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Abstract

African swine fever (ASF) is a highly contagious disease affecting wild and domestic pigs,

characterised by severe haemorrhagic symptoms and high mortality rates. Originally con-

fined to Sub-Saharan Africa, ASF virus genotype II has spread to Europe since 2014, mainly

affecting Eastern Europe, and progressing through wild boar migrations and human action.

In January 2022, the first case of ASF, due to genotype II, was reported in North-western

Italy, in a wild boar carcass. Thereafter, numerous positive wild boars were identified, indi-

cating an expanding wild epidemic, severely threatening Italian pig farming and trade. This

study focused on the mapping of the suitable habitats for wild boars and their potential dis-

persal corridors in Northern Italy, using species distribution models and landscape connec-

tivity analysis. The resulting maps identified areas with higher likelihood of wild boar

presence, highlighting their preferential pathways crossing Northern Italy. The distribution of

ASF positive wild boars along the major corridors predicted by the model suggests the

obtained maps as valuable support to decision-makers to improve ASF surveillance and

carcass early detection, aiming for eradication. The applied framework can be easily repli-

cated in other regions and countries.

Introduction

African swine fever (ASF) is one of the most devastating diseases of swine, caused by a large,

enveloped, double-stranded DNA virus (generally referred as ASFV), which is the only mem-

ber of the Asfarviridae family, genus Asfivirus [1]. Over the years, ASF has evolved from a

localised disease restricted in Sub-Saharan Africa [2], to a major threat to global pig
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populations [3]. Because of its significant health and socioeconomic impact [4], and the impor-

tance of early intervention to control new outbreaks, ASF is listed among the notifiable dis-

eases (i.e., disease of public health importance, mandatory to be reported to related

authorities) by the World Organization for Animal Health (WOAH).

ASF clinical manifestations may vary from a severe haemorrhagic disease, with hyperacute

clinical signs and nearly 100% mortality, to asymptomatic and chronic forms, which turn ani-

mals into silent virus carriers contributing to the persistence and dissemination of the disease

[5]. The lack of clinical signs is more frequent in African wild suids such as warthogs (genus

Phacochoerus), bush pigs (Potamochoerus porcus and P. larvatus) and giant forest hogs (Hylo-
choerus meinertzhageni) [6], while domestic pigs and wild boars more frequently develop the

haemorrhagic form. Although seroconversion is observed in the few animals that survive the

disease [7–9], the neutralising activity of the antibody response is highly uncertain, making

future reinfections possible [10–12]. ASFV is a highly contagious and stable pathogen, able to

persist from weeks to months in infected materials (e.g., blood, excretions, tissues), and even

more than a year in contaminated animal products (e.g., frozen meat, cured ham) [5]. Trans-

mission and spread of the virus occur mainly through direct contact with infected animals or

carcasses, or indirectly through contaminated food, water, and semen, as well as people (e.g.,

hunters, workers in pig sectors, veterinarians, etc.) or fomites (i.e., any inanimate object/mate-

rial which is contaminated, carrying and spreading the pathogen) acting as mechanical vectors.

The transmission cycle of ASFV can also be sustained by the presence of soft ticks of the genus

Ornithodoros, in which the virus can persist for more than 5 years [13]. Infection through

Ornithodoros moubata plays an important role in the sylvatic cycle in Africa [14]. In contrast,

in the current European epidemiological situation, despite the presence of some Ornithodoros
species (e.g., O. erraticus, O. maritimus), their involvement appears marginal [5].

ASFV exhibits high genetic and antigenic variability, leading to the emergence of 24 known

genotypes, five of which adapted to members of the Suidae family, without zoonotic potential

[1, 15]. Only ASFV genotypes I and II are currently present in European countries, with two

distinct epidemiological scenarios. Genotype I, introduced during a first wave in several Euro-

pean countries in the second half of the 1900s [16], is now circulating only in Sardinia, an Ital-

ian Island in the Mediterranean Sea. This region is characterised by a peculiar situation of

endemicity, maintained by repeated interchanges between free-ranging domestic pigs and

wild boars [17]. Genotype II is currently affecting continental Europe since its introduction in

Georgia in 2007 via contaminated waste from ships [18, 19]. The virus began its spread to East-

ern Europe in 2014, with Lithuania recording the first cases. From there, ASFV genotype II

quickly expanded to neighbouring countries, particularly Poland, Latvia, and Estonia, often

emerging near their borders with Belarus and the Russian Federation. By 2019, the ASFV

genotype II epidemic had spread like wildfire, affecting most of the Baltic states (Lithuania,

Latvia, and Estonia). The virus continued its westward expansion, reaching Germany through

Poland by late 2019 [18–20]. Notably, in the Baltic states and Poland, the virus has shown

remarkable persistence within wild boar populations, with self-sustaining cycles over several

years, while causing minimal outbreaks among domestic pigs [19–21]. On a separate front,

ASFV genotype II has also reached Romania, following cases recorded in wild boars in neigh-

bouring countries (i.e., Moldova and Ukraine) [22].

While wild boar movements and territorial wild boar density played a key role in local

spread [19, 21, 23], long-distance jumps often resulted from human activities. For instance,

ASFV genotype II occurred into European countries such as Czech Republic (2017) [24], and

Belgium (2018) [25], appearing as isolated cases, likely due to improper disposal of contami-

nated food by humans [20]. Less clear is the origin of first outbreaks reported in Hungary, Bul-

garia, Slovakia and Serbia in both domestic pigs and wild boars [19].
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African swine fever (ASF) spread in wild boar populations of Eastern Europe has been gov-

erned by host factors (population structure), viral characteristics (strain virulence), and envi-

ronmental conditions (geographical barriers) [26, 27], with many dynamics still poorly

understood [28]. Network analysis in affected European countries showed infection velocities

of 2.9–11.7 km/year, excluding human-mediated transmission, with seasonal acceleration dur-

ing summer [19]. This slow but persistent spread has caused substantial wild boar population

declines in Eastern Europe [29, 30] while disrupting regional livestock economics through

reduced pigmeat production and exports [31].

