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A B S T R A C T   

This paper presents an approach for sizing a hybrid photovoltaic system for a small-scale peanut oil processing 
company (Yaye Aissatou, Passy) in rural Senegal using a synthetic load profile. In this study, a predictive model 
of the electrical load of a service-based plant oil processing company was developed through a diagnosis, to 
evaluate the extraction process. The mass and energy balance were measured, and the process was implemented 
into MATLAB Simulink. The simulated load profile was implemented in HOMER Pro and the characteristics of 
the most profitable hybrid systems were identified. The results showed that the lowest net present cost over 25 
years was found with a PV/battery/grid-system with 18.6 kWp solar panels, 16 kWh of storage, and an initial 
investment of 20,019 €. Compared to a grid-only scenario, this solution reduces the net present cost from an 
initial 72,163 € to 31,603 €, the operating cost from 3675 € per year to 590 € per year, and the cost of energy 
from 0.29 to 0.13 €/kWh. The renewable fraction of the proposed system is 90.0 % while the expected payback 
period is 6.2 years. The study demonstrates the economic feasibility of using solar energy for plant oil processing.   

Introduction 

Electrifying small-scale industrial facilities in developing countries 
presents distinctive challenges and opportunities, specifically in the 
integration of renewable energy sources. Access to energy is one of the 
most important current challenges for developing countries. By 2030, 
1.2 billion people in the world, mainly in Sub-Saharan Africa, with 85 % 
of them in rural areas will lack access to electricity (Kaygusuz, 2012). To 
enhance economic and social development, electricity should be more 
affordable and reliable. Renewable energy is presented as a solution to 
improve energy access. It provides an answer to two issues: local energy 
supply on one hand, and sustainable development on the other hand. 
Photovoltaics (PV) is one of the fastest-growing industries in the world 
and is well spread in sub-Saharan countries. It presents today several 
possible applications to face energy challenges (Parida et al., 2011). 
During the last decades, the price of PV cells has significantly decreased, 
and solar energy is now considered cheaper than fossil energy (Green, 
2019). 

PV systems can be classified as either on-grid or off-grid installations. 
While on-grid solutions can help mitigate grid failures and instability 
and reduce dependency, off-grid installations are standalone systems 
ideal for rural areas without access to the grid (Hernández-Callejo et al., 
2019). However, they require more investment for storage capacity. 

In addition to meeting household energy needs, energy plays a 
crucial role in supporting productive activities, particularly within the 
agricultural sector. The use of solar energy for productive purposes en-
compasses a range of applications, including cultivation, irrigation, 
post-harvest processing, and storage (Mandelli, Barbieri, et al., 2016). 
These applications often involve different types of photovoltaic (PV) 
systems. Firstly, standalone systems are tailored to specific machines, 
typically serving low-power applications in rural areas. Various turnkey 
solutions for such solar systems are described in literature, which are 
dedicated to productive use (Lighting Global, 2019; Olk & Mundt, 
2016). Secondly, mini-grid systems are considered, accommodating 
diverse energy demands within a community. Given the prevalent en-
ergy access limitations in developing countries, studies on PV sizing 

* Corresponding author at: University of Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Garbenstr. 9, 70599 Stuttgart, Germany. 
E-mail addresses: bonzi.wiomoujoevin@uni-hohenheim.de, info440e@uni-hohenheim.de (W.J. Bonzi), sebastian_romuli@uni-hohenheim.de (S. Romuli), 

djicknoum.diouf@ugb.edu.sn (D. Diouf), bruno.piriou@cirad.fr (B. Piriou), klaus.meissner@uni-hohenheim.de (K. Meissner), joachim.mueller@uni-hohenheim.de 
(J. Müller).  

Contents lists available at ScienceDirect 

Energy for Sustainable Development 

journal homepage: www.journals.elsevier.com/energy-for-sustainable-development 

https://doi.org/10.1016/j.esd.2024.101391 
Received 18 November 2023; Received in revised form 21 January 2024; Accepted 22 January 2024   

mailto:bonzi.wiomoujoevin@uni-hohenheim.de
mailto:info440e@uni-hohenheim.de
mailto:sebastian_romuli@uni-hohenheim.de
mailto:djicknoum.diouf@ugb.edu.sn
mailto:bruno.piriou@cirad.fr
mailto:klaus.meissner@uni-hohenheim.de
mailto:joachim.mueller@uni-hohenheim.de
www.sciencedirect.com/science/journal/09730826
https://www.journals.elsevier.com/energy-for-sustainable-development
https://doi.org/10.1016/j.esd.2024.101391
https://doi.org/10.1016/j.esd.2024.101391
https://doi.org/10.1016/j.esd.2024.101391
http://crossmark.crossref.org/dialog/?doi=10.1016/j.esd.2024.101391&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Energy for Sustainable Development 79 (2024) 101391

2

primarily focus on mini-grid implementations, addressing the varied 
energy needs of households, businesses, public services, and small in-
dustries. (Gelchu et al., 2023; Harish et al., 2022; Mandelli, Brivio, et al., 
2016; Wassie & Ahlgren, 2023). Lastly, there are systems tailored for 
higher-capacity industries. Studies have evaluated the feasibility of PV 
systems for industries, using analytical methods and relying on load 
profile models derived from interviews or electricity bills (Duma et al., 
2023; Eales et al., 2017; Kumra et al., 2012; Thomas et al., 2014). 

To be profitable, a sizing approach that considers energy generation 
capacity and economic aspect should be employed. Different approaches 
exist for sizing a PV system. Mathew et al. (2022) made a classification 
of the sizing optimization approaches and shows 12 categories including 
the conventional ones. Those are the analytical method, the numerical 
method, the probabilistic method, the intuitive method, and the deter-
ministic method (Anoune et al., 2018; Barra et al., 1984; Khatib et al., 
2016; Maghraby et al., 2002; Mellit, 2007; Sadio et al., 2018; Senthil 
Kumar et al., 2015). More recently, the artificial intelligence method is 
been used as alternative (Mellit et al., 2009). Moreover, a combination 
of two or more of these approaches can be carried out. 

