Impact of rainfall extremes and mulch application on maize productivity and nitrogen use in Zimbabwe A. Bouhenache^{1,2,3,@}, H. Clivot¹, G. Lashermes¹, R. Chikowo^{4,5}, A. Shumba^{2,4,6}, E. Matimba², H. Mazungunye^{2,4}, S. Recous¹, R. Cardinael^{2,3,4}

¹URCA, INRAE, FARE, UMR A 614, Reims, France; ²CIRAD, UPR AIDA, Univ. Montpellier, CIRAD, Montpellier, France; ⁴Department of Plant Production Sciences and Technologies, University of Zimbabwe, Harare, Zimbabwe; ⁵ CIMMYT, Harare, Zimbabwe; ⁶ FFRI, DR&SS, Harare, Zimbabwe

Context & background

- In Southern Africa, more intense and frequent dry spells interspersed with heavy rains strongly disrupt cropping seasons
- Some practices (eg mineral nitrogen (N) fertilization, mulching) are promoted as levers of productivity, mitigation and sustainability of the systems [1, 2]
- Field studies using rainfall manipulation experiments are of high value to assess the interactions with nutrient cycling but remain scarce [3, 4]

Objectives

- Quantify rain extremes impact on maize productivity and N use with and without mulch
- Identify mulch **decomposition** kinetics under rain extremes and its effect on soil temperature and soil water content (SWC)

Rain_Treat

- RR

NR

→ HR

Materials & methods

Field experiment factors

Data collection

Results & discussion

Plant biomass, yield & N uptake responses

Mulch decomposition & effects on soil

- Water limitation decreased maize productivity (-2.5 t/ha of biomass, -1.5 t/ha for yield) & N uptake (-26 kg N/ha) vs NR
- Heavy rainfall during a dry spell increased yield

Crop N uptake (kg N/ha)		NR	HR
NO	102	119	123
N80	120	146	156
Fertilizer apparent recovery (%)	22	33	41

Variable	Depth (cm)	in-season Δ mulch – no mulch			
		RR	NR		
SWC (%)	1	+ 3.8	+ 3.2		
	5	- 0.1	+ 0.6		
	15	- 2.2	+ 1.9		
Temperature (°C)	1	- 0.9	- 0.5		
	5	- 0.5	- 0.3		
	15	- 0.6	0		

(+1.2 t/ha) & N uptake (+10 kg N/ha) vs NR

- N fertilization had no effect on AGB & yield, but significantly affected N concentration
- Low N apparent recovery suggests high soil N supply & possible N losses

> N uptake was affected by both rain (biomass) & fertilization (N concentration)

> Mulch had no effect on plant variables probably due to in-season rain distribution

> Main buffering effect at soil surface (1 cm)

SWC decreased under RR at 5 & 15cm

> Effects on soil processes (*ie* N) are to clarify

Conclusion

Rain is the dominant factor, with variable impact of extremes depending on their nature & timing of occurrence regarding crop cycle

• The impact of mulch on soil variables does not translate into an effect on the plant variables

• These impacts will be assessed under the 2nd year climatic conditions, with more mechanistic approaches to determine N fertilizer fate (¹⁵N tracing & modelling)