The continued geographic expansion of ASFV genotype II reached Italy in 2022, following

an unexpected introduction likely human-mediated [32]. While ASFV genotype II incursion

was expected from the eastern side, in January 2022, the National Reference Center for the

Study of Pestivirus and Asfivirus Diseases (CEREP) at the Istituto Zooprofilattico Sperimentale

dell’Umbria e delle Marche (IZSUM) confirmed the first case of ASFV genotype II in Italy, in

the Northwest, in the municipality of Ovada, Piedmont [32–34]. Following this first finding,

several carcasses positive to ASFV genotype II were detected in Liguria. Over a year later,

ASFV genotype II-positive wild boars were found in other regions such as Lombardy, and

Emilia-Romagna (Fig 1). So far, in Northern Italy, only nine genotype II outbreaks have been

reported in domestic pigs, all in Lombardy region (Italian national epidemiological bulletin,

https://storymaps.arcgis.com/stories/9fe6aa3980ca438cb9c7e8d656358f35, accessed on 10th

July 2024).

Despite the detection of ASFV genotype II in isolated outbreaks in regions of Central and

Southern Italy, and in Sardinia [33, 35], the epidemic front currently expanding is the one affect-

ing wild boars in Northern Italy, severely threatening the socio-economic system related to Italian

pig husbandry. Northern regions are indeed where most Italian intensive pig farming is concen-

trated (https://www.istat.it/), primarily aimed at the production of Italian cured ham (e.g., Parma

ham). Any further involvement of domestic swine facilities in the ASFV genotype II epidemic

due to negligence in biosecurity measures and transmission from the external environment

would escalate to deaths or culling of large numbers of animals, as well as bans on the pork trade.

The persistence and spread of ASFV genotype II in Eastern Europe, strongly driven by the

wild boar population, along with its eradication through effective hunting campaigns and early

detection of carcasses, highlight the crucial need to better understand the distribution and

mobility of the wild boar population to halt or at least mitigate the dispersal of the disease

[19, 24, 25]. ASFV genotype II spread may vary greatly among the different habitats found in

Northern Italy (Alps, pre-Alps, plains) [34, 36]. Wild boar suitable habitats and distribution

have been largely estimated at European scale, through the application of different models,

cumulatively named as species distribution models (SDM) [37]. SDM are based on the use of

species occurrence/sighting data, which are related to explanatory variables describing the

environments, to infer the related likelihood of presence [38]. In literature, presence/absence

data for wild boar differs considerably, although often in relation with a common/similar set

of environmental variables describing topography, climate, human disturbance and land cover

[39–46]. Briefly, SDM can be applied with presence-only data (e.g. BIOCLIM model) [41],

presence-background data (e.g. MaxEnt model) [43, 47], presence-absence data (e.g. Random

Forest model) [41], or following a Bayesian framework (e.g. INLA model) [44]. Since the best

modelling technique remains a topic of debate in the scientific community [48–50], a common

and accepted approach is to choose the model by comparing performance metrics of multiple

models [51–53]. This approach has been suggested also by ENET wild consortium (i.e. an

international network of wildlife professionals supported by the European Food Safety

Agency) for wild boar abundance predictions to mitigate model-specific biases and potential

artifacts which may otherwise impact estimations [37].
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At European level, a helpful overview on high-risk routes for wild boar migration corridors

and ASF spreading is currently available [54]. However, to effectively act at the local level, pub-

lic authorities would benefit from detailed maps of hotspots for wild boar presence and move-

ments. These maps would allow to target hunting and ASF surveillance activities, such as

carcass detection. To fill this knowledge gap, the present study aimed to map suitable habitats

for wild boars and their potential corridors of dispersal at high resolution in Northern Italy.

Material and methods

Data

Study area. The study area included the geographical region of Northern Italy, compris-

ing the following administrative regions: Aosta-Valley, Piedmont, Lombardy, Trentino-Sud

Tyrol, Veneto, Friuli-Venezia Giulia, Liguria and Emilia-Romagna (Fig 1). Geographically,

Northern Italy features a diverse landscape. The region is bordered by vast mountainous areas

Fig 1. Map of Northern Italy, showing regions affected by African swine fever virus (ASFV) genotype II on 18th April 2024. ASFV genotype II outbreak point

locations in wild boars are also displayed (World Animal Health Information System (WAHIS)). Base map made with Natural Earth. North Italian regions based on the

2024 regional administrative boundaries from the Italian National Institute of Statistics (https://www.istat.it/).

https://doi.org/10.1371/journal.pone.0317577.g001
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and diverse orography: the Alps to the north and west, and the Northern Apennines to the

south. In between lies the Po Valley (Fig 1), the main Italian plain, traversed by the Po River,

the longest river in the country. Northern Italy is a densely populated area, with a total surface

area of 120,325.67 km2, which concentrates 46.6% (27,490,042 inhabitants out of a total of

58,989,749 inhabitants) of the Italian population (June 5th, 2024, https://www.istat.it/). From a

production perspective, the Po Valley is highly industrialised, characterised by intensive agri-

culture and livestock farming, as well as numerous urban centres of significant industrial and

tourist importance.

Wild boar presence data. Wild boar presence data largely included occurrences available

on https://www.gbif.org, the Global Biodiversity Information Facility (accessed on 15th Febru-

ary 2024, GBIF Occurrence Download https://doi.org/10.15468/dl.cgjtsj). GBIF is a free, open-

access database providing data about different taxa, collected by many institutions and associa-

tions during surveys and/or citizen science programs. GBIF records located in the study area

were selected and processed following the pipeline described by GBIF portal (https://docs.gbif.

org/course-data-use/en/data-processing-pipeline.html). In addition, available field records

from Veneto and Lombardy, obtained from official routine culling campaigns, aimed at con-

trolling wild boar population expansion, were included in the study [55].

