

Palm genomics and genetics Workshop

January 12, 2025 – San Diego, CA



# Optimizing Oil Palm Genomic Predictions with Artificial Neural Networks



David Cros, Lauriane Rouan, Daphné Navratil, Billy Tchounke, Nicolas Leroy, Sandrine Le Squin, Najelaa Ulfah, Léifi Nodichao, Gregory Beurier

david.cros@cirad.fr



Computing facilities:



- High potential of genomic selection (GS) in perennial crops (long breeding cycles, low selection intensity)
- Promising results in oil palm, with  $r_{GS} = 0.25 0.75$  depending on trait
- Still need to increase the accuracy of genomic predictions
- What about innovative modeling approaches ?

- High potential of genomic selection (GS) in perennial crops (long breeding cycles, low selection intensity)
- Promising results in oil palm, with  $r_{GS} = 0.25 0.75$  depending on trait
- Still need to increase the accuracy of genomic predictions
- What about innovative modeling approaches ?
- Availability of large amount of heterogeneous data (phenotypes, highthroughput genotypes, NIRS, weather, ...) = machine learning could be relevant
- Availability of computing resources = study and practical application of machine learning for GS feasible
- Promising results obtained for genomic predictions in various animal and plant species with machine learning, in particular artificial neural networks (ANN)
- → Comparison of ANN and conventional statistical methods of genomic predictions



- High potential of genomic selection (GS) in perennial crops (long breeding cycles, low selection intensity)
- Promising results in oil palm, with  $r_{GS} = 0.25 0.75$  depending on trait
- Still need to increase the accuracy of genomic predictions
- What about innovative modeling approaches ?
- Availability of large amount of heterogeneous data (phenotypes, highthroughput genotypes, NIRS, weather, ...) = machine learning could be relevant
- Availability of computing resources = study and practical application of machine learning for GS feasible
- Promising results obtained for genomic predictions in various animal and plant species with machine learning, in particular artificial neural networks (ANN)
- → Comparison of ANN and conventional statistical methods of genomic predictions

Optimal implementation of ANN can be challenging

ightarrow Study the effect of methodological aspects on ANN efficiency

 $\rightarrow$  Provide insights into how to achieve highest GS accuracies with ANN



- 852 oil palm crosses (69 717 individuals)
- complex dataset (structured in populations and families with varying size and levels of relatedness)
- phenotype: bunch production from 3 to 10 years old (FFB)
- genotype of cross parents and a sample of observed individuals for 22K SNP (array)
- 2 experimental sites in Indonesia



## Site 1 (training)

| Type de croisements | par :                   |     |
|---------------------|-------------------------|-----|
| Groupes génétiques  | Populations             | N   |
| AxA                 | DELI X AN               | 1   |
| A x B               | AN x LM                 | 10  |
| A x B               | DELI x (LM x YBI/SI)    | 23  |
| A x B               | DELI X LISOMBE KINSHASA | 3   |
| A x B               | DELI x LM               | 243 |
| A x B               | DELI X NI               | 4   |
| A x B               | DELI x YBI              | 73  |
| B x B               | LM x NI                 | 1   |
| B x B               | LM x YBI / SI_NI        | 1   |
| B x B               | NI                      | 1   |
| TOTAL               |                         | 360 |

## $\rightarrow$ 688 training records



| Type de croisements par : |                               |     |
|---------------------------|-------------------------------|-----|
| Groupes génétiques        | Populations                   | N   |
| ((AxB)xB) x (AxB)         | (DELIXLM)XNI_X_DELIXNI        | 1   |
| ((AxB)xB) x (AxB)         | (DELIXLM)XYBI_X_DELIXNI       | 3   |
| ((AxB)xB) x A             | (DELIXLM)XLM_X_DELI           | 14  |
| ((AxB)xB) x A             | (DELIXLM)XNI_X_DELI           | 1   |
| ((AxB)xB) x A             | (DELIXLM)XYBI_X_DELI          | 3   |
| ((AxB)xB) x B             | (DELIXLM)XNI_X_NI             | 3   |
| ((AxB)xB) x B             | (DELIXLM)XYBI_X_NI            | 1   |
| (AxB) x (AxB)             | DELIXNI_X_DELIXYBI?           | 1   |
| (AxB) x B                 | ANxNI_x_LM                    | 3   |
| (AxB) x B                 | ANxNI_x_YBI                   | 2   |
| (AxB) x B                 | DELIXNI_X_LISOMBE KINSHASAXLM | 1   |
| (AxB) x B                 | DELIXNI_X_LISOMBE KINSHASA    | 1   |
| (AxB) x B                 | DELIXNI_X_LM                  | 15  |
| (AxB) x B                 | DELIXNI_X_LMXYBI/SI           | 5   |
| (AxB) x B                 | DELIXNI_X_NIXLM               | 13  |
| (AxB) x B                 | DELIXNI_X_YBI                 | 6   |
| A x (AxB)                 | DELI_X_DELIXYBI?              | 5   |
| AxB                       | ANxDELI_X_LM                  | 31  |
| AxB                       | ANxDELI_X_YBI                 | 21  |
| AxB                       | DELI_X_LISOMBEKINSHASA        | 6   |
| AxB                       | DELI_x_LISOMBEKINSHASAxLM     | 10  |
| AxB                       | DELI_X_LM                     | 188 |
| AxB                       | DELI_x_LMxYBI/SI              | 21  |
| AxB                       | DELI_X_NIXLM                  | 15  |
| AxB                       | DELI_X_NIXYBI                 | 14  |
| AxB                       | DELI_X_YBI                    | 86  |
| BxB                       | LM_x_NI                       | 4   |
| BxB                       | LM_X_YBI                      | 4   |
| BxB                       | LMxYBI/SI_x_NI                | 3   |
| B x B                     | NI_x_NIxLM                    | 11  |
| TOTAL                     |                               | 492 |
|                           | · ·                           | 6   |

