

Agroecology and Safe Food System **Transitions**

Supporting crop-livestock increased integration in North Western Vietnam M. Blanchard, Thanh Huyen Le thi, Hàn Anh Tuấn, Nguyen Thanh Trung, Trong Hieu Do, Dong Thi Na, Nguyễn Hoàng Phương, **Pascal Lienhard**

Green Transformation 2024

24 Octobre 2024, Hanoi, Vietnam ASSET

A project funded by

In partnership

Co-funded by the European Union

FONDS FRANCAIS POUR 'ENVIRONNEMENT MONDIAL

O7. Agro-ecotourism is developed

O5. Food safety is better managed in VCs

Support to the Vietnam Food Safety Taskforce

O3. Agroecological practices are disseminated

Livestock system development & tree crop livestock integration Soil conservation & crop diversification Agroecology crop protection [Safe & organic agriculture | Agroforestry

In 2030, functional agroecological and quality-based value chains contribute to improve local farming community livelihood

1. Support to **forage and livestock development strategies**

5. Support to quality product visibility and value chain development

Ambitions in line with national commitments

Aligned with Vietnam ambition to contribute to Climate Change mitigation and develop a Circular Economy:

The **Use of organic fertilizer** in agriculture it to be doubled by 2030 compared to 2020 (NAP FST, March 2023)

Methane (CH_4) emissions from agriculture are to be decreased by 30% by 2030 (NDC, 2022), with ruminants as contributors. Increase use of silage and legume in animal feed can help reduce **Emissions from Enteric fermentation**

Innovative models: forage, silage and compost

Testing innovative models on farms

- With various objectives
 - Increase and diversify forage varieties
 - Design **intercropping system** with forage
 - Conserve the quality of forage & silage
 - Valorise the manure into **quality** compost
 - Support the **adoption** by farmers

Diversify and increase in forage production

Support farmers access to **planting material**, and a **diversity** of forage species Farmers knowledge on **forage management**

Forage	Description	Annual Prod (ton FM/ha)
Green Elephant grass (Taiwan)	Forage cane. Newly introduced in the region. Less piths (easier to cut for farmers, and to eat for animals)	20-60
Mulato 2 grass	Erected grass. Hybrid. No risk of seeds contamination /unwanted propagation as compared to other grasses (e.g. ruzi grass). Softer than forage canes.	15-50
Guinea grass (Mombasa)	Erected grass. More productive than traditional guinea grasses (TD58, purple). Softer than forage canes.	15-50
Stylosantes g. (Ubon)	Forage legume. Improve animal feed quality (fresh or silage). More productive than traditional CIAT 184	5-15

Taiwan Green Elephant Grass : Large enthusiasm from farmers, good yield, can be used as green forage or silage (storage), preferred compared to VA06 (less pith).

Co-design of intercropping systems with forages

- Insufficient land available: need for new production modes
- Intercropping systems with forages help decreasing soil erosion and preventing landslide in sloping agricultural areas

Some demo plots supported by ASSET

- Forage strips in coffee and Maca plots
- Intercropping of diversity of forage in Maca plantation
- Monitor effect of forages on soil health and Maca growth in intercropping/monocropping systems

Experiment Maca + forage grasses (Tuan Giao)

Treatments:

- T1. Sunnhemp and Rattlepod
- T2. Centrosema
- T3. Brachiaria ruzi
- T4. Stylosanthes (Ubon)
- T5. Mulato II
- T6. Forage peanut (pinto)
- T7. Ruzi + stylo
- T8. Rice bean

Guinea grass strips in cassava (Tuan Giao)

Guinea grass strips in coffee (Mai Son)

Conserve the quality of forage with silage production

Goal : maintain the quality of forage to shift use to a period of forage deficit

Support farmers capacity building Support farmers access to equipment and inputs.

Incentive packs : EM, choppers and bags

Investissement	Unit price (VND)	Nb of years depreciation		Remarks		
Forage and cassava stem chopper	5 000 000	5		1 chopper,	/group of 5-7 f	armers
Double layer bag for silage (800-1000 kg)	160 000	3		2 bags/far	mer	
Annual inputs (for 2 silage bags)	Unit price (VND)	Qty (kg)	Anr	nual cost (VND)	Remarks	
Efficient Microorganisms (EM) Guard II	180 000	1	1	80 000	0,5kg/bag	
Salt	8 000	6	Ц	8 000	3 kg/bag	
TOTAL (VND)			2	28 000		

Technical leaflet on silage processing (En, Vn)

Valorise the manure into quality compost

Goal : support the production of high quality organic fertiliser on farms, decrease the dependence on chemical fertilizers Support farmers capacity building Support farmers access to equipment and annual inputs.