Only records with a known coordinate uncertainty of less than 100 m were considered. The

available occurrences were also filtered for the time period 2014–2024, because of the limited

data available in previous years. To meet the assumption of independence of records, reduce

sampling bias and point clustering, preventing pseudoreplication (samples taken from the

same experimental unit are treated as independent replicates) and spatial autocorrelation

issues (neighbouring coordinates tend to have similar values for environmental variables)

[56–59], the density of occurrences was reduced to a minimum distance of 100 m. Duplicated

records were also removed. Data cleaning and processing were performed using R statistical

software [60].

Environmental variables. Based on models applied in previous studies, and accounting

for wild boar ecology, a variety of environmental predictors were selected to depict different

aspects of the habitat, such as topography (altitude, slope, topological aspect, topological diver-

sity, topological position), climate (precipitation, temperature), human disturbance (popula-

tion density, distance from highways, distance from urban areas, road density), land cover and

vegetation (Normalized Difference Vegetation Index (NDVI), bare coverage, herbaceous cov-

erage, tree coverage (all intended as percentage 0–100 per cell), distance from crop areas, dis-

tance from forest, distance from lakes, distance from rivers, distance from Natura 2000 parks)

[37, 61]. Variable description, sources, and processing details are reported in S2 Table. Briefly,

all variables were obtained from public databases, reprojected on the same coordinate refer-

ence system (RDN2008 / Italy zone (N-E)), and standardised as rasters with a pixel size of 100

m x 100 m (bilinear resampling method), over an extent equal to the study area. Categorical

variables (land cover classes) and vector layers (showing lakes, rivers, parks, highways, and

roads) were converted to continuous variables, considering the distance from the described

feature, or the feature density. Variables with a temporal dimension (NDVI, temperature, pre-

cipitation), were processed to account for seasonal variations in habitat use and resource avail-

ability for wild boars. Specifically, a single spatial layer was obtained by calculating over the

years (period 2014–2023, depending on available data) the overall mean (overall scenario), and

the seasonal mean (seasonal scenarios). This approach was chosen to provide a comprehensive

view of environmental conditions over time, aligning with the time frame of occurrence data,

while simultaneously smoothing out short-term fluctuations and variability [41, 42, 62].

Based on the meteorological convention for the Northern hemisphere, the considered

months for seasonal means were December, January, February for winter; March, April, May
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for spring; June, July, August for summer; September, October, November for autumn [63].

Spatial layer processing was performed on QGIS Geographic Information System [64] and

Python [65].

To reduce collinearity between environmental predictors [66], the selected variables were

tested for autocorrelation, via a correlation tree (or cluster dendrogram) obtained with the

stats library in R [60]. In the obtained correlation tree, a minimum cut-off of 0.5 was consid-

ered for variable selection. Based on ecological and spatial criteria, the original resolution, and

interpretive ease, only one variable was selected in each cluster of variables with node< 0.5.

The selected variables were further tested for multicollinearity with HH library [67], calculat-

ing the variance inflation factor (VIF) [68], and selecting variables with a maximum value of 5

[43]. Collinearity and multicollinearity assessment was conducted for the full set of variables

for the overall analysis, while for seasonal analysis the variables with a temporal dimension

covered only the relative months.

The variable included in the study for all scenarios were 13 (S1 Table). Temperature,

NDVI, herbaceous coverage, distance from urban areas, and topological diversity were

excluded in all scenarios. Precipitation variable was excluded in the overall and summer sce-

narios; slope variable was excluded only in the summer scenario; tree coverage was excluded

in the winter, spring and autumn scenarios, while distance from crop areas was excluded in all

scenarios except for summer (S1 Table).

Modelling workflow

To capture broad, long-term trends as well as seasonal variations in wild boar habitat use and

resource availability, both overall and seasonal suitability were modelled. The modelling work-

flow was structured in two main phases (Fig 2). Firstly, the wild boar occurrence records, and

the set of environmental predictors for wild boar distribution, were used as input to model the

potential distribution of wild boars in the study area (habitat suitability) for the overall and sea-

sonal scenarios using SDM (Fig 2A) [38, 69]. Then, the obtained overall suitability map was

used to perform the landscape connectivity analysis of the study area (Fig 2B).

Species distribution modelling (SDM). For the overall scenario, all the occurrences were

included in the suitability modelling, using an overall average for variables with time dimen-

sion. For the seasonal scenarios, only the related monthly records were used, with mean sea-

sonal layer for precipitation variable.

Since for wild boars, real absence data are hardly available, SDM techniques rely on a sam-

ple of points from the study area, called “pseudoabsences” (PsA), which are used to sample the

background, providing information about the environmental factors potentially driving the

distribution of presence records [70]. Occurrences available on naturalistic databases (such as

GBIF) are often spatially biased toward areas easily accessible by humans [70]. If PsA are ran-

domly generated, the final model will show that the distribution of the species correlates higher

with human facilities (e.g., roads, towns), rather than with real driving factors [70]. To reduce

the sample selection bias and target the modelling on species distribution, rather than on sur-

vey effort, PsA were selected using the same underlying bias as occurrence data [71, 72]. With

this approach, the model will capture any differentiation between the distribution of presence

records and that of PsA, better highlighting preferential habitats, rather than area accessibility.

A kernel density surface with higher probabilities in areas with more presence data was used as

sampling bias surface, to generate a number of PsA equal to the number of occurrences data

[73, 74].