Several PV software tools exist, each with different specificities. They 
can be classified into four groups. The simulation tools simulate and 
predict the performances of a specified power system. The economics 
evaluation tools include an economic analysis of the system. The plan-
ning and analysis tools help in planning, designing, and optimizing 
different energy sources, and finally, the solar radiation maps are used 
for a good understanding of solar resources over the world (Alsadi & 
Khatib, 2018). Lalwani et al. (2010) investigated 12 major solar PV 
software and evaluated them according to their availability, cost, plat-
form, capacity, and scope. Additionally, predictive models for PV sys-
tems exist and are used in software. The authors in (Rajesh & Carolin 
Mabel, 2015) present a review of existing models, with a state-of-the-art 
approach using artificial neural networks (ANN). Further research 
shows a review of the existing models and did a comparison between the 
most commonly used models in MATLAB, PVsyst and INSEL software 
(Ma et al., 2014). The software hybrid optimization model for electric 
renewables (HOMER) simulates grid-connected and standalone systems 
combined with other energy sources and performs optimization and 
sensitivity analysis, to find the optimal combination from a cost 
perspective. It is among the most commonly used software for PV sizing, 
and the most suitable for hybrid configuration (Awan et al., 2022; 
Bimenyimana et al., 2018, 2019; Lambert et al., 2005; Makkiabadi et al., 
2021; Mathew et al., 2022; Oviroh & Jen, 2018; Rajesh & Carolin Mabel, 
2015). 

To find the ideal size of a PV system, an optimization problem must 
be solved based on various criteria, including location and meteoro-
logical data, electrical demand, technical considerations, economic 
considerations, reliability considerations, and environmental consider-
ations (Khatib et al., 2016; Mathew et al., 2022). The meteorological 
data varies around the world, affecting the performance of a PV system. 
The electrical demand is characterized by the load profile, peak power, 
average consumption, and expected growth. A yearly load profile is 
necessary to evaluate the performance of a PV system throughout the 
year, with daily or hourly time steps. Thus, a smallest time step of the 
profile (minute or second), yields a more accurate optimization. The 
technical configuration of the system must meet the specifications of all 
components, with reliability being essential given the intermittent na-
ture of solar energy. For critical weather conditions, a PV system can be 
oversized to include a security margin to meet requirements. Depending 
on the type of application, a reliability factor is defined, with a higher 
factor required for telecommunications, and a reduced factor for rural 
households. To minimize costs and consider revenue, the budget, 
installation, maintenance and operation costs, and replacement cost 
should be minimized, with energy selling revenue expected to be 
considered. Additionally, environmental impact should be mitigated. 
(Mathew et al., 2022). 

Understanding the load profile is then essential for PV sizing. This 

can be achieved through long- or short-term measurements or pre-
dictions (Serrano-Guerrero et al., 2018). Previous studies present 
models for energy profiles prediction based on consumer parameters, or 
employing surveys, regression analysis, decision trees, and ANN 
(Abarkan et al., 2013; Blodgett et al., 2017; Lorenzoni et al., 2020; 
Serrano-Guerrero et al., 2018; Tso & Yau, 2007). ANN has been suc-
cessful in forecasting household electric energy consumption and load 
profiles (Rodrigues et al., 2014). Moreover, authors in (Chuan & Ukil, 
2015; Sepehr et al., 2018) propose a mathematical model to predict the 
random behaviour of residential buildings in energy consumption based 
on a bottom-up approach. 

The bottom-up approach is commonly used in the literature to 
simulate household electricity consumption and has proven its reli-
ability (Sepehr et al., 2018). Its principle is to construct the total load 
profile from the profiles of elementary components, which can be a 
household or a single electrical device, depending on the objective. This 
approach allows for the analysis of the effect of the operation of 
elementary equipment on the total load profile. Ogwumike et al. (2013) 
made a model on MATLAB Simulink of the profile of a residential load 
profile and perform an optimization on the scheduling appliances to 
minimize the costs of electricity. Some studies present standardized load 
profiles for domestic or industrial applications, such as (Gouveia & 
Seixas, 2016; Sanchez et al., 2009) which use segmentation to determine 
similarities in household load profiles. Sandhaas et al. (2022) developed 
a model generating synthetic load profiles for 11 industry types based on 
the normalised load profiles of eight electrical end use applications. 
However, the study is related to German industry. Little and Blanchard 
(2022) assessed various productive uses of energy in Tanzania through 
business surveys and literature to define their load profiles. Neverthe-
less, their findings are limited to small-scale applications and do not 
apply to industries with multiple overlapping equipment. Latest versions 
of HOMER software have a standard profile for commercial, industrial or 
household activities. Unfortunately, most studies that evaluated load 
profiles focus on households (Wijaya & Tezuka, 2013), while the few 
examples that examined industrial activities are not relevant to small 
and medium-sized enterprises (SME) in rural areas, especially in West 
Africa. Furthermore, the sizing conducted for industries in developing 
countries relies on load profiles derived from interviews and electrical 
bills. 

In this study, the objective was to design a tailor-made hybrid PV 
solution for a typical small peanut oil processing SME in Senegal. A 
bottom-up approach was used to simulate the load profile on MATLAB 
Simulink, considering the variability of customers. The resulting load 
profile was used in the HOMER Pro software to size a PV system. 

Materials and methods 

Material 

Location 
This study focused on evaluating a peanut oil production SME 

located in Passy, Senegal (13◦58′47.4″N 16◦15′36.5″W). The SME has 
306 m2 of available space, with 57 % being roofed. The diagnosis was 
conducted during the dry season (April) under typical production con-
ditions. The main activity is the processing of peanut seeds into edible 
oil, on a service basis. Customers bring their peanuts to the site for 
processing and pay based on the number of oil bottles filled and the 
amount of press cake taken home. During the peanut oil production 
season, from October to May, the demand for processing services is very 
high, with workdays often extended until 23:00, resulting in almost 16 h 
of operation per day. The SME had an average capacity of 4 tons per day 
of processed in-shell peanuts. 

Raw material 
In-shell peanuts were used as raw material for the production of 

peanut oil in the SME. It is packed in 50 kg bags when the customers are 

W.J. Bonzi et al.                                                                                                                                                                                                                                



Energy for Sustainable Development 79 (2024) 101391

3

arriving at the SME. About 2 kg of raw material was collected and 
transported for further analysis to the laboratory at the University of 
Hohenheim (Stuttgart, Germany). A water content of 3.7 % d.b. and an 
oil content of 49.0 % d.b. were determined according to (CEN/TS 
14774-3:2004, 2004) and (DGF-Einheitsmethoden, 2006) in three 
repetitions. 

Process description 
The site is equipped with two shellers, six steamers, three presses and 

a filter. On-site measurements were conducted during operation to 
determine electrical consumption, material throughput, process effi-
ciency, and duration of each equipment. The equipment is listed in 
Table 1. 