 $\rightarrow$  492 test records

Prediction accuracy of conventional methods in test set:



## ...the base artificial neural network: the multi-layer perceptron (MLP)











 Divide training data into training and validation subsets and use loss value in validation subset to identify optimal epoch (early-stopping)







 Divide training data into training and validation subsets and use loss value in validation subset to identify optimal epoch (early-stopping)



3- repeat steps 1 and 2 with the four other validation subsets





 Divide training data into training and validation subsets and use loss value in validation subset to identify optimal epoch (early-stopping)



3- repeat steps 1 and 2 with the four other validation subsets

 Use regularization techniques – example: dropout



(a) Standard Neural Net

#### (b) After applying dropout.

#### Many possible MLP models:

- architecture (number of layers, number of neurons per layer)
- hyper-parameters (learning rate, regularization parameters [dropout, l1, l2], activation function, etc.)

Predictions made for each training/validation subsets

Question 1. What is the variability in  $r_{test}$  among MLP ?

Question 2. How to compute  $r_{test}$ :  $\overline{cor(y, \hat{y})}$  ou  $cor(y, \overline{\hat{y}})$  ?

Initial weights and biases generally fixed randomly Dropout (random sampling of neurons to switch off) Random definition of batches

 $\rightarrow$  ANN non-deterministic methods

Question 3. What is the variability in  $r_{test}$  for a given MLP and dataset ?

Practical application = **no test data available** 

**Question 4. How to optimize ANN using the training data ?** 

#### Question 1. What is the variability in $r_{test}$ among MLP ?

### Question 2. How to compute $r_{test}$ : $\overline{cor(y, \hat{y})}$ ou $cor(y, \overline{\hat{y}})$ ?



Mean prediction accuracy in test set (n=8) with prediction averaging

- High variability in r<sub>test</sub> [-0.41,0.57]
- Many MLP models outperform conventional methods (35.6% of models with r<sub>test</sub> ≥ 0.43, 5% of MLP with r<sub>test</sub> ≥ 0.55)



Prediction averaging increases r<sub>test</sub>

#### Question 3. What is the variability in $r_{test}$ for a given MLP and dataset ?



- Model repeatability can be very low but is high for good models
- Good to make a few replicates to accurately identify best models

#### **Question 4. How to optimize ANN using the training data ?**

• Different optimization methods developped:



grid search

Important parameter

random search



Bergstra and Bengio 2012

#### **Question 4. How to optimize ANN using the training data ?**

• random search for MLP, with 15874 random models:



**Prediction accuracies in test set:** 

+ 27.6% to +32.8%



Random search = a lot of models to test

~16K here = ~22.8 days of GPU computing time

64K in Sousa et al. (2022) [MLP for coffee], even more needed if space of architectures / hyperparameters increases (in particular for more complex types of ANN) and/or if size of dataset increases

 $\rightarrow$  financial and GHG cost

+ not guarantee to find the best model

→ could we optimize models more efficiently (faster and/or to get higher GS accuracy) ?

**Bayesian optimization** Iterative algorithm to uncover the global maxima of a black-box function in the defined parameter space

**pyGPGO: Bayesian optimization for Python** (Jiménez and Ginebra 2017)

Example result (same range of architectures and hyper-parameters as random search):



Number of models tested before r<sub>val</sub> > random search = 73 (range 62-100, n=5)

→ Identify very fast models that outperform best model of random search

43 hours per run of Bayesian optimization (41.8-44.7)

Small gain in maximum r<sub>val</sub> compared to random search:

+1.16% (range 0.80-1.51), with on average 207 trials (165-248)

#### **Beyond MLP - a lot of more complex models:**



**Prediction accuracies in test set:** 

+ 16.8% to +32.8%



24

### **Conclusions:**

- → High variability in predictive ability depending on architecture/hyper-parameters of ANN models
- $\rightarrow$  High repeatability for good ANN models
- $\rightarrow$  Prediction averaging increases predictive ability in ANN
- → No effect of type of ANN (MLP, CNN, GRU)
- → Training data can be used to identify models giving large increases in GS accuracy
- $\rightarrow$  Bayesian optimization efficient to identify good ANN

## **Conclusions:**

More details & results in:



 $\rightarrow$  Large trait effect: +5.1% in r<sub>test</sub> for bunch number, same r<sub>test</sub> for height increment

→ Computation time can be decreased further through complexity reduction methods

 $\rightarrow$  Contrasted ANN have similar prediction accuracy

→ Correlation between prediction accuracy in test subset and validation subsets is a key factor for the efficiency of model optimization

## **On-going / prospects:**

- Multimodal approaches: SNP + weather data
- ANN model improvement
- Use of other machine learning approaches
- Multi-trait models

...

(we are hiring! - deadline Jan 19, 2025 ☺)

Researcher in deep learning to support plant improvement

Apply for vacancy



Palm genomics and genetics Workshop

January 12, 2025 – San Diego, CA

## Thanks for your attention!