The habitat suitability modelling was performed using the algorithms available in the pack-

age Biomod2 in R [75], with default options: Artificial Neural Network (ANN), Classification
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Tree Analysis (CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model

(GAM, or BAM), Gradient Boosted Machine (GBM), Generalized Linear Model (GLM), Mul-

tiple Adaptive Regression Splines (MARS), Maximum Entropy (MAXNET), Random Forest

(RF), Surface Range Envelop / BIOCLIM (SRE), eXtreme Gradient Boosting Training

(XGBOOST) (Fig 2A). The protocol consisted of 50 runs per algorithm, with the same weight

for presence and PsA data, using 70% of the datasets for training and 30% for testing [74],

Fig 2. Habitat suitability mapping and landscape connectivity analysis workflows. (A) Modelling workflow to predict suitable habitats for wild boar presence from

occurrence records and environmental predictors, (B) and to estimate the landscape connectivity of the study area considering the most suitable areas. “WB” is used as

abbreviation of “wild boar”. Environmental variables made with Natural Earth for illustrative purpose only. Base map of Italy in the suitability maps based on the 2024

regional administrative boundaries from the Italian National Institute of Statistics (https://www.istat.it/).

https://doi.org/10.1371/journal.pone.0317577.g002
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splitting randomly the data between the train and test datasets. The best algorithm was chosen

considering True Skills Statistics (TSS) and AUC (Area Under ROC (Relative Operating Char-

acteristic) Curve) as evaluation metrics, and excluding the algorithms displaying overfitting.

For the selected algorithm, an ensemble model was computed through the median of all runs

with AUC greater than 0.8 [76], and further evaluated with AUC, TSS and Cohen’s Kappa

(Kappa) [77–79]. A final continuous prediction raster of habitat suitability (suitability map

ranging from 0 to 1) was obtained forecasting the ensemble model.

The presence of a significant difference between the suitability maps under the different

scenarios was tested with Kruskal-Wallis test, while the pairwise multiple-comparison was per-

formed through the Dunn test. The distribution of the overall suitability value of the presence

data included in the model was compared through a Mann-Whitney test with the one of the

unused records, removed during the occurrence’s density reduction.

Connectivity analysis. Since carcass search and removal is a process that should ideally be

conducted routinely in the restriction zones (i.e., infected areas or surrounding areas under

surveillance measures), especially in the epidemic phase [80], connectivity was estimated only

for the overall scenario. The landscape connectivity of the study area was modelled on the

overall suitability map using Circuitscape, an open-source program implemented in Julia [81].

Circuitscape is based on circuit theory, and can operate on networks of nodes or raster grids.

With raster data, Circuitscape converts raster grids into electrical networks, in which each cell

becomes a node that is connected to the neighbouring cells by resistors. According to settings,

from a current source, Circuitscape estimates the flow between focal nodes, simulating animal

movements. Input files in this study included a focal nodes location file, a resistance map, and

a raster mask file. All input files were obtained using QGIS and Python.

Due to high computational and storage demands of Circuitscape, focal nodes were obtained

using the following workflow (Fig 2B). The continuous overall suitability prediction was con-

verted into a binary map considering as threshold the 10th percentile of the suitability score

distribution of presence data, assuming that areas with higher suitability score better reflect

wild boars’ habitat. This criterion has been largely adopted in the ecological field, showing

good performances in obtaining suitable patches [74, 82–84]. The regions with suitability

scores greater than the threshold (suitable areas) illustrated in the binary map, were converted

into vector patches, excluding those smaller than 4.4 km2, the mean population home range

size for wild boars [54, 85, 86]. Ten sets of random points were generated within the obtained

patches, taking into account wild boar animal density within patches [42], and a minimum dis-

tance of 12 km, the mean population maximum dispersal for wild boars (Fig 2B) [86]. Once

converted to raster format, the obtained random points served as focal nodes.

The resistance map conceptually represents the opposite of habitat suitability: low suitabil-

ity/permeability areas correspond to higher resistance, and vice versa. The resistance map was

computed applying a negative exponential function, such that resistance = e[(ln(0.001)�thresh-
old)×HS]×103, which enhances the barrier effect of less-suitable sites, returning smoother

effects [87–90].

To exclude cells outside the considered Italian regions, and big lakes from the analysis, a

raster mask file was created, setting the corresponding pixels as NODATA values. Thus,

NODATA values were excluded from the resistance map, and treated like barriers [81].

The connectivity analysis was conducted for all 10 sets of random points (focal nodes)

using the “one-to-all” mode, which iterates across all random points, such that in each new

iteration a different random point acts as the current source. Julia 1.10.2 version was used to

run Circuitscape program [81].

To test if the 10 connectivity maps estimated were comparable, the presence of a significant

difference in terms of connectivity values between maps was evaluated by Kruskal-Wallis test
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(Fig 2B). Since this test compares the median values of the maps (i.e., non-parametric test), a

final connectivity map was obtained calculating the median of the 10 connectivity maps,

reducing also the influence of potential outliers.

Model evaluation

The geographical coordinates of Italian ASF outbreaks were downloaded from the World Ani-

mal Health Information System (WAHIS), the reference database of the World Organisation

for Animal Health (WOAH) (accessed on 18th April 2024). Outbreaks related to domestic pigs

were excluded, and only notifications corresponding to ASF genotype II positive wild boars

within the study area were included in the validation of the obtained connectivity map. From

this point forward, all references to ASF outbreaks/cases/events/findings pertain specifically to

ASFV genotype II.

To test if ASF events were associated with higher connectivity values, the distribution of the

connectivity values at ASF event locations was compared with the one of random points in a

minimum bounding geometry (convex hull) enclosing ASF outbreaks through Mann-Whitney

test. A set of random points equal to the number of events were generated 100 times, without

overlapping the location of the ASF cases, assuming that the entire territory in which ASF posi-

tive wild boars were found was scanned. Random points and ASF events connectivity values

were extracted from the median connectivity map. The proportion of significant p-values was

calculated.

For each of the 100 sets of random points, a dataset of ASF events and random points loca-

tions and relative connectivity values was created. The ROC curve was analysed for all the 100

datasets, using pROC package in R [91]. The average AUC, the lowest threshold corresponding

to 0.9 of sensitivity, and the average best closest top left threshold (the point closest to the top-

left part of the ROC curve, corresponding to the best compromise between sensitivity and

specificity) were calculated. Binary risk maps of the median connectivity maps were obtained

applying the calculated thresholds, and their true positive rate (outbreaks correctly classified as

carcass location) was calculated. To increase the chance of wild boar detection, the search of

wild boars in the infected areas and in those under surveillance are usually more focused in

forest-covered areas [80, 92]. To compare the predictive power of the estimated risk maps with

that of the land cover classes only, the proportion of correctly classified ASF positive wild

boars was also calculated by land cover class (urban, crop, forest, water). The land cover classes

were obtained by reclassifying the Corine Land Cover (CLC) dataset produced within the

frame of the Copernicus Land Monitoring Service (S2 Table). All the statistical analysis was

performed in R.