The process begins with the in-shell peanuts being shelled using one 
of the two available shellers. The resulting kernels are then sent for 
steam treatment in one of the available steamers. The recovered shells 
are either reused in the steamers' burner or mixed with the steamed 
kernels for pressing at a later time. The steaming is done in batches of 
approximately 80 kg and takes around 1.5 h to be completed. Once 
steamed, the kernels are mixed with 15 % of shells and pressed in one of 
the available presses. The shells are added to form microchannels in the 
cake to support the flow of oil. The crude oil obtained from the oil press 
is then filtered using a plate filter with an associated pump (Fig. 1). 

Method 

On-site measurement 
During two subsequent days in April 2022, on-site measurements 

were conducted to complete a mass balance of each unit operation. As 
the daily routine is the same throughout the season, several processing 
batches were monitored as a baseline for simulating the entire produc-
tion year. The energy requirement of each unit operation was measured 
through the average electrical power of the operation engine. Several 
batches of the process were followed to evaluate the mass flow of each 
operation. The material before and after each operation was weighed 
using a weighing tray with a precision of 1 kg and the durations of the 
operations were monitored. This allowed for the calculation of the 
operation throughputs and the operation efficiencies. Samples of each 
by-product were taken for laboratory analyses. Electrical power was 
measured with a current clamp (testo 770-3, Testo SE & Co. KGaA, 
Dubai, United Arab Emirates) associated with a data logger (testo 400, 
Testo SE & Co. KGaA, Dubai, United Arab Emirates). Additional infor-
mation on the SME's mode of operation, average daily production, and 
average daily electricity consumption were obtained through in-
terviews. The daily average production and energy consumption were 
used later in the model optimization to determine customer arrival 
parameters. 

Modeling load profiles 
MATLAB Simulink 10.5 (MathWorks®, Natick, Massachusetts, USA) 

was utilized to simulate the peanut oil production process and evaluate 
the electric load. The Simulink block model is illustrated in Fig. 2, 
comprising five main blocks: material receipt, shelling, steaming, oil 
pressing, and filtration. The model operates on a minute-by-minute 
basis, evaluating energy consumption and productivity over a year. 

In a service-oriented industry dependent on customers, raw material 

availability limits the production. The simulation starts with the mate-
rial receipt block, and computes in-shell peanut mass. The operation 
strategy is defined through three major parameters affecting the oper-
ations commands: (i) the randomly arriving customers, (ii) the weekly 
schedule with start and stop times as well as weekends and (iii) the 
typical months which represents the production season. In order to ac-
count for the randomness of activities, parameters such as the maximum 
order size per customer, the customer arrival probability, and the 
customer acceptance time window were taken into consideration. 
Moving forward, the shelling, steaming, oil pressing, and filtration 
blocks share a similar configuration. Depending on customer demand, 
multiple operations may be carried out simultaneously. The applied 
approach relies on a mass balance of the entire process to understand 
when and how an operation runs. The calculations involve parameters 
such as output from the preceding operation, process efficiency, 
throughput, and average power. Operations commence when the batch 
of the previous operation is completed and supplied to the current one. 
For instance, if a customer's batch of peanuts is fully pressed, the 
resulting crude oil quantity is supplied to the filtration block. This 
process continues until the supplied quantity is fully processed. At every 
time step, the electrical power of each operation is added to the load 
profile. 

The simulation model was implemented with a set of algorithms, 
starting with the material receipt: 

mi = CAIi × ni × 50 (1)  

where mi (kg) is the mass of the receipted in-shell peanut in the SME at a 
time step i, CAIi is the customer arrival indicator (1 if a customer arrives, 
0 otherwise), and ni is the order size as an integer in a range of 1 to nmax. 
nmax indicates the maximum number of 50-kg-bags of in-shell peanuts, 
that a customer can bring to the SME for processing at any given time. 
The probability of a new customer arriving at the SME for processing 
within a 10-minute-interval during the acceptance window is expressed 
as: 

P(CAIi) =

{
pc,CAIi = 1

1 − pc,CAIi = 0 (2)  

where pc is the customer arrival probability. The time interval is denoted 
as i ∈ [Tstart;Tend], representing the customer acceptance window. Tstart is 
the time at which the SME begins accepting customers and their material 
for processing while Tend, is the time at which the SME stops accepting 
customers. 

The shelling, steaming, oil pressing, and filtration blocks share the 
same configuration. 

The instant power was calculated as 

Pk,i = Ck,i ×Pk (3) 

The peak power when the engine start was integrated by a multiple n 
as: 

Pk,i = r×Ck,i ×Pk if Pk,i− 1 = 0 (4)  

where Pk,i (W) is the instant power of the operation k at a time step i, r is 
the peak to average power ratio, Ck,i is the command from the operation 
strategy, and Pk (W) the averaged electrical power of the operation k 
engine. Ck,i is taking the value 0 when the operation k is running and 1 
otherwise. The values of r and Pk are obtained through field measure-
ment and considered constant. 

The throughput of transformed product Tpk,i was expressed as follow: 

Tpk,i = Ck,i ×Eff k ×Tpk (5)  

where Tpk,i (kg/min) is the throughput of processed material of opera-
tion k at a time step i, Tpk (kg/min) is the average throughput of pro-
cessed material of operation k and Effk, (kg/kg) is the transformed 
product per kg of raw material, i.e. the operation yield. Tpk and Effk have 

Table 1 
List of equipment used in the peanut oil extraction SME in Passy, Senegal.  

Equipment Type Origin 

Shellers 1 + 2 Blowers and rotating cages Local 
Steamers 1 – 6 Cylinder on rocket stove Local 
Oil press 1 + 2 Screw press, extraction at the near end of the screw China 
Oil press 3 Screw press, extraction at the far end of the screw China 
Filter Plate filter China  
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been calculated by tracking several batches during the diagnosis of the 
SME and are considered constant throughout the operation. 

The transformed material in an operation is stored temporarily 
before going to the next operation when the next engine will be free for 
usage. This is done in the SME since the batches are for customers and 
should not mix with each other. The intermediate storage is given by: 

Sk,i =
∑i

t=0
Tpk− 1,t −

Tpk,t

Eff k
(6)  

where Sk,i (kg) is the material from the operation k-1 stored before 
operation k, a time step i. 

The model simulates each minute of the operation as shown in Fig. 3. 
The energy consumption E is given by: 

E =
1
60
∑T

i=0

(
∑

k
Pk,i

)

(7)  

where E (Wh) is the total energy consumption of the SME and T (min) is 
the duration of the simulation. The simulation monitored the electrical 
load of individual operation Pk,i, the total load 

∑
Pk,i, and the produc-

tivity on a one-minute basis for a duration of one year. The details of the 
content of the simulation blocks are included in Appendix B. 

