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Optimizing Oil Palm Genomic Predictions
with Artificial Neural Networks
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High potential of genomic selection (GS) in perennial crops (long breeding cycles, low selection intensity)
Promising results in oil palm, with rgs = 0.25 - 0.75 depending on trait
Still need to increase the accuracy of genomic predictions

What about innovative modeling approaches ?



* High potential of genomic selection (GS) in perennial crops (long breeding cycles, low selection intensity)
* Promising results in oil palm, with rgs = 0.25 - 0.75 depending on trait
 Still need to increase the accuracy of genomic predictions

* What about innovative modeling approaches ?

* Availability of large amount of heterogeneous data (phenotypes, high-
throughput genotypes, NIRS, weather, ...) = machine learning could be
relevant

—— . Artificial intelligence (Al)
Artificial intelligence Any techniques that enable machines to solve a task in a
way like humans do

Machine learning (ML)
Algorithms that allow computers to learn from examples
without being explicitly programmed

* Availability of computing resources = study and practical application of
machine learning for GS feasible

Artificial neural
networks mnnenecor - Artificial neural networks (ANN)

Brain-inspired machine learning models

* Promising results obtained for genomic predictions in various animal and
plant species with machine learning, in particular artificial neural i Deeplearning (OL)
networks (ANN)

as models and automatically builds a hierarchy of data
representations

- Comparison of ANN and conventional statistical methods of genomic
predictions
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Optimal implementation of ANN can be challenging
- Study the effect of methodological aspects on ANN efficiency

- Provide insights into how to achieve highest GS accuracies with ANN



852 oil palm crosses (69 717 individuals)

complex dataset (structured in populations
and families with varying size and levels of
relatedness)

phenotype: bunch production from 3 to 10
years old (FFB)

genotype of cross parents and a sample of
observed individuals for 22K SNP (array)

2 experimental sites in Indonesia
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Site 2 (test)

Type de croisements par :

Groupes généatigques Populations M
([AxB)xB) x [AxB) (DELIxLM)xNI_x_ DELIxMI 1
({AxB)xB) x (AxB) (DELIXLM)xYBI_x_DELIXNI 3
((AxB)xB) x A (DELIXLM)XLM_x_DELI 14
. . . ({AXB)xB) x A (DELIXLM)xNI_x_DELI 1
S|te 1 (tra NI ng) ((AXB)xB) x A (DELIXLM)xYBI_x_DELI 3
((AxB)xB) x B (DELIXLM)xNI_x_NI 3
Type de croisements par: ((AxB)xB) x B (DELIXLM)xYBI1_x_MNI 1
Groupes génétiques Populations N (AxB) x (AxB) DELIxNI_x_DELIXYBI? 1
Ax A DELI x AN 1 (AxB) x B AMXMNIL_x_ LM 3
AxB AN x LM 10 (AXB) x B AMxMI_x_YBI 2
AxB DELI x {LM x YBI/SI) 23 (AxB) x B DELIxMI_x_ LISOMBE KINSHASAXLM 1
AxB DELI x LISOMBE KINSHASA 3 (AxB) x B DELIxNI_x_LISOMBE KINSHASA 1
AxB DELI x LM 243 é (AXB) x B DELIxMI_x_ LM 15
AxB DELI x MI a (AxB) x B DELIxMI_x_LMxYBI/SI 5
AxB DELI x YBI 73 (AxB) x B DELIxMI_x_MIxLM 13
BxB LM x NI 1 (AxB) x B DELIxMI_x_YBI ]
BxB LM x YBI / SI_NI 1 Ax(Axe)  DELxDELXYB® 5
BXB NI 1 AXB ANXDELI_x_LM 31
TOTAL 360 AxB ANXDELI_x_YBI 21
AxB DELI_x LISOMBEKINSHASA 6
AxB DELI_x LISOMBEKINSHASAXLM 10
—> 688 training records e o
g AxB DELI_x_LMxYBI/SI 21
AxXB DELI_x_NIXLM 15
AxB DELl_x_MNIxYBI 14
AxB DELI_x_YBI 86
BXxB LM_x_NI 4
BxB LM_x_YBI 4
BxB LMxYBI/SI_x_NI 3
BxB NI_x_NIXLM 11
TOTAL 492

- 492 test records



Prediction accuracy of conventional methods in test set:
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...the base artificial neural network: the multi-layer perceptron (MLP)

Single neuron:
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Prevention of overfitting:
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Prevention of overfitting:

Fitting
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Overfitting

Accuracy
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Training Set Accuracy

Overfitting

Test Set Accuracy Early Stopping

Epoch

>

Epoch

Divide training data into training and
validation subsets and use loss value
in validation subset to identify optimal
epoch (early-stopping)
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Prevention of overfitting:

Accuracy

b

Use regularization techniques — example:
dropout

Training Set Accuracy

Overfitting

Test Set Accuracy Early Stopping
: Epoch
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Divide training data into training and
validation subsets and use loss value
in validation subset to identify optimal
epoch (early-stopping)

(a) Standard Neural Net
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(b) After applying dropout.