Results

Presence data and environmental variables

A total of 2496 wild boar occurrences were collected for the period 2000–2024: 2266 down-

loaded from GBIF data portal, while 230 from official routine culling campaigns. After the

data cleaning process to reduce the spatial autocorrelation between occurrences, 1306 presence

data were finally included in the overall model, covering the period from 2014 to 2024

(Fig 2A). For the seasonal scenarios, the occurrences included were 293 for winter, 312 for

spring, 434 for summer, and 451 for autumn.

After standardisation, all variable layers had a dimension of 26,306,996 grid cells. After the

screening for the presence of collinearity and multicollinearity described in material and meth-

ods section, out of 20 variables originally considered, 13 variables were selected for the overall

and seasonal suitability models, with specific differences according to the scenario (S1 Table).
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Suitability maps

Among the algorithms available in Biomod2 package, only RF, XGBOOST, and GBM showed

acceptable performances for all the considered scenarios (overall and seasonal estimations).

On average, the mean and the standard deviation (sd) of the evaluation metrics were AUC

equal to 1.00 (sd = 0.00), TSS equal to 0.99 (sd = 0.00) for both RF and XGBOOST, and AUC

equal to 0.95 (sd = 0.00), TSS equal to 0.77 (sd = 0.02) for GBM (details per scenario in

S3 Table). The other algorithms (ANN, CTA, FDA, GAM, GLM, MARS, MAXNET, SRE)

resulted in lower performances (average values: ROC< 0.89; TSS< 0.62).

For all considered scenarios, GBM model was finally preferred for ensemble modelling

computation, because of its balanced combination of spatial generalization across the study

area and predictive performances. Compared to other models, GBM provided continuous suit-

ability estimates across the study area, in association with the strongest predictive power in

terms of evaluation metrics, except for RF and XGBOOST, which showed perfect performance

metrics (S3 Table) [93–95]. However, RF and XGBOOST were excluded since the excellent

results depicted by the metrics may be related more to an overfitting/overlearning of the

occurrences used, than actually to perfect predictive performances (S3 Table) [53, 96–99]. The

GBM-based ensembled model was evaluated as acceptable for all the considered performance

metrics, in all scenarios (Table 1). The mean values obtained were TSS = 0.73 (sd = 0.08),

AUC = 0.94 (sd = 0.03), KAPPA = 0.73 (sd = 0.08). All the above evaluation metrics are

rounded to the second decimal digit.

The first variable for importance was the distance from the forest in all scenarios, while the

second one was always altitude, except for the winter scenario which was more influenced by

seasonal precipitation. In particular, according to ensemble model response curves (S1 Appen-

dix), for all scenarios, the habitat suitability decreased sharply with altitude and distance to for-

est, but slightly with bare coverage, slope, distance from lakes, distance from parks. On the

contrary, the suitability mildly increased with tree coverage, distance from river, road density.

The correlation between the suitability and the variables “precipitation”, “distance from high-

ways”, “topological aspect”, “topological position”, varied according to season and/or range of

suitability. The suitability didn’t seem to be particularly influenced by the variability in the

human population density and distance from crop. See further response curves details by sce-

nario in S1 Appendix.

Visually, all the suitability maps displayed mountainous and hilly areas with good forest

cover as highly suitable areas for the presence of wild boar (Fig 3B and Fig B in S1 Fig). With

few exceptions, the lowest suitability was described in the area of the Po Valley, especially the

lowlands, and in the northernmost Alps. Cells with suitability value greater than 0.6 were

Table 1. Evaluation metrics of the ensemble Gradient Boosted Machine (GBM) model and suitability value statistics under the different scenarios.

Scenario Evaluation metric Suitability value

TSSa AUCb KAPPAc mean sd min max

Overall 0.60 0.89 0.60 0.38 0.19 0.12 0.91

Winter 0.81 0.97 0.81 0.33 0.21 0.07 0.93

Spring 0.76 0.95 0.75 0.40 0.19 0.10 0.89

Summer 0.75 0.95 0.74 0.35 0.20 0.08 0.92

Autumn 0.75 0.94 0.74 0.35 0.18 0.08 0.92

a True Skills Statistics
b Area Under ROC (Relative Operating Characteristic) Curve
c Cohen’s Kappa

https://doi.org/10.1371/journal.pone.0317577.t001
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mainly located in the pre-Alps (i.e., groups of mountains and highlands from Lake Maggiore

till the border with Slovenia, located on the inner side of the Alps and gradually lower towards

the plain), the Northern Apennines, central Piedmont at the province of Asti, the Ticino park

area, along the Po River in the Po Valley, and the regional parks of Colli Berici and of Colli

Euganei in Veneto (Fig 3B, Fig B in S1 Fig and S2 Fig).

The mean suitability value of Northern Italy, under the overall scenario, is 0.38 (0.12–0.91).

On average, the season with the highest suitability was spring (0.40, 0.10–0.89), followed by

autumn (0.35, 0.08–0.92), summer (0.35, 0.08–0.92), and winter (0.33, 0.07–0.93). Here

reported suitability values are rounded to the second decimal digit. A significant difference

was observed in the suitability of the study area under the different scenarios. Specifically, all

the five suitability maps resulted significantly different among each other at the post hoc analy-

sis (p-value < 0.001).