Fig. 1. Unit operation in the peanut oil production process.  

Fig. 2. Peanut oil process Simulink block model.  
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Sensitivity analysis 
In the established model, measures have been taken to define the 

operating parameters of each machine. Remaining parameters, 
including the customer acceptance window, arrival probability, and 
order size, were subject to determination. To determine the parameters 
values corresponding to the SME, a Monte Carlo simulation was con-
ducted. The customer acceptance start time was set at 6:00 and the 
acceptance windows was controlled by the end time of acceptance. The 
considered variables in the analysis are shown in Table 2. The results of 
the study were used to determine the parameters corresponding to the 4 
tons of processed in-shell peanuts per day at 67 kWh per day. An opti-
mization algorithm minimizing the root mean square error (RMSE) was 
used on the MATLAB Simulink parameter estimator. The Fig. 4 shows 
the parameters adjusted in the optimization to obtain the targeted 
productivity and energy consumption. 

Load profile validation 
A k-means clustering algorithm was applied using Statistical Analysis 

System (SAS) 9.4 (SAS Institute Inc., Cary, NC) to categorize simulated 
and measured power profiles into distinct centroids and capture varia-
tions in average power levels and their occurrences. The k-means is a 
non-hierarchical cluster algorithm that has been applied in several do-
mains, including load profile classification and equipment identification 
(Azad et al., 2014; Ikotun et al., 2023; G. Zhang et al., 2020). The k- 
means clustering classified the load profiles values into k clusters around 
centroids. For validation, a statistical comparison between on-site 
measurements and simulations was made using the Normalised Root 
Mean Squared Error (NRMSE) given by: 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N

x (Pmodel,x − Pmeasured,x)
2

N

√

Pmeasured,average
(8)  

where Pmodel,x (W) is a centroid of the simulation load, Pmeasured,x (W) is 
the related measured centroid, N is the number of centroids, and Pmeas-

ured, average is the averaged mean power (W). The power mean values, 

standard deviation, power peak, and load factor are provided for both 
simulated and measured profiles over one simulated year and two days 
of on-site measurements. The load factor (LF) is calculated by: 

LF =
Paverage

Ppeak
(9)  

where Paverage (W) is the load average power, and Ppeak (W) is the daily 
peak power. 

PV sizing 
HOMER Pro 3.14.2 (UL Solutions, Boulder Colorado, USA) was used 

to determine the optimal size and combination of a hybrid system, as 
depicted in Fig. 5. The microgrid components considered were based on 
generic components provided by the HOMER library, but were modified 
to match the available components in Senegal. The energy sources were 
the grid, a diesel generator, and PV panels. The monthly average solar 
global horizontal irradiance (GHI) was determined using data from 
NASA Prediction of Worldwide Energy Resource (Jul 1983 – Jun 2005) 
(Zhang et al., 2008) considering the SME location. The average daily 
radiation ranged from a minimum of 4.92 kWh/m2/day in December to 
a maximum of 7.07 kWh/m2/day in April. The generic flat plate PV 
component was selected from the HOMER library with an efficiency of 
17 % at standard test conditions. A derating factor of 80 % and a lifetime 
of 25 years have been considered. The installation assumed no tracking, 
placing the PV at the ideal slope (14.0◦) and azimuth (0◦) for the loca-
tion. Opting for effective storage longevity, the generic 1 kWh Li-Ion 
battery was chosen from the library. It features a round trip efficiency 
of 90 %, a minimum State of Charge (SOC) of 20 %, and a throughput of 
3000 kWh with a 15-year float life. As for the inverter, the generic 
System Converter was chosen with an efficiency of 95 % and a lifespan of 
15 years. Finally, the auto-size Genset was utilized as the generator, with 
a minimum load ratio of 25 % and a lifespan of 15,000 h. Two dispatch 
strategies, Load Following, (LFS) and Cycle Charging (CCS), were 
assessed in the simulation, both involving the generator operating 
whenever the renewable source is insufficient. In LFS, the generator 
produces sufficient power to meet the load, while in CCS, it operates at 
full capacity to fulfill the load and charge the battery to 80 %. The 
optimal strategy was chosen for each scenario. In the presented results, 
the off grid scenario with the generator utilized CCS, while the other 
scenarios with generator utilized LFS. 

All hybrid scenarios combining one or more of these energy sources, 
with or without a battery, were evaluated. Thus, a renewable solution is 
made up solely of PV panels, with or without battery storage. A grid- 
connected solution includes the grid, while an off-grid solution 

Fig. 3. Operation block mathematical model, where Tstartk is the time at which operation k can start.  

Table 2 
Parameters for sensitivity analysis on load profile.  

Parameter Unit Lower value Upper value 

End time of customer acceptance, Tend hh:mm 10:00 20:00 
Customer arrival probability, pc  0 1 
Maximum order size per customer, nmax 50-kg- 

bag 
1 10  
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excludes it. The scenarios are represented by codes including their en-
ergy sources such as PV/battery/grid/diesel. Out of 14 possible combi-
nations, four were excluded: the PV-only option was not technically 
feasible and the diesel-only, PV/diesel, and battery/diesel scenarios 
were extremely expensive. 

Randomized grid outages were considered in the simulation. For 
Senegal a mean outage frequency of 19 days per year with a mean repair 
time of one hour was considered based on data from the World Bank 
(2019). 

For all scenarios, a project lifetime of 25 years, a discount rate of 4.5 
%, and an inflation rate of 2.5 % were used. The individual costs of solar 
component, replacement, and operation and maintenance costs were 
based on an interview with a solar company (ENERGECO, Dakar, 
Senegal). The economic parameters included in HOMER Pro are shown 
in Table 3. The differences in costs between the installation and 
replacement of the PV, the battery, and the inverter correspond to the 
expenses associated with a roof support, accessory for battery installa-
tion, and connection accessories of the system, respectively. 

During the simulation, various constraints were imposed in the 
optimization process. The maximum capacity shortage refers to a deficit 
in required operating capacity and the actual operating capacity the 

system can deliver. For the current operation of the SME powered solely 
by the grid, the capacity shortage was evaluated at 0.4 % based on the 
load profile and the grid reliability. The maximum capacity shortage of 
the hybrid scenarios proposed was then limited to this value. A lower 
value would require combining the grid with another energy source to 
meet the energy needs, while a higher capacity shortage could result in 
using a less reliable renewable energy source. No limit was set on the 
amount of renewable energy that can be used. The primary objective is 
to identify the most cost-effective solution that results in the least net 
present cost (NPC) over the project lifetime. To ensure adequate oper-
ating reserves, a surcharge of 10 % (Halabi et al., 2017; Salehin et al., 
2016) was set on the load profile, and one of 30 % on the solar power 
output (Vu & Chung, 2022). 

