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• High potential of genomic selection (GS) in perennial crops (long breeding cycles, low selection intensity)

• Promising results in oil palm, with rGS = 0.25 – 0.75 depending on trait 

• Still need to increase the accuracy of genomic predictions

• What about innovative modeling approaches ?
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• Availability of large amount of heterogeneous data (phenotypes, high-
throughput genotypes, NIRS, weather, …) = machine learning could be 
relevant

• Availability of computing resources = study and practical application of 
machine learning for GS feasible

• Promising results obtained for genomic predictions in various animal and 
plant species with machine learning, in particular artificial neural 
networks (ANN)

→ Comparison of ANN and conventional statistical methods of genomic 
predictions
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• Availability of large amount of heterogeneous data (phenotypes, high-
throughput genotypes, NIRS, weather, …) = machine learning could be 
relevant

• Availability of computing resources = study and practical application of 
machine learning for GS feasible

• Promising results obtained for genomic predictions in various animal and 
plant species with machine learning, in particular artificial neural 
networks (ANN)

→ Comparison of ANN and conventional statistical methods of genomic 
predictions

Optimal implementation of ANN can be challenging 
→ Study the effect of methodological aspects on ANN efficiency

→ Provide insights into how to achieve highest GS accuracies with ANN
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• 852 oil palm crosses (69 717 individuals)

• complex dataset (structured in populations 
and families with varying size and levels of 
relatedness) 

• phenotype: bunch production from 3 to 10 
years old (FFB)

• genotype of cross parents and a sample of 
observed individuals for 22K SNP (array)

• 2 experimental sites in Indonesia
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Sumatra



→ 688 training records

→ 492 test records

Site 1 (training)

Site 2 (test)
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Prediction accuracy of conventional methods in test set:
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0.43



Emmer-Streib et al 2020

…the base artificial neural network: the multi-layer perceptron (MLP)
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etc.
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Prevention of overfitting:
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• Divide training data into training and 
validation subsets and use loss value 
in validation subset to identify optimal 
epoch (early-stopping)

Prevention of overfitting:
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Training 
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1-monitor accuracy in  
validation subset
→ define optimal 

epoch

2- predict test 
values

3- repeat steps 1 and 2 with
the four other validation 

subsets



• Divide training data into training and 
validation subsets and use loss value 
in validation subset to identify optimal 
epoch (early-stopping)

Prevention of overfitting:

• Use regularization techniques – example: 
dropout
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→ ANN non-deterministic methods

Initial weights and biases generally fixed randomly
Dropout (random sampling of neurons to switch off)
Random definition of batches

Many possible MLP models:
- architecture (number of layers, number of neurons per layer)
- hyper-parameters (learning rate, regularization parameters
[dropout, l1, l2], activation function, etc.)

Practical application = no test data available

Question 1. What is the variability in rtest among MLP ?

Question 2. How to compute rtest: 𝒄𝒐𝒓(𝒚, ෝ𝒚) 𝐨𝐮 𝒄𝒐𝒓(𝒚, ഥෝ𝒚) ?Predictions made for each training/validation subsets

Question 3. What is the variability in rtest for a given MLP 
and dataset ?

Question 4. How to optimize ANN using the training data ?
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597 MLP models, validation subsets = optimized k-folds (k=5), rtest = means over 8 values

• High variability in rtest [-0.41,0.57]

• Many MLP models outperform conventional methods (35.6% of 
models with rtest ≥ 0.43, 5% of MLP with rtest ≥ 0.55)

Question 1. What is the variability in rtest among MLP ?

Question 2. How to compute rtest : 𝒄𝒐𝒓(𝒚, ෝ𝒚) 𝐨𝐮 𝒄𝒐𝒓(𝒚, ഥෝ𝒚) ?

• Prediction averaging increases rtest
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• Model repeatability can be very low
but is high for good models

• Good to make a few replicates to 
accurately identify best models

Question 3. What is the variability in rtest for a given MLP and dataset ?

597 MLP models, validation subsets = optimized k-folds (k=5), rtest = means over 8 values
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Question 4. How to optimize ANN using the training data ?

random searchgrid search

Bergstra and Bengio 2012

• Different optimization methods developped:
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• random search for MLP, with 15874 random models:

Top 3 models on rval :
1st: 0.731
2nd: 0.729
3rd: 0.728 

Question 4. How to optimize ANN using the training data ?

19



Prediction accuracies in test set: + 27.6% to +32.8%
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Random search = a lot of models to test

~16K here = ~22.8 days of GPU computing time 

64K in Sousa et al. (2022) [MLP for coffee], even more needed if space of architectures / hyper-
parameters increases (in particular for more complex types of ANN) and/or if size of dataset increases

→ financial and GHG cost

+ not guarantee to find the best model

→ could we optimize models more efficiently (faster and/or to get higher GS accuracy) ?

Question 4. How to optimize ANN using the training data ?
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Number of models tested before rval > random search = 73 
(range 62-100, n=5)

→ Identify very fast models that outperform best model of 
random search

Small gain in maximum rval compared to random search: 

+1.16% (range 0.80-1.51), with on average 207 trials (165-248)

43 hours per run of Bayesian optimization (41.8-44.7)
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Example result (same range of architectures and 
hyper-parameters as random search):

Bayesian optimization 
(Jiménez and Ginebra 2017)

Iterative algorithm to uncover the global maxima of 
a black-box function in the defined parameter space 



Beyond MLP - a lot of more complex models:

GRU

CNN
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MLP



Prediction accuracies in test set:
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+ 16.8% to +32.8%



→High variability in predictive ability depending on architecture/hyper-parameters of ANN 
models

→High repeatability for good ANN models

→Prediction averaging increases predictive ability in ANN

→No effect of type of ANN (MLP, CNN, GRU) 

→ Training data can be used to identify models giving large increases in GS accuracy

→Bayesian optimization efficient to identify good ANN
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Conclusions:



→ Large trait effect: +5.1% in rtest for bunch number, same rtest for height increment
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→Computation time can be decreased further through complexity reduction methods

→Contrasted ANN have similar prediction accuracy

→Correlation between prediction accuracy in test subset and validation subsets is a 
key factor for the efficiency of model optimization

Conclusions:

More details & results in:
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On-going / prospects:

- Multimodal approaches: SNP + weather data

- ANN model improvement

- Use of other machine learning approaches

- Multi-trait models

…

(we are hiring! - deadline Jan 19, 2025 ☺)

https://recrutement.cirad.fr/job/emploi-chercheur-se-en-deep-learning-en-appui-a-l-amelioration-des-plantes_11504.aspx?LCID=2057


Thanks for your attention!
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