Fig 3. Distribution of wild boar records and estimated suitability map for the overall scenario. (A) Distribution of presence data in the study area. Occurrence records

included in the final model are displayed as red points, while those removed to meet the assumption of independence are shown as yellow points. (B) Map describing

habitat suitability for the presence of wild boars in Northern Italy in an overall scenario. Seasonal suitability maps are available in S1 Fig. Original raster files can be

downloaded from S2 File. Base map of Italy based on the 2024 regional administrative boundaries from the Italian National Institute of Statistics (https://www.istat.it/).

https://doi.org/10.1371/journal.pone.0317577.g003
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Considering the overall scenario, no significant difference was detected between the suit-

ability value distributions of the presence data included in the model and of the unused rec-

ords, excluded during the density reduction (p-value = 0.36).

Connectivity map and ASF outbreaks spatial distribution

The threshold corresponding to the 10% percentile of the suitability score distribution for the

presence data was 0.45. After excluding the suitable regions smaller than 4.4km2, the final

patches covered 32.09% of the total study area. The percentages of occurrences included and

excluded from the SDM, falling into the patches were respectively 86.52% and 86.93% [43].

Since the ten connectivity maps obtained from the ten different random points datasets

were statistically comparable (p-value� 1), a final connectivity map was calculated through

the median formula (Fig 4A). In the median map, the mean connectivity value was 0.53x10-2

(0.00–74.83x10-2). The connectivity value describes the permeability of a grid cell to wild boar

movement.

In total, 1758 wild boar ASFV genotype II notifications were downloaded from WAHIS.

The mean distance between all the ASF events was 40.4 km, between consecutive ones was

20.8 km. Since three records fell outside the connectivity map, 1755 ASF events were finally

included in the study. ASF event locations were associated on average with higher connectivity

values (2.5x10-2, 0.00–20.0x10-2) than those extracted from random background points

(1.5x10-2, 0.00–24.9x10-2), for all the 100 simulations (p-value < 0.001).

Risk maps for ASF outbreak according to the connectivity value

The median connectivity map demonstrated a fair/acceptable ability to binary classify ASF

event records as empty (random point) or as positive wild boar location. The average AUC for

the 100 datasets of random and ASF event points was 0.69 (0.67–0.71). The lowest threshold of

connectivity value corresponding to 0.90 of sensitivity considering all datasets was 0.45x10-2

(min-max). According to this threshold, the derived binary maps resulted in a true positive

rate of 90.02% (1580/1755), which is the percentage of ASF events correctly classified as posi-

tive wild boar location (Fig 4B). The average closest top left threshold was 1.14x10-2 (min-

max), and the corresponding binary map reported a true positive rate of 65.41% (1148/1755)

(Fig 4C). The land cover class with the highest true positive rate was “forest” class (55.44%,

973/1755), followed by “crop” (36.98%, 649/1755), “urban” (7.29%, 128/1755), and “water”

(0.28%, 5/1755).

Discussion

This study performed a high-resolution estimation of the suitability of Northern Italy for wild

boar presence and of the main dispersal corridors, describing the connectivity map as a poten-

tial tool for ASF control and surveillance. The suitability and connectivity maps were obtained

by taking into account topographic, climatic, land cover and anthropological aspects that influ-

ence wild boar behaviour, outlining and summarising the complexity of wild boar ecology in a

single index.

Northern Italy suitability for wild boars

Using input data mainly from open-source databases, the developed suitability maps visually

resembled the pattern already described in previous studies [40, 100], also by season, showing

high-resolution estimations (Fig 3B and Fig B in S1 Fig). In addition to the higher resolution

of the maps presented here compared to those found in the literature [37, 40, 42, 100, 101], the
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influence of each variable on wild boar presence was also detailed (S1 Appendix). The low

average suitability values reported for Northern Italy could be primarily influenced by the

large area of the Po Valley, a wide plain poorly suited for wild boar presence, except for suitable

“islands” at regional parks, and the strip that traces the path of the Po River. The area of the

Northern Apennines and the pre-Alps creates a frame of suitable areas that almost continu-

ously encircles the entire Po Valley (Fig 3B and Fig B in S1 Fig and S2 Fig).

In Northern Italy, wild boars seem to prefer moderate altitudes, below 1000 meters (S1

Appendix), in correspondence with forested areas. The strong anthropization, and the low

vegetative cover of the Po Valley could therefore be the limiting factors for wild boar distribu-

tion in this area. On the contrary, the more flourishing vegetation present in regional parks, as

well as in the area of the Apennines and pre-Alps, could provide food and shelter for wild

Fig 4. Connectivity map and binary risk maps according to different threshold. (A) Map describing landscape connectivity in Northern Italy according to wild boar

ecology, highlighting the main corridors of dispersal. The connectivity value describes the permeability of a grid cell to wild boar movement. The scale was resized

considering the interval 2–98% of the connectivity value distribution, to highlight major corridors. A zoom on ASF affected area is shown. According to different

thresholds of the connectivity value, different binary maps can be obtained: (B) binary risk map with a true positive rate of 90.02%, maximizing the sensitivity of the map

in correctly classifying African swine fever (ASF) events due to ASF virus genotype II. A zoom on ASF wild boar cases is shown; (C) binary risk map with a true positive

rate of 65.41%, respecting the best compromise between sensitivity and specificity in classifying ASF events due to ASF virus genotype II. A zoom on ASF wild boar cases is

shown. Original raster files can be downloaded from S2 File. Base map of Italy in the suitability maps based on the 2024 regional administrative boundaries from the

Italian National Institute of Statistics (https://www.istat.it/).

https://doi.org/10.1371/journal.pone.0317577.g004
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boars, favouring their presence (Fig 3B and Fig B in S1 Fig and S2 Fig). Moreover, these areas

are characterised by agricultural and commercial activities that interface with or are inter-

spersed among wooded areas (e.g., vineyards and olive trees, orchards, chestnut groves). Such

environments could provide advantage for opportunistic and highly adaptable animals like

wild boars [102, 103].

