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Abstract
Monitoring population trends is pivotal to effective wildlife conservation and man-
agement.	 However,	 wildlife	 managers	 often	 face	many	 challenges	 when	 analyzing	
time series of census data due to heterogeneities in sampling methodology, strategy, 
or	frequency.	We	present	a	three-	step	method	for	modeling	trends	from	time	series	
of	count	data	obtained	through	multiple	census	methods	(aerial	or	ground	census	and	
expert	estimates).	First,	we	design	a	heuristic	for	constructing	credible	intervals	for	all	
types of animal counts including those which come with no precision measure. Then, 
we define conversion factors for rendering aerial and ground counts comparable and 
provide values for broad classes of animals from an extant series of parallel aerial and 
ground	 censuses.	 Lastly,	we	 construct	 a	 Bayesian	model	 that	 takes	 the	 reconciled	
counts as input and estimates the relative growth rates between successive dates 
while accounting for their precisions. Importantly, we bound the rate of increase to 
account	for	the	demographic	potential	of	a	species.	We	propose	a	flow	chart	for	con-
structing	credible	intervals	for	various	types	of	animal	counts.	We	provide	estimates	
of	conversion	factors	for	5	broad	classes	of	species.	We	describe	the	Bayesian	model	
for calculating trends, annual rates of population increase, and the associated cred-
ible	intervals.	We	develop	a	bespoke	R	CRAN	package,	popbayes,	for	implementing	
all the calculations that take the raw counts as input. It produces consistent and reli-
able	estimates	of	population	trends	and	annual	rates	of	 increase.	Several	examples	
from	real	populations	of	large	African	mammals	illustrate	the	different	features	of	our	
method.	The	approach	is	well-	suited	for	analyzing	population	trends	for	heterogene-
ous time series and allows a principled use of all the available historical census data. 
The method is general and flexible and applicable to various other animal species 
besides	African	large	mammals.	It	can	readily	be	adapted	to	test	predictions	of	various	
hypotheses about drivers of rates of population increase.

K E Y W O R D S
Bayesian	modeling,	heterogeneous	wildlife	censuses,	partial	counts,	popbayes	R	package,	
population rate of increase, population trend, relative growth rate, total counts, wildlife 
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1  |  INTRODUC TION

In the wake of the unfolding, unprecedented biodiversity loss 
(Ceballos	et	al.,	2015),	monitoring	wild	animals	is	crucial	for	building	
effective	conservation	and	management	strategies	 (Burton,	2012).	
The	monitoring	data	must	be	appropriately	analyzed	to	extract	re-
liable insights into trends, rates of increase, changes in trajectories 
and other population characteristics to inform conservation deci-
sions. Much effort has been devoted to improving data collection 
and	analysis	methods	(Hammond	et	al.,	2021).	Authors	often	empha-
size	the	necessity	of	collecting	high-	quality	data	using	standardized	
protocols	as	a	primary	requirement	(Infantes	et	al.,	2022).	Many	con-
sider supplementing basic counts with additional information such 
as	mark-	recapture	data	(Boyd	&	Punt,	2021)	or	radio	telemetry	(Blum	
et al., 2024).

For	analysis,	Integrated	Population	Models	(IPM)	formulated	as	
state	space	models	(Blum	et	al.,	2024;	Mazzetta	et	al.,	2007;	Schaub	
&	Kery,	2021)	are	currently	favored	(Boyd	&	Punt,	2021),	along	with	
generalized	additive	models	(GAM)	(e.g.,	Forney	et	al.,	2021; Frankel 
et al., 2022),	 analyzed	 in	 a	 Bayesian	 framework	 (Wood,	 2017).	
Methodologies	for	analyzing	long-	term	survey	data	have	been	par-
ticularly	 well-	studied	 in	 the	 context	 of	 nationwide	 bird	 censuses,	
showing	a	trend	toward	more	flexibility	(Generalized	Linear	Models	
(GLM):	ter	Braak	et	al.,	1994,	GAM:	Fewster	et	al.,	2000,	Hierarchical	
models:	smoothed	hierarchical	model:	Amano	et	al.,	2012).

At	 the	data	 collection	 stage,	many	 factors	may	hamper	visibil-
ity,	such	as	vegetation	cover,	topography	(Blum	et	al.,	2024),	animal	
behavior,	group	size,	and	observer	experience	(Bristow	et	al.,	2019).	
Studies	in	the	United	States	have	examined	how	the	undercounting	
by	aerial	surveys	of	large	mammals	(bighorn	Ovis canadensis nelsoni, 
Blum	et	al.,	2024; Elk Cervus canadensis,	Bristow	et	al.,	2019; feral 
burro Equus asinus,	Hennig	&	Schoenecker,	2023; bisons Bison bison, 
Terletzky	&	Koons,	2016)	could	be	corrected.	But	the	proposed	solu-
tions are generally too expensive to implement on a wide scale or 
routinely.

Unlike research programs, monitoring programs of protected 
areas	 or	 populations	 (Arciszewski	 et	 al.,	2023)	 often	operate	with	
limited	funding	and	must	accommodate	data	typically	characterized	
by heterogeneities in sampling techniques, effort, or frequency. This 
situation	is	typically	encountered	in	 low-	income	countries,	but	not	
exclusively.	 For	 example,	 wildlife	 agencies	 in	 North	 America	 face	
constraints	when	monitoring	and	managing	wildlife	(e.g.,	Caughlan	&	
Oakley, 2001;	Sands	&	Pope,	2010);	which	is	especially	true	for	many	
Tribal	nations	(Shamon	et	al.,	2022).

Therefore,	 if	 estimating	 true	 population	 size	 is	 particularly	
elusive in this context, determining whether the population is de-
creasing, increasing, or stable should become the more reasonable 
target.	Appropriate	analytical	 approaches	would	 therefore	 require	

reexamining existing methods for estimating population trends, 
which often demand homogeneous and larger datasets than typi-
cally available, besides statistical skills that often transcend those 
available to most conservation management teams. This deficiency 
can	be	partly	alleviated	by	developing	accessible	off-	the-	shelf	soft-
ware packages.

In this paper, we aim to address census data heterogeneity, 
paucity	 of	 data	 sources,	 and	 user-	friendly	methods	 for	 estimating	
wildlife trends. This work stems from a collaborative project aim-
ing at collating archived information to assess the status and trends 
of	 large	 herbivores	 in	West	 and	Central	Africa.	Census	 data	 from	
protected areas in these subregions of the continent typify the pre-
ceding challenges. The method and associated software package we 
present here are thus directly motivated by concrete challenges en-
countered	while	analyzing	trends	for	these	heterogeneous	wildlife	
census data.