Results 

Diagnosis results 

The diagnosis allowed to identify the parameters presented in 
Table 4, which were then used as inputs for the simulation model. The 
sensitivity analysis on the operation strategy parameters was conducted 
to match the daily production capacity of 4 tons. 

The mass balance for producing one ton of clear oil is illustrated in 
Fig. 6 using a Sankey diagram. The diagram shows that the operation 
requires 4.4 tons of in-shell peanuts, out of which 1.7 tons of shells are 

Fig. 4. Peanut oil process simulated in Simulink and optimization approach.  

Fig. 5. Configuration of hybrid system combinations using HOMER Pro.  

Table 3 
Economic parameters included in HOMER Pro.  

Component Capacity Installation 
(€) 

Replacement 
(€) 

O&Ma 

PV 1 kWp  533.6  457.3 1.52 €/a 
MPPT 1 kWp  76.2  76.2   
Battery 1 kWh  297.9  206.4 0.76 €/a 
Inverter 1 kW  457.3  152.4 1.52 €/a 
Grid 1 kWh   0.29 €/kWh 
Diesel 

generator 
1 kW  167.7  167.7 1.00; 

0.53 
€/Lb; 
€/h  

a O&M: Operation and Maintenance cost. 
b Diesel price. 
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used as fuel during the steaming process and mixed with the steamed 
peanuts. To steam the shelled peanuts, 156 kg of water is added, which 
increases the moisture content from 3.7 to 6.9 % d.b. Analysis shows a 
significant difference between the moisture content of shelled peanut, 
steamed peanut and press cake. After pressing, 1058 kg of crude oil is 
obtained, resulting in an operation yield of 37 %. The press cake pro-
duced has an oil content of 10.7 % d.b, and is significantly different from 
the oil content of the shelled and steamed peanut (49.0 and 48.6 %). It 
corresponds to an oil recovery of 87.3 %. 

Estimation of electric power consumption 

Simulated load profile 
Fig. 7 displays the load profiles for a typical day of production, 

including the power usage of individual equipment and the total power 
consumption of the SME. 

Fig. 8 depicts the simulated load profiles for a standard week and a 
standard year, respectively. These profiles vary from day to day due to 
the random effect of raw material arrival in the model. The period from 
May to September is considered as off-season. 

Validation 
Based on the simulation results, the following parameter values were 

identified: the customer acceptance window from 06:00 to 16:20, the 
maximum order size of 5 50-kg-bags, and the customer arrival proba-
bility of 0.69. Fig. 9 compares the simulated load profile of the three 
presses with the load profile measured on-site during 9 h of operation. 
The comparison was made by considering the total power consumption 
of the three oil presses present on-site. The different levels of operation, 
whether 1 press, 2 presses, or 3 presses are being used can be distin-
guished in the on-site measurement and the simulated load profile. The 

peak loads during start-up were instantaneous and could hardly be 
captured by the measuring device. 

The histograms in Fig. 10 show the different operating powers that 
correspond to the power of the three oil presses (P1), (P2), and (P3) and 
the combinations, when oil presses are used simultaneously because of 
high capacity demand. The simulation shows high counts at a power of 
7500 W (P1–3) and 3500 W (P1 + 2) when respectively all of the three 
oil presses or when (P1) and (P2) are operated simultaneously. Medium 
counts at a power of 1500 W (P1) and 2000 W (P2) are also noticeable. 
Due to variabilities of the instant power of machinery during the on-site 
measurements, normal distributions of power counts are noticeable, 
however, centered around the operating points in the simulation. High 
counts in the measured power indicate the operation with two presses 
(P1 + 2), and all three presses (P1–3) similarly to the simulation. A k- 
means clustering classification determines eight centroids in the simu-
lated and measured profiles, along with their frequency appearances. 
The analysis was performed on the data measured over two days, and 
the load profile simulated for one year. The results are presented in 
Table 5, and the calculation of the NRMSE for the centroids yields a 
value of 7.07 %. 

A majority of the measured values (62 %) were concentrated around 
3543 W (P1 + 2) and 7440 W (P1–3). Similarly, over half of the simu-
lated values (58 %) were centered around 3505 W (P1 + 2) and 7510 W 
(P1–3). The centroid (P0) represents the power when no presses are in 
operation, with a measured value of approximately 34 W and a simu-
lated value of 0 W. An additional centroid (PP) in the measured load can 
be attributed to the peak power of the equipment and occasional ma-
terial overload, resulting in higher power requirements. 

Statistical comparisons were made on both profiles. Although the 
confidence interval of the on-site measurements is wider than that of the 
simulation, the average power shows a similarity and the range of the 
on-site measurements includes the range of the simulations (Fig. 10). 
The mean values, standard deviation, power peak and load factor of the 
simulated and measured values are shown in Table 6. 

Sensitivity analysis 
The points considered as input in the sensitivity analysis are dis-

played in Fig. 11. It presents the effect of customer randomness on the 
daily productivity. The figure displays the total amount of in-shell 
peanut processed per day and the daily energy consumption, average 
power, and peak power. The histograms show the output of the simu-
lation as frequency of occurrence of the response values simulation. The 
results show that the customer arrival probability is the most influential 
parameter on in-shell peanut processed, the energy consumed, and the 
peak power with a correlation coefficient (r) varying between 0.65 and 

Table 4 
Peanut oil production operation parameters.  

Process Device 
no. 

Throughput 
(kg/min) 

Operation 
yield (kg/kg) 

Start 
time (hh: 
mm) 

Power 
(W) 

Shelling 1  7.9  0.6 06:00  1700 
2  1100 

Steaming 1 – 4  1.5  1.1 06:00  
5 + 6  0.9  1.1  

Pressing 1  1.8  0.4 06:00  2000 
2  1.8  0.4  1500 
3  3.3  0.4  4000 

Filtration 1  4.5  0.9 06:00  900  

Fig. 6. Mass balance for the production of 1 ton of clear oil.  
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Fig. 7. Simulated daily load profile.  

Fig. 8. Simulated week (top) and year (bottom) load profile.  
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0.76 with a p-value < 0.001. A probability of at least 0.25 is necessary 
for the processing of four tons per day and energy consumption of 67 
kWh. The maximum order size has a limiting impact on production, with 
at least four bags of 50 kg per customer to achieve the daily production 
of four tons. 

Composition and sizing of power supply scenarios 

Five main scenarios are presented in the following. Those are the 
base case scenario, and the best scenarios for a fully renewable system, a 
hybrid system, an off-grid system and a system without battery storage. 