Observed seasonal variations, such as increased suitability for wild boar presence in spring,

summer, and autumn (Fig B in S1 Fig), may be linked to difference in precipitations and

occurrences’ density due to reproductive cycles, food availability, and seasonal hunting regula-

tions. For instance, a greater wild boar density in spring may be associated to higher precipita-

tions which are linked to more food resources [102, 104–106]. Higher wild boar activity in

spring and summer may correspond to the birth of piglets, increased movement in search of

food, and reduced hunting pressure, which typically occurs in autumn and winter [107, 108].

From a management perspective, these findings could inform targeted strategies, such as tim-

ing interventions to optimize hunting schedules, disease surveillance plans, and the implemen-

tation of biosecurity measures. However, also human-related reporting biases may have

shaped the obtained suitability maps [70, 71, 109].

The observed seasonal differences also seem to be only partially supported by the pattern of

confirmed cases of ASF in wild boars (Italian national epidemiological bulletin, https://

storymaps.arcgis.com/stories/9fe6aa3980ca438cb9c7e8d656358f35, accessed on 20th June

2024), which so far has been upward from October to May, and downward from May to Sep-

tember. Whether this pattern of cases is explained by actual higher suitability in the intermedi-

ate seasons (spring and fall), rather than by other factors also accounting for population

turnover and latency times between infection and death, needs further investigation [28].

As any model, suitability maps represent a simplification of reality and are the result of the

variables and presence data included in the study, each with its limitations and potential biases.

A ten-year period was chosen for NDVI and climate variables to emphasize broader landscape

trends in wild boar habitat suitability. This approach offered a stable view of habitat conditions

that is less affected by short-term fluctuations and more reflective of long-term environmental

patterns [41, 42]. However, it may overlook annual fluctuations, especially for NDVI, which

can vary due to climate changes or shifts in land use. The exclusion from the SDM of NDVI

and temperature variables due to their collinearity with other variables, such as topographic

and land cover characteristics, suggests that their variability and influence on wild boar ecol-

ogy are likely captured by more static habitat features in the considered overall and seasonal

time spans. To provide year-specific prediction, each year of wild boar data should be matched

with the corresponding yearly environmental variables when available [62, 110]. Future

research could incorporate this temporal variability for more precise seasonal or overall pre-

dictions of habitat suitability [110].

The greater importance of topographic and land cover variables, besides being compatible

with wild boar ecology, was probably influenced by the scale chosen. Indeed, precipitation is a

variable whose effect tends to be more measurable and significant at lower resolutions, and less

at local scales [111, 112]. Moreover, in this kind of estimation, despite the minimization of the

correlation between the chosen variables, the importance of a variable may be influenced by its

correlation with real drivers of wild boar distribution in Northern Italy that were instead not

included in the model, rather than by its direct contribution. Additionally, limiting the analysis

on Northern Italy, unavoidably distort spatial estimations at the edge (i.e., edge effect), because

of the exclusion of further occurrences or variable values potentially located right across the bor-

der of the study area, which would have provided related information in the model [113, 114].

To address these considerations, future research could explore multi-resolution approaches to
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balance local and broader-scale drivers of distribution, potentially enhancing model accuracy

and applicability for different ecological and management contexts.

The suitability estimates displayed by the maps were also influenced by the occurrence rec-

ords available, as they were biased by an unbalanced sampling effort, given by the heteroge-

neous distribution and activity of data providers (naturalists, researchers, hunters) (Fig 3A and

Fig A in S1 Fig) [70, 71, 109].

In Northern Italy, the discontinuous natural parks (S2 Fig), the heterogeneity of the land-

scape, and the uneven/clustered anthropogenic pressure may have facilitated sampling in areas

more easily accessible to humans, affecting the accuracy of estimates in greener, sloping, and

border areas (e.g., Northern Apennines, and Alps). In regions featured by more homogeneous

landscape and anthropogenic pressure, the estimation of land suitability could return better

and more accurate performances in areas where greater wild boar suitability is expected, as

smaller differences in accessibility would allow the variability associated with ecological factors

to emerge.

Even variations in suitability between seasons were probably dependent more on the differ-

ent sizes and distribution of occurrences than on the variables included. The variable "precipi-

tation" was in fact the only one with a time dimension included in the final models, and it was

among the most important variables only for the winter season. Any explanation of observed

seasonal differences thus remains speculative. Increasing the number of occurrence records,

collected in a homogeneous, complete, and widespread manner both spatially, over the entire

study area, and temporally, could enhance the accuracy of predictions of Northern Italy suit-

ability to the presence of wild boar. Additionally, the incorporation of more variables related

to seasonal aspects (e.g., seasonal variability of food resources) is needed to offer a more com-

prehensive understanding of the wild boar’s spatial behaviour across seasons, which in this

study remained obscure. A more dynamic approach adopting also daily or weekly variables,

instead of static mean, together with VHF (very high frequency) radio-tracking data could vali-

date here presented findings, and further enhance the knowledge on wild boar habitat prefer-

ences across diverse landscapes and seasonal conditions [62, 110, 115].

The evaluation of different models allowed the identification of the best-performing one for

the specific dataset and objectives of the study. The analysis demonstrated that not all models

yield equivalent results. Despite their strong predictive performance, RF and XGBOOST algo-

rithms were not selected for the final analysis. These algorithms exhibited performance metrics

approaching or equal to 1 (S3 Table), which, while mathematically optimal, warrant careful

interpretation in ecological contexts [53, 96]. Near-perfect metrics could indicate overfitting,

suggesting that the models may have captured noise patterns specific to the training data rather

than true ecological relationships. Additionally, RF and XGBOOST introduce greater model

complexity compared to GBM, which can increase the risk of overfitting and reduce results

interpretability [96]. Such overfitting could ultimately limit model transferability and practical

application in novel scenarios [53, 97–99]. The minimization of sampling bias through the

choice of pseudoabsences as described in [70], the reduction of occurrences density, and the

final choice of a model (GBM) with less overfitting behaviour and excellent predictive capabili-

ties even from presence-only data, still resulted in optimal estimation performance for all con-

sidered scenarios (Table 1) [93–95]. The obtained suitability maps thus contribute to a deeper

understanding of the real distribution of wild boar in the territory. The final suitability maps

were an ensemble prediction from multiple runs of an individual algorithm (GBM). Future

research could explore the potential benefits of an ensemble modelling combining different

algorithms [116, 117], leveraging the strengths of each, to potentially provide more robust esti-

mations on wild boar distribution [37, 49].
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Northern Italy main corridors of wild boar dispersal