Analyzing	 population	 trends	 using	multi-	taxa	wildlife	 censuses	
faces many additional challenges. The first concerns accommodat-
ing unequal intervals between consecutive censuses in trend mod-
els.	Very	few	protected	areas	have	long-	term	monitoring	programs	
that provide regular wildlife abundance estimates typically because 
of	budgetary	constraints.	However,	modeling	trends	for	irregularly	
spaced	 time	 series	 of	 censuses	 is	 challenging.	Gaps	 in	 time	 series	
can be mitigated when covariates are available at times where 
counts	 are	missing	 (Fewster	 et	 al.,	2000).	Unfortunately,	 such	 co-
variates	are	rarely	available	in	most	population	time	series	(Humbert	
et al., 2009).	Smoothing	 techniques,	 such	as	 log-	linear	Poisson	 re-
gression	(Fewster	et	al.,	2000),	dynamic	GLM	(Mazzetta	et	al.,	2007),	
and	hierarchical	models	(Amano	et	al.,	2012),	that	is	assuming	some	
regularity in the way the population is changing in the intervals be-
tween available counts, remains an option.

The second challenge relates to accommodating data obtained 
with different census techniques and sampling strategies with vary-
ing	accuracies	in	the	same	trend	model.	A	comprehensive	review	of	
census	techniques	can	be	found,	for	example,	in	Sutherland	(2006).	
As	methodologies	 for	counting	wildlife	have	been	 increasingly	 im-
proved	(Borchers	et	al.,	2002),	census	techniques,	sampling	strate-
gies, and the accuracy of counts have strongly evolved through time. 
This evolution complicates integrating new and old wildlife counts, 
especially	 those	 obtained	 5–6	 decades	 earlier,	 in	 the	 same	 trend	
model. Old counts, although usually less accurate, are nevertheless 
crucial, as they often provide the only information on wildlife popu-
lation status at the early stage of establishment for most protected 
areas. The earlier estimates are sometimes provided by managers 
based merely on their expertise. Yet, resorting to expertise is in-
creasingly	 recognized	 as	 a	 valid	 practice	 in	 conservation	 (Kuhnert	
et al., 2010)	and	practitioners'	expert	knowledge	and	expertise	are	
considered	especially	valuable	(Drescher	et	al.,	2013).

T A X O N O M Y  C L A S S I F I C A T I O N
Conservation ecology
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In	practice,	due	to	cost	constraints	(Gaidet-	Drapier	et	al.,	2006),	
counting protocols are limited to four categories: whether they are 
census or sampling, that is total or partial counts, and carried out 
by	 air	 or	 ground.	 Additionally,	 changes	 in	 governance	 often	 lead	
to changes in methodology. Detection rate is a key component of 
the	 accuracy	 of	 abundance	 estimates	 (Jachmann,	 2002; Ridpath 
et al., 1983;	 Van	Hensbergen	&	White,	 1995,	 for	 some	 examples)	
and differs between observations from the air or from the ground. 
Beyond	vegetation	cover,	 the	main	 factors	 influencing	 the	detect-
ability	of	wild	mammals	are	body	size	and	color	(Jachmann,	2002).	
Therefore, when using multiple census techniques, an estimation 
bias is typically introduced as aerial counts usually give fairly accu-
rate	estimates	for	large,	dark-	bodied	animals	but	usually	underesti-
mate	small,	light-	bodied	ones	(Jachmann,	2002).	Conversely,	ground	
techniques	tend	to	be	less	accurate	for	large-	bodied	and	highly	mo-
bile animals.

As	no	standardized	conversion	factors	have	been	set	for	these	
known biases, practitioners tend to use only a subset of the avail-
able	 data	 obtained	with	 the	 same	 census	 technique	 (see	 Redfern	
et al., 2002 for an attempt at correcting the probability detection 
bias	on	aerial	counts).	However,	for	some	protected	areas,	ignoring	
some counts can considerably limit time series analysis and create 
gaps between counts. Unfortunately, methodologies for integrating 
heterogeneous wildlife censuses and modeling population trends 
are	still	crude	(Humbert	et	al.,	2009).	Such	methodologies	need	im-
provement	 to	 better	 suit	 practitioners'	 needs	 and	 enable	 reliable	
decision-	making.	 In	 the	absence	of	appropriate	methods,	standard	
statistical tools like linear regression are often used even though 
they are inappropriate for handling irregularly spaced counts, or 
variation	in	detectability	among	species	due	to	body	size,	color,	and	
census	 techniques	 (Krebs,	 2006).	 Standard	 methods	 also	 do	 not	
impose an upper bound on population growth between successive 
counts implied by the demographic potential of surveyed species 
(Fisher,	1930).

Not surprisingly, most reports or publications use crude meth-
ods by simply comparing the first and last counts and calculating 
a	 percentage	 change	 in	 population	 size	 (see	 Barnes	 et	 al.,	 2016; 
Renaud, 2005; Renaud et al., 2006;	Stalmans	et	al.,	2019 for some 
recent	examples	in	scientific	papers	or	expert	reports).	More	elabo-
rate	attempts	fit	linear	trends	(Bart	et	al.,	2003)	or	calculate	an	index	
of population change based on the first count in the time series 
(Barnes	 et	 al.,	 2016; Craigie et al., 2010; Tolimieri et al., 2017 for 
some	examples).	Therefore,	many	contemporary	time	series	analy-
ses	of	wildlife	censuses	limit	decision-	making	by	simply	deriving	an	
index of change from the first available count, thereby ignoring the 
absolute	amount	and	timing	of	changes	(see	Craigie	et	al.,	2010 for 
some	examples).

Therefore, we require analytical approaches able to incorporate 
salient features of wildlife populations and make the best use of all 
available count data. In particular, such approaches should consider 
the precision of each count and give more weight to the more pre-
cise counts in the series. They should also consider the demographic 
potential, usually measured by the “maximum instantaneous rate” 

of	 increase	 (Sinclair,	2003)	 or	maximum	 relative	 growth	 rate,	 rmax. 
Values	for	rmax can be found in the literature for a number of species 
(see	Table 3).

Many	models	analyzing	population	count	series	have	at	 their	
core	a	population	growth	model	(e.g.,	Dennis	et	al.,	2006; Forney 
et al., 2021;	Hostetler	&	Chandler,	2015;	Kidwai	et	al.,	2019; Yeiser 
et al., 2018),	 such	 as	 exponential,	 Ricker	 or	Gompertz.	 Some	 of	
these models include rmax	among	their	parameters.	However,	the	
role of rmax in these models differs from ours. These models make 
strict assumptions about the form of population growth and use 
data to estimate model parameters including rmax. In contrast, we 
do not make assumptions about the form of population growth 
and see rmax as external information useful for evaluating trends 
more realistically.