Grid-scenario 
The grid-scenario is the current situation in the SME and represents 

the baseline scenario. It does not require an investment and operates 
solely with electricity from the grid. The cost of energy (COE) is set to 
0.29 €/kWh, which is the actual price the SME is currently paying. The 
energy consumption of the SME operating with this scenario is 12,504 
kWh/a, with a NPC of 72,163 €, representing 3675 €/a of energy cost. 
Due to grid outages, an unmet demand of 0.41 % is assumed in this 
scenario. 

PV/battery-scenario 
The PV/battery-scenario is a 100 % renewable energy system pow-

ered exclusively by PV. Since power is also needed after sunset, a storage 
system is needed, which is provided by a battery. The optimal config-
uration would consist of 46.6 kWp of PV and a battery storage of 40 kWh. 
Fig. 12 illustrates one week of production for the PV/battery-scenario. It 
can be seen that on a sunny day, peak PV production could reach almost 
four times the demand. The daytime demand can be fulfilled while 
charging the battery even during cloudy days (Thursday and Friday in 
the example). The battery is also regularly called upon early in the 
morning when the SME start to operate at 6:00, and at sunset. 

The NPC of the PV/battery-scenario would be 54,958 €, with an 
initial investment of 45,323 €, where 24,843 € is for PV and 11,916 € for 
the battery. The cost of energy (COE) would be 0.22 €/kWh. The energy 

Fig. 9. Cumulated load profile of the oil presses, measured (top) and simu-
lated (bottom). 

Fig. 10. Power profiles of on-site measurements and simulation (left) and box plot of average power demand (right).  

Table 5 
Load profiles centroids and frequency for measured and simulated power.  

Load profile Parameter Centroids 

Equipment  (P0)a (P1) (P2) (P1 + 2) (P3) (P1 + 3) (P2 + 3) (P1 – 3) (PP)b 

Measured Power (W) 44 1574 2250 3543  5529 6660 7440 8290 
Frequency (%)  4 % 11 % 44 %  3 % 16 % 18 % 5 % 

Simulated Power (W) 0 1500 2004 3505 4000 5503 6004 7510  
Frequency (%)  10 % 20 % 26 % 2 % 5 % 5 % 32 %   

a (P0): no-load power. 
b (PP): peak power. 

Table 6 
Statistical comparison between measured and simulated power on a minute 
basis.   

Mean 
(W) 

Standard deviation 
(W) 

Peak power 
(W) 

Load factor 
(%) 

Simulated  4451  1896  7700  57.8 
Measured  4808  2171  8910  54.0  
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surplus would be very high with 62,961 kWh/a (82.5 %), since the 
system has to be oversized to provide enough energy during unfav-
ourable weather condition. 

PV/battery/diesel-scenario 
The PV/battery/diesel-scenario is a PV/battery system combined 

with a diesel generator in order to avoid the oversizing that would be 
necessary for operation in days of low solar radiation. It corresponds to 
the best off-grid scenario. The system would consist of 24.5 kWp of PV 
with a storage capacity of 40 kWh combined with a diesel generator 
supporting only 4.1 % of the energy demand. 

Fig. 13 illustrates one week of production for the PV/battery/diesel- 
scenario. On sunny days, PV power is double the demand (Tuesday, 
Wednesday and Saturday). This allows to charge the battery while 
covering the daytime demand. The battery is used in the morning and at 
sunset. On cloudy days, diesel is used to fulfill the demand and quickly 
charge the battery (Monday, Thursday and Friday). It should be noted, 
that the generator produces more than necessary, as it is sized to cover 
the SME's maximum requirements unlike the battery, which only sup-
plies the actual demand. 

The NPC would be 50,746 €, with an initial investment of 34,268 € 
where 13,054 € is for PV and 11,916 € for the battery. The COE would be 
0.21 €/kWh, and the energy surplus would be 27,135 kWh/a (66.8 %). 

PV/grid-scenario 
The PV/grid-scenario is a PV system connected to the grid without 

battery storage. It runs on solar energy, with all PV production being 
consumed by the SME and supported by the grid when being required. It 
consists of 20.0 kWp of PV fulfilling 77.3 % of the demand. The unmet 
demand of this scenario would be 0.03 %. Fig. 14 displays a typical week 
of production under this scenario. In the middle of the day, the PV is able 
to meet the demand, however a surplus is not exploited. The grid is al-
ways called upon at the beginning and end of the day, and on cloudy 
days when there is insufficient solar radiation (Tuesday to Friday). This 
scenario is only realistic if the grid is stable, as no alternative is available 
in the event of an outage. The NPC would be 34,930 € with an initial 
investment of 16,091 € and an operating cost of 959 €/a, resulting in a 
COE of 0.14 €/kWh. 

PV/battery/grid-scenario 
The PV/battery/grid-scenario is a PV/battery system connected to 

the grid. It operates primarily on solar-generated energy and, if neces-
sary, draws additional power from the grid. The best hybrid solution 
resulting from the simulation is a 18.6 kWp grid connected PV system 
with 16 kWh battery storage. The renewable fraction of this system 
would be 90.0 %, with an unmet demand of 0.01 %. Fig. 15 displays a 
typical week of production under this scenario, demonstrating how the 
grid compensates for low solar radiation. The NPC would be 31,603 € 
and the initial investment 20,019 € with 9926 € for PV and 4767 € for the 
battery. The operation cost would be 590 €/a with 370 €/a for grid 
energy, and the COE of 0.13 €/kWh. The system would produce a sur-
plus of 18,400 kWh/a (58.0 %). 

System classification 
The optimization results and characteristics of the scenarios pre-

sented above are summarized in the Table 7 with the grid only scenario 
as baseline scenario. The best hybrid scenario proposed is the PV/ 
battery/grid-scenario. It would reduce the NPC from 72,163 € to 
31,603 € compared to the baseline scenario. The operating cost would be 
reduced from 3675 € to 590 €/a, resulting in a COE decrease from 0.29 
to 0.13 €/kWh. Under this scenario, the renewable fraction would 

Fig. 11. Monte Carlo simulation results for sensitivity analysis and correlation 
coefficient; *significant at 0.05 level, **significant at 0.01 level or lower, 
***significant at 0.001 level or lower. 

Fig. 12. Power profile of the PV/battery-scenario during one-week of peanut oil production; demand, PV-, and battery power (top), state of charge (SOC) of the 
battery (bottom). 
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Fig. 13. Power profile of the PV/battery/diesel-scenario during one-week of peanut oil production; demand, PV-, battery- and diesel power (top), state of charge 
(SOC) of the battery (bottom). 