Many possible MLP models:

- architecture (number of layers, number of neurons per layer)
- hyper-parameters (learning rate, regularization parameters
[dropout, |1, 2], activation function, etc.)

Predictions made for each training/validation subsets

Initial weights and biases generally fixed randomly
Dropout (random sampling of neurons to switch off)
Random definition of batches

—=> ANN non-deterministic methods

Practical application = no test data available

Question 1. What is the variability in r,.., among MLP ?

test

Question 2. How to compute r,,.: cor(y,y) ou cor(y,y) ?

Question 3. What is the variability in r,__, for a given MLP

and dataset ?

test

Question 4. How to optimize ANN using the training data ?
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Question 1. What is the variability in r,,, among MLP ? T TensorFlow [ Keras

Question 2. How to compute r,,, : cor(y,y) ou cor(y,y) ?
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597 MLP models, validation subsets = optimized k-folds (k=5), r..; = means over 8 values



Question 3. What is the variability in r,_, for a given MLP and dataset ?

est
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Standard deviation of prediction accuracy

D

Mean prediction accuracy in test set (n=8)

597 MLP models, validation subsets = optimized k-folds (k=5), r..; = means over 8 values

Model repeatability can be very low
but is high for good models

Good to make a few replicates to
accurately identify best models
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Question 4. How to optimize ANN using the training data ?

» Different optimization methods developped:

grid search

Unimportant parameter

Important parameter

random search

Unimportant parameter

Important parameter

Bergstra and Bengio 2012
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Question 4. How to optimize ANN using the training data ?
random search for MLP, with 15874 random models:
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Prediction accuracies in test set:

Prediction accuracy in test set
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Question 4. How to optimize ANN using the training data ?

Random search = a lot of models to test
~16K here = ~22.8 days of GPU computing time

64K in Sousa et al. (2022) [MLP for coffee], even more needed if space of architectures / hyper-
parameters increases (in particular for more complex types of ANN) and/or if size of dataset increases

- financial and GHG cost
+ not guarantee to find the best model

- could we optimize models more efficiently (faster and/or to get higher GS accuracy) ?

21



Bayesian optimization |terative algorithm to uncover the global maxima of PYGPGO: Bayesian optimization for Python
a black-box function in the defined parameter space (Jiménez and Ginebra 2017)

Example result (same range of architectures and
hyper-parameters as random search):

—cumulative maximum e best model Number of models tested before r,, > random search = 73

0.8 (range 62-100, n=5)

0 P R T ey - Identify very fast models that outperform best model of
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& Small gain in maximum r,,, compared to random search:
s 0 . .

q 30 60 90 120 150 180 210 240 +1.16% (range 0.80-1.51), with on average 207 trials (165-248)
-0.1
random | Bayesian
trials | optimization
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Beyond MLP - a lot of more complex models:
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Prediction accuracies in test set: +16.8% to +32.8%
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Conclusions:

—> High variability in predictive ability depending on architecture/hyper-parameters of ANN
models

— High repeatability for good ANN models

— Prediction averaging increases predictive ability in ANN

- No effect of type of ANN (MLP, CNN, GRU)

- Training data can be used to identify models giving large increases in GS accuracy

— Bayesian optimization efficient to identify good ANN



Conclusions:
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- Large trait effect: +5.1% in r, for bunch number, same r,_, for height increment
- Computation time can be decreased further through complexity reduction methods
— Contrasted ANN have similar prediction accuracy

— Correlation between prediction accuracy in test subset and validation subsets is a
key factor for the efficiency of model optimization
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On-going / prospects:

Multimodal approaches: SNP + weather data

ANN model improvement

Use of other machine learning approaches

Multi-trait models

Researcher in deep learning to support plant
improvement

(we are hiring! - deadline Jan 19, 2025 ©)


https://recrutement.cirad.fr/job/emploi-chercheur-se-en-deep-learning-en-appui-a-l-amelioration-des-plantes_11504.aspx?LCID=2057
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Thanhs for your attention!