The relative growth rate, r, is related to the percentage change in 
population	size	per	time	unit	R by r = ln(1 + R),	making	it,	in	our	opin-
ion, the appropriate quantity to model. The relative growth rate also 
has the advantage of being chiefly influenced by prevailing condi-
tions	(climate,	food	resources,	predation,	competition,	governance).	
Thus, if these conditions change substantially and progressively, 
then the relative growth rate may also change. Incorporating a pos-
itive dependence between successive values of the relative growth 
rate is thus a natural way of smoothing the population trajectory. 
Ultimately, the choice of how to model r can open up the way to 
include environmental variables, and thus to the possibility of test-
ing potential functional relationships between environmental and 
demographic changes.

Here,	 we	 present	 a	 Bayesian	 approach	 for	 estimating	 popula-
tion trajectories from heterogeneous counts, including potentially 
large	 time	 gaps	 (>10 years	 in	 some	 examples	 in	 Section	 3.3),	 and	
illustrate its application using several populations of large mam-
mals	 from	 African	 protected	 areas.	 This	 approach	 is	 programmed	
in	a	bespoke	R	package	called	“popbayes”	(Casajus	&	Pradel,	2023),	
which includes routines for preprocessing counts and carrying out 
the	proposed	Bayesian	analysis.	Preprocessing	is	required	because	
certain old censuses often lack the minimum information needed for 
statistical analysis, such as a measure of precision, or are not directly 
comparable among themselves due to changes in census methods 
over time.

We	start	by	presenting	the	diverse	types	of	data	sets	for	which	
this type of analysis can be performed, highlighting the challenges 
they present and proposing how to overcome them and extract as 
much	 information	 as	 possible.	We	 then	 derive	 conversion	 factors	
for	harmonizing	parallel	pairs	of	aerial	and	ground	counts.	We	ad-
vocate	 the	 use	 of	 95%	 credible	 interval	 as	 a	 common	measure	 of	
precision for all counts in a series and propose ways to construct it 
when	no	measure	of	precision	is	available	(step	2	of	Figure 1).	Finally,	
the model accounts for the demographic potential of a species, ex-
pressed	as	its	intrinsic	population	growth	rate	(Sibly	&	Hone,	2002).	
All	the	steps	in	the	method	are	summarized	in	a	flow	chart	(Figure 1).

We	 then	 illustrate	 the	 steps	 in	 data	 preparation	 and	 process-
ing with an example, showing how original raw counts are used 
to obtain the final population trajectory. The robustness of our 
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procedure is illustrated through several examples with increasing 
levels of managerial and analytical challenges. These examples cover 
a broad spectrum of real census data, ranging from relatively rich, 

method-	homogeneous	count	series	with	changes	in	counts	 incom-
patible with the demographic potential of the species, to sparse and 
highly	method-	heterogeneous	series	(Table 1).	Finally,	we	illustrate	

F I G U R E  1 Flowchart	describing	the	process	for	conducting	a	trend	analysis	for	a	heterogeneous	data	set	of	wildlife	counts.

TA B L E  1 Summary	of	the	analytical	and	managerial	challenges	associated	with	the	time	series	we	considered	in	Section	3.2.

Site Species Origin
Analytical and managerial 
challenges

Kajiado	County	(Kenya) Impala	(Aepyceros melampus) Joseph	Ogutu All	counts	are	aerial	samples	
but some very heterogeneous 
population	size	estimates	at	
close dates

Zakouma	National	Park	(Chad) Tiang	(Damaliscus lunatus tiang) Collated	by	us	(multiple	sources) All	counts	aerial	but	a	shift	
from sampling to total counts 
occurred in the middle of the 
period

Nazinga	Game	Ranch	(Burkina	
Faso)

Roan	(Hippotragus equinus) Collated	by	us	(multiple	sources) Mainly sample ground counts 
with occasional changes in both 
sampling and field methods

Bamingui-	Bangoran	and	Monovo	
Gounda	Saint	Floris	National	
Parks	complex	(Central	African	
Republic)

Giraffe	(Giraffa camelopardalis 
antiquorum)

Collated	by	us	(multiple	sources) Method consistent but very few 
counts spread apart

W	National	Park	(Burkina	Faso) Buffalo	(Syncerus caffer 
brachyceros)

Collated	by	us	(multiple	sources) Both	few	counts	and	high	
heterogeneity of methods
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potential interpretations of the modeled trajectories, underscoring 
the central role of the relative growth rate.

2  |  MATERIAL S AND METHODS

2.1  |  The data sets and their challenges

A	database	of	census	data	of	large	herbivores	in	several	African	pro-
tected	areas	was	created	during	an	earlier	project,	called	Afrobiodrivers	
(https://	www.	fonda	tionb	iodiv	ersite.	fr/	en/	the-		frb-		in-		action/	progr	
ams-		and-		proje	cts/	le-		cesab/		afrob	iodri	vers/	).	The	protected	areas	then	
considered	are	scattered	across	West	and	Central	Africa	where	data	
on wildlife populations are often scarce and heterogeneous. Data 
were	digitized	from	paper	archives.	In	this	article,	we	use	a	subset	of	
the	Afrobiodrivers	 collated	 data	 supplemented	with	 data	 from	 East	
and	Southern	Africa	from	published	references	or	accessible	sources.	
To support inference on population trends, a data set must comprise a 
minimum	number	of	counts;	we	settled	on	4	as	a	rule	of	thumb.	While	
a count series of 3 or less will not be accepted by our code, a more 
stringent	rule	may	of	course	be	adopted	by	the	user.	We	illustrate	the	
effect	of	 the	4-	count	 rule	by	subsampling	a	data	set	 (see	Figure	B1 
of	Appendix	B).	All	counts	 in	 this	paper	are	aerial	or	ground	counts,	
although expert guesstimates could have been used as well. Each eli-
gible	count	was	associated	with	its	date	(i.e.,	the	year),	site	(e.g.,	pro-
tected	area),	 species,	 and	counting	method	separated	 into	 field	and	
statistical	methods	(Eikelboom	et	al.,	2019).	The	field	method	refers	to	
the	counting	technique	(aerial	or	ground	count)	whereas	the	statistical	
method	refers	to	the	sampling	strategy	(total	or	partial	counts);	expert	
estimates would be treated as a third statistical method. If a measure 
of	precision	 (e.g.,	confidence	 interval)	was	available,	 it	was	retrieved	
together	with	the	count.	We	treat	the	case	where	no	measure	of	preci-
sion	is	provided	in	Section	2.3.

