
- Support for strategic planning and resilience-building

Thesis presented by: Clara KNOPS 🛛 Overview - I.Context - II.Objective - III.Materiels and Methods - IV.Results - V.Discussion - VI. Corrigendum - VII.Conclusion 19

- Bouba L., Sauvagnargues S., Gonne B., Ayral P.A, & Ombolo A. (2017). Tendances pluviométriques et aléa inondation à l'Extrême-Nord Cameroun. Geo-Eco-Trop., 3(41), 339-358.
- Dessauw, D., Oumarou, P., & Latrille-Debat, S. (2010). Sélection cottonière rapport annuel campagne 2009/10 (Sélection du cotonnier) (p. 71). Cameroun: IRAD-CIRAD.
- Ezan, M., Hala, N., Kesse, F., Koto, E., Kouaido, N., Kouassi, A., et al. (1998). Culture du Coton: Manuel Technique. Bouaké: CIRAD, IDESSA.
- Field, C. B., Barros, V., Stocker, T. F., & Dahe, Q. (Eds.). (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge https://doi.org/10.1017/CBO9781139177245
- Gérardeaux, E., Sultan, B., Palaï, O., Guiziou, C., Oettli, P., & Naudin, K. (2013). Positive effect of climate change on cotton in 2050 by CO2 enrichment and conservation agriculture in Cameroon. Agronomy for Sustainable Development, 33(3), 485–495. https://doi.org/10.1007/s13593-012-0119-4
- Gérardeaux E., Loison R., Palaï O., & Sultan B. (2018). Adaptation strategies to climate change using cotton (Gossypium hirsutum L.) ideotypes in rainfed Sub-Saharan Africa. A in modeling approach. tropical cropping systems https://doi.org/doi.org/10.1016/j.fcr.2018.07.00
- Hocking, P. J., Reicosky, D. C., & Meyer, W. S. (1987). Effects of intermittent waterlogging on the mineral nutrition of cotton. Plant and Soil, 101(2), 211-221. https://doi.org/10.1007/BF02370647
- Lavarenne, J., Nenwala, V. H., & Foulna Tcheobe, C. (2023). NoCORA Northern Cameroon Observed Rainfall Archive [Data set]. Zenodo. https://doi.org/10.5281/ZENODO.10204362
- Leblois, A., Quirion, P., & Sultan, B. (2014). Price vs. weather shock hedging for cash crops: Ex ante evaluation for cotton producers in Cameroon. Ecological Economics, 101, 67-80. https://doi.org/10.1016/j.ecolecon.2014.02.021
- Molua, E., & Lami, C. (2009). The economic impact of climate change on agriculture in Cameroon. IOP Conference Series: Earth and Environmental Science, 6(9), 092017. https://doi.org/10.1088/1755-1307/6/9/092017
- Molua, E. L. (2006). Climatic trends in Cameroon: implications for agricultural management. Climate Research, 30, 255–262.
- Nicholson, S. (2000). The nature of rainfall variability over Africa on time scales of decades to millenia. Global and Planetary Change, 26(1-3), 137–158. https://doi.org/10.1016/S0921-8181(00)00040-0
- Njouenwet, I., Vondou, D. A., Ashu, S. V. N., & Nouayou, R. (2021). Contributions of Seasonal Rainfall to Recent Trends in Cameroon's Cotton Yields. Sustainability, 13(21), 12086. https://doi.org/10.3390/su132112086

Sultan, B., Bella-Medjo, M., Berg, A., Quirion, P., & Janicot, S. (2009). Multi-scales and multi-sites analyses of the role of rainfall in cotton yields in West Africa. International Journal of Climatology, 30(1), 58–71. https://doi.org/10.1002/joc.1872

Universitv Press.

Field Research, 226, 38-47. Crops

Years with important floods:

- 1997
- 1999
- 2010
- -> Benoue river

Thesis presented by: Clara KNOPS

Thesis presented by: Clara KNOPS

Lateral Movement of

Downward Movement of water

> Water Soluble Nutrient e.g., NO₃-N

Indices	3														Simple	e linear re	gression - 1	Pearson						63	2440		6	28			25	
Adaptation														First Difference							Linear-Log			Relative values			Slope/slope					
Dimension	Spatial								Spatioten	mperal	10	Spatiotem LULC mas	poral with k	Temporal				Spatiotem	poral [Temporal				Spatiotemporal			Spatiotemporal			Spatiotemporal	
Yield value	mean median								observed	value	o. 5	observed value		mean median			observed value			mean median				observed value			observed value			observed value		
Index value	me an	mean median		mean		median		me an	median	interp. value	me an	median	mean	median	mean	median	mean	median	interp. value	me an	median	mean	median	mean	median	interp. value	me an	median	interp. value	me an	median	
Cessation	0.67	0.03	0.66	0.03	3 0.6	2 0.0	4 0.6	2 0.	.04 0.01	0.02	0.08	-0.06	-0.02	-0.54	-0.47	-0.54	-0.52	0.24	0.22	0.05	-0.31	1 -0.21	-0.55	-0.53	0.02	2 -0.02	2 0.08	0.01	0.02	0.08	0.52	0.55
Dry days	-0.35	-0.13	-0.34	-0.12	2 -0.2	3 -0.1	2 -0.2	7 -0.	.12 0.12	2 0.12	-0.12	0.14	0.13	0.54	0.52	0.54	0.53	-0.06	-0.06	-0.17	-0.3	3 -0.23	-0.23	-0.16	0.14	0.13	-0.12	0.12	0.12	-0.12	-0.27	-0.23
DSC 10	-0.49	-0.17	-0.5	-0.16	8 -0.4	-0.1	7 -0.4	8 -0.	.16 0.05	5 0.05	-0.15	0.07	0.06	0.51	0.51	0.53	0.53	-0.16	-0.14	-0.21	0.51	1 0.52	0.49	0.51	0.01	0.06	3 -0.1	0.05	0.05	-0.15	-0.28	-0.12
DSC15	-0.47	-0.12	-0.47	-0.11	1 -0.6	-0.1	5 -0.5	B -0.	.14 -0.12	2 -0.12	-0.07	-0.12	-0.13	0.03	0.01	0.01	-0.02	-0.11	-0.1	-0.14	0.13	3 0.05	-0.02	-0.08	-0.1	-0.13	80.0-	-0.12	-0.12	-0.07	0.19	0.31
DSC20	-0.36	-0.24	-0.39	-0.23	3 -0.4	-0.2	6 -0.4	3 -0.	.24 -0.09	-0.11	-0.1	-0.08	-0.07	-0.02	-0.04	-0.17	-0.19	-0.05	-0.06	-0.17	-0.39	9 -0.41	-0.5	-0.52	-0.08	3 -0.07	-0.13	-0.09	-0.11	-0.1	0.36	0.38
DSI	-0.18	-0.24	-0.15	-0.23	3 nan	-0.2	6 nan	-0.	.24 0.02	2 0.04	-0.1	0.04	0.04	0.17	0.13	-0.08	-0.07	0.05	0.08	-0.17	-0.4	4 -0.43	-0.23	-0.22	0.12	2 0.04	4 -0.13	0.02	0.04	-0.1	0.31	0.11
DSxl	0.46	-0.24	0.44	-0.23	3 nan	-0.2	6 nan	-0.	24 -0.02	2 -0.01	-0.1	-0.03	-0.01	-0.01	-0.08	nan	nan	-0.05	-0.04	-0.17	-0.43	3 -0.48	nan	nan	-0.21	0.01	-0.13	-0.02	-0.01	-0.1	-0.18	-0.24
Onset	-0.57	-0.09	-0.57	-0.09	-0.5	-0.0	5 -0.5	4 -0.	.05 -0.05	5 -0.07	-0.01	-0.06	-0.04	0.2	0.15	0.05	0	-0.18	-0.18	-0.06	0.16	8 0.08	-0.19	-0.27	-0.05	5 -0.04	4 -0.01	-0.05	-0.07	-0.01	0.15	0.1
Rain days	0.54	0.14	0.53	0.14	4 0.5	5 0.1	5 0.5	3 0.	.15 -0.06	3 -0.05	0.13	-0.1	-0.08	-0.72	-0.66	-0.7	-0.63	0.24	0.23	0.17	-0.21	1 -0.12	-0.15	-0.08	-0.03	-0.08	0.13	-0.06	-0.05	0.13	0.42	0.41