Incentive packs: EM, plastic cover (roof, canvas) and Compactor

Annual inputs	Unit price	Qty	Annual cost				And a gricultural by products	
(for 1 ton of compost)	(VND)	(kg)	(VND)					
Efficient Microorganisms (EM)	100.000	1	100.000					
Trichoderma plus humic	100 000	Т	100 000	Investment	Unit price	Nb of years	Remarks	
Rice bran or corn starch	7 000	5	35 000		(VND)	depreciation		
Phosphate	6 000	5	30 000	Roof for compost pit	500 000	10	10-12 sheets of tole	
Urea	16 000	0,2	3 000	Canva	70 000	5	To cover compost pile	
Potassium	20 000	0,2	4 000	Compost compostor	22.000.000	10	To facilitate handling and storage; improve	
TOTAL (VND)			172 000	composi compactor	55 000 000	TO	conservation and marketing of compost	

Technical leaflet on composting (En, Vn)

High dependence of farms and territories on inputs

- High dependence of farms and territories on market inputs: • different cropping systems

 - different level of intensification
- Estimated at between **2.5 and 25 MVND.y⁻¹ per farm** (2022)

- Estimates for one district in the North West (2023) • 240 B VND.y⁻¹
- Different quality of the compost and chemical fertilizers Quantities of N applied in chemical fertilizers could be reduced by considering the N applied via manure and
- compost

Benefits from promoting locally-made Compost

Example of Maca development – Tuan Giao district

• Objective 20,000 ha of Macadamia in 5 years

	22.222			
Area (ha)	20 000			
Maca density (nb plants/ha)	280			
Nb Maca plants/objective	5 600 000			
ertilization recommendations (kg/plant)				
from year 1 to 4, per year	12,5			
after year 5, per year	15			
ertilization needed/plant for 10 years (kg) 140			
ertilization needed/20,000 ha for 10y (to	ns) 784 000			
Price bag organic fertilizer DAVICO HC-03 (VND/25 kg)				
Price bag organic fertilizer DAVICO HC-03 (VND/ton)				
rice fertilization for 20,000 ha & 10 years (in 10 ⁹ VND)				

- What about supporting the partial production of organic fertilizer by smallholder farmers?
- Cost of locally made compost: 290,000 340,000 VND/ton
- Not considering the effect on bad smells and the decrease in environmental pollutions

137 500

4 300

5 500 000

172 M USD

1 livestock owner: t 1 livestock owner: t	5 50	
	Organic fertilizer (tons)	Nb farmers needed
nic fertilizer need	7 840	157
nic fertilizer need	39 200	784
anic fertilizer need	78 400	1568

Farm Composts: Variable but Satisfactory Quality

- Variability in the quality of farm compost: Balance between crop residues and animal
 - waste
 - Added biomass (coffee plum, pork waste, ...) Compositing conditions (canvas, roofs, pits, turning, drying, etc.)
- Farm composts can be of comparable quality ${\bullet}$ to certain organic fertilizers produced and marketed in Vietnam.

Important sources of N and P for farms

(Domestic organic fertilizer composition from Quynh and Kazuto, 2018)

Supporting crop-livestock integration

- 66% [43-97%] of farms with at least 1 large ruminant
- Different herd size, but globally small-scale raising systems (<5 LR)

Combined approach Demo plots and trials 2. Seeds, cuttings, incentives pack 3. Field visits, training & communication

• Effect on adoption of silage-compost practices after 3 years

Take home messages

- Forage-Silage-Compost (FSC) model is a good example of Crop-Livestock Integration (CLI) \bullet
- FSC model can strongly contribute to national and local ambitions of transforming agricultural and \bullet food systems through e.g. circular economy enhancement, CH4 emissions reduction, decreased environmental pollutions
- Relatively low investments ("incentive pack") can foster a rapid and strong adoption of FSC model \bullet
- Uptake of composting technology is slower than for silage as more labor intensive, and limited lacksquaremarket so far for locally-produced compost

Incentive pack	Unit price (VND)	Qty	Cost/HH (VND)
Forage and cassava stem chopper	5 000 000	1 for 5 HHs	1 000 000
Double layer bag for silage (800-1000 kg)	160 000	2	320 000
Efficient Microorganisms (EM) Guard II	180 000	1	180 000
Roof for compost pit	500 000	1	500 000
Canva	70 000	1	70 000
Efficient Microorganisms (EM) Trichoderma plus humic	100 000	1	100 000
TOTAL (VND)			2 170 000
TOTAL (USD)			87

Agroecology and Safe Food System **Transitions**

THANK YOU

Agroecology and Safe Food System Transitions in Southeast Asia (ASSET) វិវឌ្ឍនាការកសិអេកូឡូស៊ី និងប្រព័ន្ធស្បៀងអាហារសុវត្ថិភាព ການປັບປຸງລະບົບນິເວດກະສິກຳ ແລະ ຄວາມປອດໄພຂອງ ອາຫານ Chuyển đổi Nông nghiệp sinh thái và Hệ thống Thực phẩm An toàn

LEARN MORE | ស្វែងយល់បន្ថែម | ទ្យូរាទ៉ូឃ៉េំរាពេិរ | TÌM HIểU THÊM