It has long been known that counting from the air or from the ground 
yields different estimates and that the discrepancy varies with the spe-
cies,	notably	its	size	and	color	(Greene	et	al.,	2017;	Jachmann,	2002).	
We	 adopt	 the	 approach	 of	 seeking	 to	 estimate	 a	 conversion	 factor	
between	ground	and	aerial	counts	as	in	Greene	et	al.	(2017),	assum-
ing	this	factor	depends	primarily	on	a	species'	characteristics	(but	see	
Section	4).	However,	 as	 our	 primary	 interest	 is	 in	 the	 estimation	of	
population	trend,	we	do	not	assume	like	Redfern	et	al.	(2002)	that	one	
method	provides	true	population	size	(Figure	B2).

Hence,	if	the	expected	count	by	method	A	(aerial)	is	CA, and the 
expected	 count	 by	 method	 G	 (ground)	 is	 CG, CA = β CG.	 Knowing	
β allows us to calculate what the count would have been if aerial 
counting had been used instead of the ground counting. To estimate 
the conversion factor β	 thus	 defined,	we	 used	 166	 partial	 counts	
(83	pairs)	 carried	out	 from	 the	 ground	 and	 from	 the	 air	 almost	 at	
the	 same	 time	 (at	most	within	 a	month).	 The	 partial	 counts	 come	
from	 four	 protected	 areas,	Hwange	National	 Park,	Nazinga	Game	
Ranch,	 Maasai	 Mara	 National	 Park,	 Lupande	 Game	 Management	
Area,	mainly	hosting	wooded	savannas	(data	from	Cornélis,	2000 for 

Nazinga,	J.	O.	Ogutu	for	Mara,	H.	Fritz	for	Hwange,	Jachmann	2002	
for	Zambia).

As	detection	probability	 is	 influenced	by	species	size	and	color	
(e.g.,	 East,	1999),	we	 relied	 on	 the	 expert	 knowledge	of	 our	 team	
members with protected area management experience to define 
broad	 categories	 of	 species	 likely	 to	 share	 a	 similar	 bias.	We	 re-
tained	five	species	classes	that	can	be	used	across	sites:	(1)	elephant	
Loxodonta africana;	 (2)	 giraffe;	 (3)	 large	 dark	 species	 (buffalo	 and	
sable);	 (4)	 large	 light	 and	 brown	 species	with	 female	 body	weight	
above	 150 kg	 (e.g.,	 eland	 Tragelaphus derbianus, kudu Tragelaphus 
strepsiceros, Lichtenstein hartebeest Alcelaphus buselaphus lichten-
steinii, roan, waterbuck Kobus ellipsiprymnus, blue wildebeest 
Connochaetes taurinus taurinus,	 plain	 zebra	 Equus quagga);	 (5)	 me-
dium light and brown species with adult female body weight above 
10 kg	but	below	150 kg	(e.g.,	gazelles	Gazella spp., impala, kob Kobus 
kob kob, red hartebeest Alcelaphus buselaphus caama, topi Damaliscus 
lunatus topi, warthog Phacochoerus africanus).	While	 these	 species	
are typically found in habitats suitable for ground and aerial surveys, 
the detection of smaller species, for example, duikers Cephalophus 
spp.,	dik-	dik	Madoqua spp. or even oribi Ourebia ourebi, by standard 
aerial	surveys,	in	well-	vegetated	savanna	landscape,	is	typically	too	
variable	and	unreliable	to	analyze.

The conversion factors were computed from the pairs of parallel 
counts	using	a	Bayesian	model	that	gives	more	weight	to	the	more	
precise	estimates	(see	Appendix	A	for	details).	The	results	are	con-
sistent with expectation, namely a higher count estimate for medium 
and large, light brown species from the ground, and a higher estimate 
from the air for elephants and dark species, sable and buffalo. Using 
these conversion factors allowed us to establish population trends 
with mixed census methods. This implies, for instance, that the esti-
mated number of elephants based on ground counts would have to 
be adjusted by a multiplicative factor to be comparable with an aerial 
count	estimate	obtained	on	another	date	(Table 2).	We	come	back	to	
this point in the Discussion section.

TA B L E  2 Multiplicative	conversion	factor	to	apply	to	an	aerial	
count to obtain an equivalent ground count. The data used are 
available from the authors upon request.

Species class based on color and/or 
body massa Conversion factor [95% CI]

Medium-	sized	light	and	brown	
species	(20–150 kg)

6.747	[6.701,	6.792]

Large light and brown species 
(>150 kg)

2.302	[2.244,	2.359]

Large	dark	species	(>150 kg) 0.561	[0.545,	0.577]

Giraffe 3.011	[2.936,	3.083]

Elephant 0.659	[0.657,	0.662]

aMedium-	sized	light	and	brown	species	include	impala	and	tiang,	large	
light and brown species, roan, blue wildebeest and eland, and large dark 
species, buffalo.

 20457758, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.70193 by C

ochrane France, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.fondationbiodiversite.fr/en/the-frb-in-action/programs-and-projects/le-cesab/afrobiodrivers/
https://www.fondationbiodiversite.fr/en/the-frb-in-action/programs-and-projects/le-cesab/afrobiodrivers/


6 of 16  |     PRADEL et al.

2.2  |  Associating a confidence interval to each 
individual count

A	measure	of	precision	is	generally	provided	along	with	the	counts	
in the literature, but not always. This measure may be a standard 
error, a variance, a coefficient of variation, or a confidence interval 
(CI).	If	the	distribution	is	specified,	a	95%	CI	can	always	be	derived.	
If the distribution is not specified, we assume a normal distribution, 
as	other	distributions	would	 likely	be	specified	 if	used.	Hence,	we	
decided	to	use	the	95%	CI	as	our	standard	measure	of	precision.

Sometimes,	 the	derivation	of	a	CI	 leads	 to	nonsensical	 results,	
such	 as	 a	 negative	 lower	 bound.	 Since	 negative	 values	 for	 counts	
are	illogical	and	can	cause	problems	in	calculating	trajectories	(see	
below),	we	replaced	any	negative	 lower	bound	with	0.01.	When	a	
species becomes locally extinct during monitoring, confidence in-
tervals	should	be	[0,0],	which	is	not	acceptable	for	the	algorithm.	In	
such	cases,	we	set	the	CI	at	[0,0.01].

A	measure	of	precision	is	often	lacking	when	counts	are	reported	
as	 total	 counts	or	expert	guesstimates.	Several	of	our	 team	mem-
bers with extensive practical experience in actual wildlife censuses 
and their use agreed that a reasonable rule for expert guesstimates 
of	 large	 savanna	mammals	 is	 that	 the	 true	 population	 size	 would	
be	within	20%	more	or	less	than	the	expert	guesstimate	in	95%	of	
cases. For total counts, it is much less likely that the true population 
size	is	lower	than	the	count,	as	this	can	only	occur	when	some	indi-
viduals	are	double-	counted.	Hence,	we	use	asymmetric	95%	CIs.	The	
lower	bound	is	set	at	5%	less	than	the	count;	while	the	upper	bound	
remains	20%	above	the	count.