Relative dry days	-0.45	-0.13	-0.44	-0.13	3 -0.42	2 -0.1	2 -0.4	4 -0.	.12 0.09	90.09	-0.13	0.13	0.11	0.61	0.58	0.62	0.58	-0.14	-0.14	-0.17	-0.3	3 -0.26	-0.25	-0.23	0.12	2 0.11	-0.13	0.09	0.09	-0.13	-0.41	-0.42
Relative rain days	0.45	0.13	0.44	0.13	3 0.42	2 0.1	2 0	4 0.	.11 -0.1	1 -0.1	0.15	-0.13	-0.11	-0.62	-0.59	-0.62	-0.58	0.14	0.14	0.17	0.12	2 0.1	0.09	0.1	-0.09	-0.11	0.15	-0.1	-0.1	0.15	0.43	0.44
Relative wet days 20	0.53	0.26	0.54	0.25	5 0.5	0.2	7 0.5	8 0.	25 0.05	5 0.04	0,19	0.08	0.06	-0.49	-0.44	-0.5	-0.45	0.2	0.18	0.27	-0.59	-0.51	-0.63	-0.54	-0.02	2 0.06	0.17	0.05	0.04	0.19	-0.38	-0.36
Relative wet days	0.5	0.23	0.52	0.21	0.4	02	1 0	5 0	19 03	0.19	0.14	0.17	0.17	-0.09	-0.09	-0.22	-0.24	0.21	0.21	0.23	-0.32	-0.34	-0.43	-0.48	0.11	0.17	0 13	0.2	0.19	0.14	-0.38	-0.37
Relative wet days	0.0	010	0.02							0.10	0.11	0.17	0.11	0.00	0.00						0.01		0.10	0.10		0	0.10	01	0.10		0.00	0.01
40	0.48	0.15	0.51	0.14	4 0.4	5 0.1	5 0.4	9 0.	.13 0.2	2 0.18	0.07	0.16	0.16	0.07	0.09	0.05	0.03	0.17	0.15	0.18	0.07	7 0.09	-0.07	-0.12	0.16	3 0.16	3 0.08	0.2	0.18	0.07	-0.27	-0.19
Relative wet days 50	0.49	0.09	0.51	0.08	B 0.34	0.1	4 0.3	4 0.	.13 0.16	0.13	0.03	0.13	0.14	0.12	0.13	nan	nan	0.12	0.1	0.1	0.05	5 0.07	nan	nan	0.13	0.14	-0.14	0.16	0.13	0.03	-0.06	-0.02
Season length	0.63	0.07	0.63	0.07	7 0.5	0.0	5 0.5	4 0.	.05 0.05	5 0.06	0.05	0.01	0.02	-0.44	-0.37	-0.28	-0.23	0.25	0.25	0.07	-0.28	9 -0.18	-0.1	0	0.08	3 0.02	2 0.05	0.05	0.06	0.05	0.21	0.28
Seamal rainfall	0.52	0.25	0.54	0.2/	1 0.5	0.2	2 0.5	0	22 0.05	0.05	0.2	0.07	0.07	0.60	0.62	0.60	0.62	0.22	0.22	0.27	0.46	8 0.27	0.46	0.20	0.02	0.07	. 02	0.05	0.05	0.2	0.17	0.17
Wat days 20	0.03	0.20	0.04	0.2	1 0.5	0.2	5 0.5		22 -0.00	-0.00	0.10	-0.07	-0.07	-0.09	-0.03	-0.08	-0.03	0.23	0.22	0.27	-0.40	-0.37	-0.40	-0.50	-0.02	-0.07	0.17	-0.00	-0.00	0.10	-0.17	-0.17
Wet days 20	0.55	0.20	0.52	0.2	0.0	0.2	1 0.5	0	10 0.10	0.04	0.18	0.00	0.00	-0.01	-0.40	0.04	-0.40	0.21	0.10	0.20	-0.0	-0.48	-0.03	-0.02	-0.01	0.00	0.1/	0.04	0.04	0.18	-0.30	-0.30
Wat days 50	0.0	0.22	0.02	0.2	0.4	0.2	5 0.0	0	12 0.10	0.18	0.10	0.10	0.10	-0.13	-0.11	-0.27	-0.20	0.21	0.21	0.23	-0.30	7 0.50	-0.40	0.48	0.10	0.10	0.00	0.18	0.19	0.15	-0.30	-0.50
Wet days to	0.48	0.10	0.51	0.13	0.4	0.1	5 0.4	8 U.	14 0.18	0.10	0.08	0.10	0.15	0.07	0.08	0.00	0.04	0.10	0.10	0.18	0.07	5 0.00	-0.08	-0.13	0.10	0.15	0.08	0.18	0.10	0.08	-0.20	-0.17
WS1	0.5	0.17	0.52	0.16	8 0.5	0.1	8 0.5	2 0	17 0.32	0.13	0.03	0.14	0.15	0.12	0.13	0.19	0.2	0.11	0.08	0.1	-0.04	4 0.01	0.1	0.15	0.13	0.1	-0.08	0.10	0.13	0.03	-0.00	-0.01
WSC10	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
WSC15	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
WSC20	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
	10		1				-						-			-			1	-		10		0 0								

Sector dataset

Collection point dataset

Thesis presented by: Clara KNOPS

Appendices