Fig. 14. Power profile of the PV/grid-scenario during one-week of peanut oil production; demand, PV-, grid power.  

Fig. 15. Power profile of the PV/battery/grid-scenario during one-week of peanut oil production; demand, PV-, battery- and grid power (top), state of charge (SOC) 
of the battery (bottom). 
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increase from 0 % to 90.0 %, while the unmet demand would decrease 
from 0.41 % to 0.01 %. The expected payback period for this scenario is 
6.2 years. 

For the best off-grid scenario (PV/battery/diesel), allowing to be 
independent from grid, an initial investment of 34,268 €, would be 
required, which is 77 % more expensive than the investment of the PV/ 
battery/grid-scenario. This option, as well as the PV/battery-scenario, is 
not as cost effective as the PV/battery/grid-scenario, but is still more 
profitable than the grid-scenario. 

In Fig. 16 10 out of 14 possible combinations of power sources were 
ranked according their NPC. The scenario PV-only was not technically 
feasible and the scenarios diesel-only, PV/diesel, or PV battery/diesel, 
were exclude from the analysis due to their high NPC, reaching up to 
180,000 €. The figure indicates that the PV/battery/grid-scenario is 
located in position 1. In position 2, the PV/battery/grid/diesel-scenario 
is similar to the first scenario, since the generator would be rarely used. 
Scenarios 3 and 4 are PV/grid-scenarios with optional diesel generator 
(still rarely used). These are options without storage, which means lower 
initial cost. However, the absence of battery creates a reliability problem 
with an unstable grid. The optional generator, on the other hand, allows 
a more stable system. The presented off grid scenarios are the PV/ 
battery/diesel-scenario and the PV/battery-scenario respectively in po-
sition 5 and 6 and the grid-scenario is located in position 7. Scenarios 8, 
9 and 10 are non-renewable grid systems, with or without diesel and 
battery. But they remain similar to the baseline, and operate mainly on 
the grid. 

Discussion 

The results demonstrate the feasibility of using a production plant 
diagnosis to create a load profile for sizing a PV system. During the 
diagnosis, four operations were identified that correspond to a simpli-
fied model of the industrial extraction process of peanut oil by cold 
pressing. The operating parameters differ slightly from the optimal pa-
rameters found in the literature. The steamed peanuts are mixed with 15 
% of shell while a mixing of 5 to 10 % of shell is recommended (List, 
2016). However, it should be noted that a worn screw in the oil press or a 
poor destoning after shelling may cause clogging in the oil press, 
requiring more shells to be added. Additionally, the steaming time in 
this SME goes up to 90 min, whereas the optimum properties reported in 
the literature suggest a range of 10 to 25 min (Ibrahim & Onwualu, 
2005; Sivakumaran et al., 1985; List, 2016). During the steaming in this 
SME the shells are used as fuel, which makes the operation cost and 
energy efficient. 

The service-oriented mode of operation of the SME led to the defi-
nition of parameters to simulate the variability of activities. In the 
present case study, the parameters considered are used to build a more 
comprehensive picture of the interactions of the SME and the customers. 
For comparison with existing literature on methods of load profile 
generation, we can categorize them into two main groups. The first 
group comprises non-parametric methods currently employed in in-
dustrial load profile generation. These methods utilize typical load 
profiles (Gouveia & Seixas, 2016; Little & Blanchard, 2022; Sanchez 

et al., 2009; Sandhaas et al., 2022), scaling them to fit a given daily 
consumption. However, these approaches lack the flexibility to simulate 
various application scenarios, and are confined to specific processes for 
which they were designed. Notably, the literature lacks a typical rural 
service-oriented industry profile. The second group is parametric and is 
more commonly applied in households (Lombardi et al., 2019; Mandelli, 
Merlo, & Colombo, 2016; Sepehr et al., 2018). In this group, specific 
parameters are assigned to each equipment, encompassing nominal 
power, functioning time, and frequency of use. Employing a bottom-up 
approach, these parameters are used to individually simulate each 
appliance. In the proposed method, these parameters are expanded by 
including customer variability and customer acceptance windows. The 
approach mirrors the parametric method used for households. However, 
the innovation lies in the focus on customer variability, allowing the 
entire SME to be simulated instead of defining variability for each 
appliance. This enables a comprehensive process modeling and pre-
serves the operating ranges of each device. As a result, the realism in 
capturing the SME's operating modes is improved and additional values 
such as production capacity and raw material consumption can be taken 
into account in the simulation. 

Similarities were found between peak and average power con-
sumption obtained from simulation and on-site measurements. This 
validates the model used. The PV/battery/grid-scenario was found to be 
the most economic solution. It shows a 90.0 % renewable energy 
coverage at a low storage requirement (20 % of the daily consumption), 
based on the fact that the activities are mostly performed during the day, 
with power demands early in the morning from 06:00 and at early night 
to finish the processing of already started batches. The optimization 
shows that no new customers should be accepted close to sunset and the 
end time of customer acceptance was at 16:20. 

An alternative conventional sizing approach could be made by 
considering the typical “commercial load profile” available on HOMER 
Pro, scaled to the daily energy consumption of the SME. The result 
would be again a PV/battery/grid-scenario with 35.4 kWp of PV, 40 kWh 
battery storage. However, this system based on standard load profiles 
would be larger than for a real load profile and the investment would be 
37,858 €. The proposed approach, therefore, allows a reduction in the 
investment cost of 47 %, in particular thanks to a reduced storage ca-
pacity of 60 %. 

In addition, a PV system for the SME would occupy a large part of the 
estate in terms of solar panels. Some studies suggest limits to the space 
occupied by hybrid systems (Baruah et al., 2021). Ideally, only the roof 
of the building should be occupied. This is the case for the PV/battery/ 
grid-scenario, which would occupy only 35 % of the available space (62 
% of the roof). However, the PV/battery-scenario would occupy 89 % of 
the total surface area. This necessitates additional investment in the 
supporting structure, leading to increased NPC and COE, which has not 
been considered in our study. 

Nevertheless, a large amount of energy remains unused in the hybrid 
solutions. Alternatives should be found to exploit this extra energy. 
Since Senegal, for the time being, does not allow a feed-in to the grid, an 
additional economic activity for using the excess energy should be 
developed. The company already possesses other equipment, such as a 

Table 7 
Parameters of the investigated scenarios, ranked according net present cost (NPC).  