2.3  |  Inferring population trajectory from counts

In modeling population trajectory, the basic parameter is the relative 
growth rate, defined as:

r = ln(Nt + 1/Nt)	where	Nt	is	the	population	size	at	time	t. The de-
fault unit of time is the year.

Although	 changes	 in	 effective	 environmental	 conditions	 may	
sometimes be abrupt, most of the time, neighboring years tend to 

resemble	 each	 other.	We	 therefore	 implemented	 a	 constraint	 be-
tween successive relative growth rates as follows:

This means that rt + 1 is drawn from a normal distribution with a 
mean rt and a standard deviation of 0.1. This forms the smoothing 
part of the algorithm. The reciprocal of the variance, called preci-
sion in statistics, thus has a default value of 100. Reducing this value 
would	produce	a	rougher	curve	(see	Section	3.1).

The first relative growth rate r1 is drawn from a very liberal distri-
bution with a 0 mean and unit variance, corresponding to no change 
in	population	size.

The	first	population	size	N1 is drawn from a uniform distribution 
between half and double the first count:

Additionally,	 if	 immigration	 can	 be	 ignored,	 the	 demographic	
potential	 of	 a	 species	 caps	 its	 relative	 growth	 rate	 (see	 Table 3).	
Whenever	a	higher	value	is	drawn	for	r, it will be replaced by rmax:

The second part of the model describes the observational pro-
cess. It uses the provided confidence intervals as two series of 
counts	corresponding	to	the	lower	(Cmin)	and	upper	(Cmax)	bounds	
of	 the	95%	CIs.	From	each	Cmin–Cmax	pair,	we	derive	a	standard	
deviation assuming a normal distribution:

In turn, this standard deviation is used as the standard deviation 
of the normal distribution of the count around the unknown popu-
lation	size	(N).

rt+1 ∼ N
(

rt , 0.01
)

r1 ∼ N (0, 1)

N1 ∼ Unif
(

C1 ∕2, 2
∗ C1

)

r ≤ rmax

σ = (Cmax−Cmin)∕3.93

C ∼ N
(

N, σ2
)

TA B L E  3 The	intrinsic	rate	of	increase	(rmax)	of	the	population	was	assessed	from	the	body	mass	of	adult	females	in	the	studied	species.

Species Body mass (W) of adult female (kg) rmax Reference (see footnote as well)

Impala 55 0.401a Kingdon	and	Hoffmann	(2013)c

Tiang 127 0.299a Child	et	al.	(1972)c	adjusted	from	Sachs	(1967)

Blue	wildebeest 230 0.247a Kingdon	and	Hoffmann	(2013)c

Roan 250 0.242a Kingdon	and	Hoffmann	(2013)c

Buffalo 400 0.208a Cornélis	et	al.	(2014)c

Eland 450 0.150b Sinclair	(1996)b

Giraffe 702 0.175b Suraud	et	al.	(2012)b

Elephant 2873 0.112b Foley	and	Faust	(2010)b

Note: rmax	is	assessed	using	1.375 W
−0.315	from	Sinclair	(1996)	in	a, and reported from the literature when a demographic analysis had been conducted 

in b. Reference for body mass is indicated in c.
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    |  7 of 16PRADEL et al.

The	model	 is	 implemented	 in	a	Bayesian	 framework	using	 the	
program	 Jags	 (Plummer,	 2003).	 The	 Jags	 code	 for	 the	 model	 is	
given	in	Appendix	A.	A	flow	chart	summarizes	all	the	above	steps	
(Figure 1).

3  |  RESULTS

3.1  |  An example of how to transform raw data into 
a population trajectory: Roan antelope (Hippotragus 
equinus) in Nazinga game ranch (Burkina Faso)

In	Nazinga,	the	predominant	field	method	has	been	ground	censuses.	
A	total	of	18	censuses	were	conducted	between	1985	and	2009,	two	
of	which	were	aerial	 (in	2000	and	2003).	Because,	according	 to	ex-
perts, ground counts are deemed more reliable for roan antelopes, the 
two aerial counts are first transformed to render them comparable 
to	the	ground	counts	(Figure 2a).	Given	that	roan	antelopes	are	large	
brown species, the conversion was achieved by multiplying the aerial 
counts	by	2.302	(Table 2).	After	this	conversion,	the	two	aerial	counts	
align more closely with the general trend, although the ground count 
from February 2000 appears somewhat outlying.

An	interesting	feature	of	this	data	set	is	that	3	counts	were	carried	
out in 2000: a sample ground count by car in February, a sample ae-
rial	count	in	March,	and	a	sample	ground	count	by	foot	in	April.	The	
method can handle different counts obtained in the same year, but it 
is	also	possible	to	use	fractional	years.	We	opted	for	the	latter	option	
because	it	better	matches	the	data.	When	accounting	for	count	pre-
cisions,	the	curve	excludes	the	count	for	February	2000	(Figure 2b),	
which	lies	outside	the	95%	credible	envelope.	A	high	rate	of	increase	
is	observed	for	a	very	brief	period	in	2000.	When	the	maximum	rel-
ative growth rate rmax is factored in, this sharp increase disappears 
(Figure 2c).

However,	 assuming	 no	 sudden	 year-	to-	year	 changes	 during	 the	
period leads to the smoother curve in Figure 2d. This is achieved by 
changing	the	smoothing	precision	(see	Section	2.3)	from	a	very	low	
value	of	1	(Figure 2b,c)	to	100.	This	last	value	of	the	smoothing	preci-
sion and the maximum relative growth rate, which are the default op-
tions in the package popbayes, are used in the remainder of the paper.

3.2  |  Robustness of the approach to heterogeneity 
in field and statistical count methods

This	 section	 presents	 examples	 that	 showcase	 the	model's	 ability	
to	deal	with	increasing	challenges.	The	counts	of	impalas	in	Kajiado	
(Figure 3a)	represent	an	ideal	situation:	a	single	method	(aerial	sam-
pling)	has	been	used	consistently	for	23	aerial	counts	carried	over	
33 years	(between	1977	and	2011)	and	all	counts	come	with	an	as-
sociated	precision	(95%	confidence	 interval).	Yet,	these	counts	are	
highly	variable,	even	for	close	dates.	For	instance,	a	count	of	6345	
(before	 conversion)	 in	1992	 is	 surrounded	by	 two	counts	of	1886	
and 1747 in the same year. Conflicting counts are also found in 1991 
(2	counts)	and	1994	(2	counts).

Here,	unlike	with	the	roan	antelope	in	Nazinga,	we	have	kept	the	
exact same date for the counts conducted in the same year for il-
lustration. The relatively higher precisions and the accumulated evi-
dence of the two consistent low counts of 1992 heavily influence the 
curve, drawing it away from the high count of the same year. In 1994, 
information from the following years mainly draws the curve toward 
the lower count. Overall, the model captures the temporal trend 
well, avoiding unrealistic ups and downs. The precision indicated by 
the credible envelope is better for periods with numerous counts.

The	tiang	counts	in	Zakouma	exemplify	a	change	of	methodology.	
All	counts	are	aerial,	but	before	2005,	they	were	sample	counts;	af-
terwards, except for 2008, they were total counts. Total counts are 
considered reliable, particularly regarding the minimum number of in-
dividuals	in	an	area:	a	95%	confidence	interval	is	built	with	a	lower	limit	
of	5%	below	the	actual	count	and	an	upper	limit	of	20%	above.	Here,	
we	have	a	high	count	of	2450	in	1995	that	follows	a	previously	low	
count	of	400	in	1991	and	precedes	a	count	of	1310	in	2002.	However,	
the	precision	of	this	point	is	low.	Moreover,	the	species'	demographic	
potential	limits	the	multiplication	of	the	population	size	over	4 years	by	
a factor of 3.32. Despite the degraded precision from 1991 to 2002, 
the	model	avoids	the	high	1995	count	(estimate	for	this	year	is	856)	
and	 fits	 a	more	 reasonable	 temporal	 trend	 (Figure 3b).	The	Nazinga	
roan count series has 2 aerial counts interspersed among 17 ground 
counts, requiring the ground counts to be rescaled to be comparable 
with the aerial counts. The large imprecision of the ground counts is 
conspicuous in 2000 when two counts were carried out, yielding point 

F I G U R E  2 Successive	steps	in	
modeling counts of roan antelope in 
Nazinga:	Each	panel	compares	the	
preceding	(black)	to	the	next	(red)	
situation:	(a)	from	raw	(open	black	
circles)	to	converted	data	(full	red	circles)	
according	to	the	field	method	used;	(b)	
from	converted	data	(open	black	circles)	
to a fitted curve accounting for the 
count	precisions	(red	curve);	(c)	curve	
adjusted to account for demographic 
potential	(rmax);	(d)	smoothing	by	assuming	
that the relative growth rate r changes 
progressively.
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8 of 16  |     PRADEL et al.

estimates	of	2929	and	1192,	respectively	(before	rescaling).	The	ae-
rial count of 2003 is very influential as it is a total count. The model 
predicts	a	population	low	in	1995,	with	the	subsequent	upward	trend	
limited	by	the	species'	demographic	potential	(Figure 3).

Some	 series	 have	 very	 few	 points.	 For	 example,	 only	 five	 giraffe	
counts	are	available	for	the	northern	Central	African	Republic	from	1970	
to	2010.	However,	 the	 sampling	method	has	consistently	been	aerial	
surveys. The model closely follows the counts, which are too far apart 
to influence each other, except for the last two counts, where the more 
precise last count draws the curve below the less precise second last 
one	(Figure 3d).	The	precision	expressed	by	the	credible	envelope	sug-
gests a phase of population increase in the late 1970s and early 1980s, 
corresponding to a lapse in the continuous decline. The buffalo counts in 
W	Burkina	exemplify	high	heterogeneity	with	a	mixture	of	field	and	sta-
tistical	methods.	They	are	also	few	and	widely	spaced	(Figure 3e).	After	
converting	the	only	ground	count	to	its	equivalent	aerial	count	(the	pre-
ferred	method	for	this	species)	and	constructing	confidence	intervals	for	
the two total counts, it appears that this population collapsed during the 

1980s,	which	corresponds	to	the	last	episode	of	rinderpest	(Agriculture	
Ministers'	Conference,	2010; Tounkara et al., 2017)	before	the	disease	
was	definitively	eradicated	from	the	region	by	the	end	of	the	1980s	(see	
for	 instance	Kouba,	2013).	The	 later	years	suggest	a	modest	recovery	
toward	the	end	of	2000	followed	by	another	dramatic	decrease.	Again,	
the counts are too far apart for a refined interpretation, but the precision 
is sufficient to portray the successive tendencies.

3.3  |  Interpreting trajectories in terms of the 
relative growth rate

In addition to modeling the trend, the method estimates the relative 
growth	rate	(r).	This	provides	complementary	insights	into	the	popula-
tion trend as it highlights periods that may deviate from the overall 
trend. For instance, the mean r is negative for both the eland in Northern 
CAR	 (1970–2010)	 and	 the	Wildebeest	 in	Ngorongoro	 (1964–2005)	
(Figure 4).	However,	while	the	annual	r series is consistently negative 

F I G U R E  3 Deriving	trajectories	for	
very heterogeneous wildlife survey 
data	sets:	An	illustration	with	five	case	
studies portraying various analytical and 
managerial	challenges	(see	Table 1).	The	
gray	areas	represent	the	95%	credible	
band.

 20457758, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.70193 by C

ochrane France, W
iley O

nline L
ibrary on [23/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  9 of 16PRADEL et al.

for the eland over the entire survey period, the wildebeest population 
size	increased	during	5	intermediate	periods	(1966–1971,	1977–1980,	
1988–1991,	1998–2000,	2004–2005).	 Similarly,	whereas	 the	mean	
r	over	 the	entire	period	 is	positive	 for	both	 the	buffalo	 in	Zakouma	
(1986–2016)	and	the	elephant	in	Matebeleland	North	(1981–2014),	
the	buffalo	population	size	increased	continuously,	while	the	elephant	
population	decreased	on	two	occasions,	between	1983	and	1986,	and	
again	between	2001	and	2007	(Figure 4).

4  |  DISCUSSION

In our methodological approach, we first established criteria for 
including	data	from	different	census	methods	to	minimize	the	loss	
of	historical	 information	for	a	given	protected	area.	We	then	de-
veloped a general and flexible model for modeling trends in heter-
ogeneous wildlife counts and estimating associated uncertainties. 

To draw realistic population trends, we accounted for the demo-
graphic	potential	of	a	species.	We	illustrated	the	model	using	data	
from	west,	 central,	 and	eastern	Africa.	The	 trends	we	estimated	
are consistent with known historical events in these regions. For 
instance,	the	dramatic	drop	in	Burkina	Faso's	W	National	Park	buf-
falo population during the 1980s corresponds to a severe episode 
of	rinderpest,	to	which	buffalo	is	particularly	susceptible.	Similarly,	
the	documented	dramatic	decline	of	giraffe's	and	eland's	popula-
tions	in	Northern	Central	African	Republic	during	the	1970s	align	
with	 our	 findings	 (see	 for	 instance	Bouché	 et	 al.,	2009;	 Scholte	
et al., 2022).	We	also	verified	that	the	results	remained	consistent	
when	only	a	subsample	of	the	time	series	was	used	(see	Figure		B1 
and B2	of	Appendix	B),	demonstrating	that	the	method	is	robust	
and relies on the entire set of counts rather than individual data 
points.	In	the	following	sections,	we	emphasize	the	novelty,	ben-
efits, and limitations of the proposed method and associated pack-
age, popbayes.