Scenarios PV Battery 
capacity 

NPC Initial 
cost 

COE Ren. 
fraction 

Unmet 
demand 

Total energy 
produced 

Total energy 
consumption 

Excess 
electricity 

(kWp) (kWh) (€) (€) (€) (%) (%) (kWh/a) (kWh/a) (kWh/a) 

Grid – –  72,163  0  0.29  0  0.41  12,504  12,504  0 
PV/battery 46.6 40  54,958  45,323  0.22  100  0.36  76,298  12,510  62,961 
PV/battery/ 

diesel 
24.5 40  50,746  34,268  0.21  95.9  0  40,603  12,555  27,135 

PV/grid 20.0 –  34,930  16,091  0.14  77.3  0.31  35,548  12,551  22,486 
PV/battery/ 

grid 
18.6 16  31,603  20,019  0.13  90.0  0.01  31,742  12,554  18,400  
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rice huller, which could serve as a viable alternative during the off- 
season of peanut oil production. Bhayo et al. (2019) evaluated PV sys-
tem performance for households and suggested using excess energy to 
power a pumping system. This option is intriguing, especially since the 
company has a water well. However, the capacity of a household 
pumping system alone may not fully utilize the surplus. Another viable 
option is redirecting the excess energy to support a nearby irrigation 
system. A similar approach was adopted by Chowdhury et al. (2015), in 
rural Bangladesh, where a mini-grid powered households and surplus 
energy were utilized to operate irrigation pumps. 

Conclusions 

In this study, a novel process simulation model was developed to 
obtain load profiles for PV sizing. The model focuses on capturing the 
complex peanut oil production system of SME and service-based oper-
ation, where various machines operate at different times throughout the 
day, based on the operation strategy and the customers demand. The 
peanut oil production process was characterized by a mass balance, 
utilizing a bottom-up approach that considers customer variability. An 
implementation in MATLAB Simulink involved adjusting the model's 
operating parameters to align with real on-site conditions, aiming for a 
daily production of 4 tons and an average consumption of 67 kWh. The 
load profile was then compared to on-site measurements, revealing a 
7.07 % error, affirming its validity for solar system sizing. 

The load profiles were used in HOMER Pro to find the optimal con-
figurations from an economic point of view. All the hybrid configura-
tions combining grid, PV, battery, and diesel generator were evaluated. 
The results showed that the most economical solution is a PV/battery/ 
grid-system with 18.6 kWp of PV and 16 kWh of battery storage. The 
NPC would be 31,603 € with initial costs of 20,019 € and the COE would 
be 0.13 €/kWh. The renewable fraction of the suggested PV system is 
90.0 % with an unmet load of 0.01 %. The payback period of the system 
would be 6.2 years. 

For an off-grid solution, the simulations showed that although the 
solutions are more cost-effective than the grid, the benefits are lower 
than that of the hybrid solution and the investment costs are very high. 
The COE of the fully renewable PV/battery-system would be 0.22 
€/kWh, which is still lower than the COE of energy from the grid at 0.29 
€/kWh. However, this scenario would be not affected by rising elec-
tricity prices and could be applied in remote areas without grid 

connection. 
Beyond the load profiles established and used for the simulations, it 

should be noted that the SME may have other parallel activities, such as 
rice husking. Excess energy may be used for those activities. An analysis 
of the whole activity of the SME could show how much of the parallel 
activities can be covered by the PV system. 
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Appendix A 

Nomenclature 

Symbols 
CAIi: customer arrival indicator 
Ck,i: command from the operation strategy 
E: total energy consumption of the SME, Wh 
Effk: operation yield, kg/kg 
mi: mass of the receipted in-shell peanut in the SME, kg 
min: minute 
N: number of centroids in the k-means clustering classification 
ni: order size of in-shell peanut, 50-kg-bags 
nmax: maximum order size of in-shell peanut, 50-kg-bags 
P: probability 
P_FP: electrical power of filter press, W 
P_Oil: electrical power of oil press, W 
P_Sh: electrical power of sheller, W 
pc: customer arrival probability 
Pk: averaged electrical power of the operation k engine, W 
Pk,i: instant power of the operation k at time step i, W 
Pmeasured, average: average power of the measured load, W 
Pmeasured,x: centroid of the measured load profile, W 
Pmodel,x: centroid of the simulation load profile, W 
Ppeak: daily peak power, W 
r: peak to average power ratio, W/W 
Sk,i: stored material from the operation k-1, kg 
T: duration of the simulation, min 
Tend: time at which the SME stops accepting customers 
TPFP: throughput of filter press, kg/min 
Tpk: average throughput of processed material of operation k, kg/min 
Tpk,i: throughput of processed material of operation k at a time step i, kg/min 
TPOil: throughput of oil press, kg/min 
TPS: throughput of steamer, kg/min 
TPSh: throughput of sheller, kg/min 
Tstart: time at which the SME begins accepting customers 
Tstartk: time at which the SME start operation 

Subscript 
i,: time step, minute 
k: operation of the process 
x: centroid index 

Abbreviation 
ANN: Artificial Neural Network 
AC: Alternating Current, A 
CCS: Cycle Charging Strategy 
COE: Cost of Energy, €/kWh 
DC: Direct Current, A 
HOMER Hybrid Optimization Model for Electric Renewables 
INSEL: INtegrated Simulation Environment Language 
LF: Load Factor 
LFS: Load Following Strategy 
MATLAB: MATrix LABoratory 
MPPT: Maximum Power Point Tracking 
NASA: National Aeronautics and Space Administration 
NPC: Net Present Cost, € 
NRMSE: Normalised Root-Mean-Squared Error, % 
O&M: Operation and Maintenance 
PP: Peak Power 
PV: Photovoltaics 
RMSE: Root Mean Square Error 
SAS: Statistical Analysis System 
SME: Small and medium-sized enterprise 
SOC: State of Charge, % 
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Appendix B

Fig. B.1. Simulink block model of in-shell peanuts, defined based on the randomly arriving customers, the daily schedule and the months defining the production 
season during the year. 

Fig. B.2. Simulink block model of oil pressing with the same configuration as shelling, steaming and filtration block. The block receives input from the throughput of 
the six different steamers and the input is stored in the intermediate storage before going to the distributor which will allocate the input to one available oil press.  
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Fig. B.3. Simulink block model of intermediary storage which accumulates throughputs until the end of the previous operation. Once a steaming operation is 
finished, the integral of the throughput is sent to the distributor block. 

Fig. B.4. Simulink block model of oil press which multiply the raw material by the operation yield, and in parallel, monitors the electrical power of the operation.  

Fig. B.5. Simulink block model of raw material in the oil press block, which acts as a buffer and deducts the raw material based on the operation throughput.  
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