F I G U R E  4 Illustrations	of	the	relative	
growth rate: the mean r over the study 
period indicates the overall trend while 
the yearly rate of increase may help 
identify periods with an opposite trend.
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10 of 16  |     PRADEL et al.

The maximum annual population growth rate rmax is a critical 
parameter	for	population	management	models	 (Hone	et	al.,	2010).	
Even	though	 it	 is	 rarely	 reached,	 it	 indicates	a	population's	poten-
tial to bounce back after a perturbation. Integrating rmax into trend 
modeling is therefore crucial to ensure realistic prediction of popu-
lation	recovery.	Surprisingly,	this	has	not	been	commonly	done	when	
analyzing	real	data.	Models	that	focus	on	population	growth	often	
include trend models, but they typically do not set a cap on rmax	(see	
for instance Dennis et al., 2006; Forney et al., 2021;	Hostetler	&	
Chandler, 2015;	Kidwai	et	al.,	2019; Yeiser et al., 2018).	The	use	of	
rmax is optional in our approach and should be omitted if immigration 
is	 suspected.	We	plan	 to	allow	 rmax to be used at specific dates in 
future versions of the model.

Identifying	 the	determinants	of	 a	population's	 rate	of	 increase	
using field data is central to gaining a better understanding and 
managing	wildlife	populations	(Sibly	&	Hone,	2002).	Therefore,	com-
bining	the	analysis	of	trends	 in	population	numbers	 (often	used	to	
assess	critical	conservation	status,	e.g.,	IUCN	red	listing)	with	trends	
in growth rates, provides a much better indicator of whether man-
agement, social, or ecological conditions are conducive to popula-
tion growth. The average rate of increase, we suggest and calculate 
in the “popbayes” package, effectively quantifies overall trends be-
cause over long periods, populations fluctuating naturally in their 
environment are expected to have an average rate of increase close 
to	0	(Hone,	1999).

For biodiversity conservationists and managers, the added value 
of the “popbayes” package lies in its flexibility in building population 
trends	from	highly	heterogeneous	datasets.	The	tool	offers	built-	in	
solutions for integrating wildlife population estimates from different 
census techniques, allowing users to make full use of all the available 
data types for an area. It accounts for biases in census methods by 
considering	species'	body	size	and	color	and	managers'	expertise	on	
the most appropriate techniques for particular species. The applied 
conversion factors enable the use of many censuses to model pop-
ulation trajectories. These proposed factors may be substituted by 
more appropriate values if known. Furthermore, the package allows 
the use of expert guesstimates. If a guesstimate is deemed reliable, 
the user can specify its nature, and the package will automatically 
treat it as such, constructing the default confidence interval as 
shown in Figure 1. For many protected areas, such expert guessti-
mates are the only available data on the wildlife population status in 
the	early	stages	of	their	official	gazettement.	Experienced	managers	
are likely to have a thorough understanding or accurate information 
on	species'	traits	(weight,	color)	and	appropriate	census	methods	for	
their specific areas. The package allows changes in the reference ta-
bles used to calculate conversion factors and rmax values. The flow 
diagram may need to be modified accordingly, in particular, if ground 
methods become the standard reference for a particular area.

The use of the annual population growth rate as an output of the 
model	is	a	critical	asset	of	the	package.	Following	Hone	et	al.'s	(2010)	
insights, calculating the annual population growth rate r opens the 
door to a wide range of interpretative perspectives for managers. 
While	many	previous	approaches	have	centered	their	models	on	log	

population	size	(Amano	et	al.,	2012; Fewster et al., 2000;	ter	Braak	
et al., 1994),	we	believe	that	the	population	growth	rate	r is a more 
natural parameter because it directly measures current population 
dynamics.	Hence,	the	relationship	between	successive	r values pro-
vides a natural way of smoothing, reflecting the continuity of en-
vironmental conditions in successive years. Conversely, a lack of 
continuity would indicate a dramatic change in conditions. Currently, 
the package does not allow changes in the degree of smoothing over 
the time series, but this is a feature we are considering for future 
versions.

The	“popbayes”	model	is	built	primarily	to	maximize	the	output	
from heterogeneous time series of count data to facilitate and en-
hance	their	use	in	conservation	management.	Although	the	package	
was	motivated	by	counts	of	African	large	mammals,	it	is	general	and	
can be used in other contexts. For example, counts of marine mam-
mals	share	many	similarities	(Hammond	et	al.,	2021).	More	broadly,	
the	 package	 can	 be	 applied	 to	 monitoring	 data	 characterized	 by	
varying methods, inconsistent effort levels or frequencies. The 
package is flexible and can readily be extended to investigate pu-
tative drivers of population change. If environmental covariates are 
available, regression models can be used to link population changes 
to their putative drivers. Comparison of trends for the same species 
across different protected areas or of different species in the same 
area	can	also	be	easily	 implemented.	Additionally,	 if	 a	known	per-
turbation causes a sudden change in environmental conditions, the 
model can allow for a corresponding sudden change in r.
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APPENDIX A

A.1 | BUGS code for trends
 model { 

 # precision is derived from the Confidence 

Intervals provided in entry

 for (i in 1:k) {

 sd[i] <- (h[i]-l[i])/3.93 # normal distribution 
assumed

 prec[i] <- pow(sd[i],-2)
 }

 lability <- 100 # mild constraint of resemblance 
between successive r (intrinsic rate of increase)

 minN1 <- c[1]/2
 maxN1 <- c[1]*2
 # Priors and constraints

 N[1] ~ dunif(minN1, maxN1) # initial population 
size bounded between half and two times the count

 

 # Likelihood

 # State process

 logN[1]<-log(N[1])
 rcand[1] ~ dnorm(0, 1) # candidate rate of 
increase

 r[1] <- min(rcand[1], rmax) # true rate cannot 
exceed rmax

 logN[2] <- logN[1]+(t[2]-t[1])*r[1] # r is per 
unit of time, hence the (t[2]-t[1]) factor to ac-

count for the interval duration

 N[2] <- exp(logN[2])
 for (i in 2:(k-1)){

 rcand[i] ~ dnorm(r[i-1], lability) # conditions 
in year i should roughly resemble those in year 

i-1

 r[i] <- min(rcand[i], rmax) # but rate of in-
crease cannot exceed rmax

 logN[i+1] <- logN[i]+(t[i+1]-t[i])*r[i] # r is 
per unit of time, hence the (t[i+1]-t[i]) factor 
to account for the interval duration

 N[i+1] <- exp(logN[i+1])
 }

 # Observation process

 for (i in 1:k) {

 c[i] ~ dnorm(N[i], prec[i]) # observed count is 
distributed around the true count with the appro-

priate precision for the date

 }

 

 

# other interesting quantities

 meanr <- mean(r[])
 sdr <- sd(r[])

 }

A.2 | BUGS CODE FOR DERIVING CONVERSION FACTORS
The	basic	data	(at	our	disposal)	for	deriving	conversion	factors	are	
pairs of counts carried out in parallel on the same species and at 
the	same	time	(pair	i),	one	from	the	air	CAi, and one from the ground 
CGi,	 along	 with	 their	 associated	 95%	 confidence	 intervals:	 CminAi 
et CmaxAi, CminGi et CmaxGi. The pairs of counts for each of the five 
classes of species retained in section 2.1	 are	analyzed	 together	 in	
order to estimate the conversion factor for each class.

The estimating model, represented diagrammatically in 
Figure A1, assumes that the actual count, denoted by C, follows 
a normal distribution centered on the unknown expected count, 
μ.	Specifically,

CAi ~ N	(μA,i, τA,i)	where	τA,i = (μA,i cvA)
−2 is the precision following 

the	convention	of	BUGS	languages

𝖢𝖦𝗂 ∼ N
(

𝖦,𝗂𝖦,𝗂
)
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The	model	ensures	that	the	count	distribution	covers	95%	of	the	
interval	[CminA,i, CmaxA,i]	or	[CminG,i, CmaxG,i].

The coefficients of variation, cvA and cvG, are specific to the field 
method	but	independent	of	the	population	size,	meaning	the	error	
on	a	count	is	proportional	to	the	population	size.
A	key	element	of	the	model	is	that	the	expected	aerial	and	ground	

counts are proportionally related within a class:

Here,	β is the class conversion factor, the multiplicative factor ap-
plied to a ground count to obtain the equivalent aerial count.
The	model	 is	 implemented	 in	 a	Bayesian	 framework	where	 the	

root nodes β, cvA, cvG, and the μA,i are given the following priors:

We	used	the	program	JAGS	(Plummer,	2003)	called	from	R	(v4.2.3;	
R Core Team, 2023)	with	package	R2jags	(Su	&	Yajima,	2021).	The	
actual code follows:

 # count series method m: c[m,i]

 # count upper boundary: cmax[m,i]

 # count lower boundary: cmin[m,i]

data {

 # initializations of level of Confidence 

Intervals 

 for (m in 1:2) {

 for (i in 1: k) {

 ICcoverage[m,i] <- 0.95
 ccopy[m,i] <- c[m,i]
 }

 }

}

model {

 # Priors and constraints

 # assuming proportional counts for methods 1 and 

2 (i.e. a fixed percentage of method 2 relative to 

method 1)

 ratio2over1 ~ dnorm(1,0.01)
 # expected count using method 1

# weak prior loosely based on corresponding count

 for (i in 1:k) {

 muc[1,i] ~ dnorm(ccopy[1,i],0.01) # expected mean 
of count using method 1

 }

 # we assume a constant coefficient of variation 

for both methods

 cv[1] ~ dunif(0,100) # coefficient of variation 
of counts in method 1

 cv[2] ~ dunif(0,100) # coefficient of variation 
of counts in method 2

 # likelihood

 for (i in 1:k) {

 muc[2,i] <- muc[1,i]*ratio2over1
 for (m in 1:2) {

 tau[m,i] <- pow(muc[m,i]*cv[m],-2)
# the actual count is assumed to follow a normal 

distribution centered around the expected count 

muc[m,i]

 c[m,i] ~ dnorm(muc[m,i],tau[m,i])
# coverage of confidence interval

 deltaprob[m,i] <- pnorm(cmax-
[m,i],muc[m,i],tau[m,i])-pnorm(c-

min[m,i],muc[m,i],tau[m,i])

𝖠,𝗂 =  𝖦,𝗂

𝖠,𝗂 ∼ N
(

𝖢𝖠𝗂, 𝟢.𝟢𝟣
)

 ∼ N (𝟣, 𝟢.𝟢𝟣)

��� ∼ ����(�, ���)

��� ∼ ����(�, ���)

F I G U R E  A 1 A	schematic	diagram	illustrating	the	Bayesian	model	used	to	estimate	the	multiplicative	conversion	factor	needed	to	
transform a ground count into an equivalent aerial count. The model estimates the posterior distribution of the conversion factor, β. Data are 
represented in red; root nodes of the model are shown in green. cvA and cvG are the coefficients of variation associated with the aerial and 
ground	census	methods	respectively.	The	model	is	applied	separately	to	each	of	the	5	classes	of	animals	defined	above.
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# As the observed node must be stochastic, the 

calculated coverage, deltaprob, is assumed to be 

normally distributed 

# around its nominal 95% value, but with very high 

precision (10000)

 ICcoverage[m,i]~ dnorm(deltaprob[m,i],10000)
}

}

}

APPENDIX B

F I G U R E  B 1 Analyses	of	all	possible	
subseries	of	4	counts	out	of	the	6	counts	
available	for	the	Buffalo	at	W	Burkina	are	
presented. In each subpanel, the red curve 
represents	the	results	using	all	6	counts	
(see	Section	3.2),	while	the	blue	shows	the	
results with the 4 retained counts. There 
is minimal difference for the overlapping 
parts. The main loss is the total lack of 
information when the series is shortened 
at the beginning or the end. Missing an 
intermediate point can obscure the timing 
of changes. For instance, the population 
drop between 1980 and 2000 occurred 
entirely before 1990, but this detail is lost 
when the two 1990 counts are missing 
(subfigure	4,1).	Dot	colors	are	as	shown	in	
Figure 3.
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F I G U R E  B 2 To	further	illustrate	the	
robustness of the method, we present the 
results from a significantly reduced data 
set	(<50%	counts	retained).	We	analyze	
10 random subsamples of 12 points 
(out	of	25)	from	the	impala	count	series	
at	Kajiado	analyzed	in	Section	3.2 and 
Figure 3. The results from the complete 
data set are represented by the red curve. 
The general pattern remains consistent: 
An	initial	decrease	prior	to	1980,	followed	
by	stabilization	or	a	slow	recovery	during	
the 1980s, and a new decline starting in 
the	early	1990s.	However,	the	absolute	
numbers are less reliable.
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