The suitability pattern was largely traced from the connectivity map, highlighting the main

corridors of dispersal of the species, and thus the potential preferential routes of spread of

ASFV genotype II in Northern Italy (Fig 4A). Compared with the suitability map, the connec-

tivity estimation has the advantage of attributing a higher probability of being crossed/reached

to areas accessible by multiple pathways, according to circuit theory [81]. This approach

returns a continuous estimate of the main dispersal corridors accounting for the complexity of

animal movement, showing the connection between the most suitable patches.

The presence of high-traffic corridors (i.e., routes with continuous high connectivity values

that facilitate the movement of wild boars) crossing all of Northern Italy, poses a significant

threat for the spread of ASFV genotype II to the wild and domestic pig populations. These cor-

ridors are found in both the highlands (mainly the Northern Apennines and pre-Alps) and the

lowlands (Po valley and regional parks) (Fig 4A and S2 Fig). The high connectivity of these

corridors, both in isolated high and low-lying lands and in areas close to urban settlements,

increases the risk of contact among wild boars and between wild boar and humans. This

heightens the potential for undetected circulation in areas that are more difficult to monitor

for wild boar carcasses, as well as for long-distance spread of ASFV due to human activity

[18, 20]. Furthermore, the high connectivity observed within regional parks suggests them as

potential receptacles for ASFV. This makes regional parks a primary focus for enhanced sur-

veillance and wild boar population density control efforts.

The connection of estimated corridors with currently infected areas (Fig 4) severely high-

lights the urgent need to improve control, surveillance and biosecurity strategies [118, 119].

Future research could examine the alignment of these wild boar dispersal corridors with exist-

ing farm locations to better understand transmission risks and refine prevention strategies.

Wild boar search is usually focused in wooded areas, and with a good vegetation cover,

which may be more intuitive by human perspective. However, the capacity of forest land cover

class to correctly classify ASF event locations close to a random classification, might suggest

that a different approach should be adopted. Conversely, the connectivity map demonstrated a

strong ability in accurately identifying ASF event outbreak locations (Fig 4B and 4C). ASFV

genotype II positive wild boars tended to locate at high levels of connectivity (compared with

random points), and the true positive rate of the binary risk maps was higher than that

achieved using only land cover classes. These findings suggest the high potential of the

obtained connectivity map as a significant tool for controlling the spread of ASFV genotype II

across the territory. The binary maps provided here are just an example of the possible out-

come that can be obtained. A more appropriate threshold can be set as needed, resulting in a

new binary risk map that accounts for the available resources and evaluated hazards.

However, it is important to take note that the carcass detection/surveillance activity is likely

to have been influenced by previous ASF findings in wild boars, which may have targeted the

subsequent search by veterinary/forestry services in similar areas [92], overestimating the clas-

sification power of the connectivity map. This poses an unavoidable bias inherent in the data

source. On the other hand, the different nature of occurrence input data (based on availability,

convenience data) compared to ASFV genotype II positive wild boar coordinates, which

instead come from targeted research as described by the ASF control plans [80], may have lim-

ited binary maps classification performance. In future studies, if the epidemic front progresses,

and more locations of ASF events become available, positive wild boar records could be used

as presence data input, while the suitability and/or connectivity maps could be included as pre-

dictor variables, to model “deathbeds” of ASFV affected wild boars [92]. Additionally, the inte-

gration of the suitability and connectivity maps with other factors driving the disease
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spreading as model variables, would allow the prediction of the epidemic directionality [120],

both within the wild population and from wild boar to domestic pig.

Implication for ASF management and surveillance strategies

Despite the aforementioned limitations, mainly related to the nature of input data, both the

suitability map and connectivity map developed in this study could serve as supporting

tools to be integrated into current ASF epidemic management strategies. Briefly, based on

the approach of regionalisation and according to the Commission Implementing Regula-

tion (EU) 2021/605, when an ASF case is confirmed in a wild boar in the territory, an

infected zone (later defined as restriction zone II) and a surrounding surveillance zone

(restriction zone I) are defined, following administrative boundaries. In these areas, active

search for wild boar carcasses is performed, also with the help of dogs and drones, ideally

removing infected carcasses every two weeks [80]. In fact, it is estimated that transmission

between wild boar and infected carcass does not occur until 12 to 15 days [121, 122]. How-

ever, this pace is hardly maintained, except at the onset of the epidemic when its expansion

is still limited.

Currently, there are no defined rules in institutional reports/regulation on where to

search for carcasses to increase detection rates. Additionally, people available to actively

look for carcasses are often insufficient, resulting in the search being concentrated in slop-

ing areas where high wild boar densities are estimated, and in declivous areas [80]. How-

ever, to the best of authors’ knowledge, an up-to-date, local and accurate estimate of wild

boar density is often not available [37]. Studies performed in other countries suggest young,

broad, moist, and cool forests, or grasslands with significant vegetation as preferred habitats

for diseased wild boars, probably due to high fever, or because perceived as safer environ-

ments [92, 123]. Similar studies should be performed also in Italy, to assess if moribound

wild boars behaviour is the same observed in other countries or if it is determined by local

ecological drivers. The evidence on local deathbed preferences could be integrated with the

risk maps obtained in this study to improve early detection of wild boar carcasses. Together

with the active search for carcasses, physical barriers (natural or artificial) are built/rein-

forced to contain the progression of the epidemic front. However, this requires time-con-

suming bureaucracy often incompatible with the rapidity of the phenomenon [33]. Both

suitability map and connectivity map could provide valuable support, to efficiently identify

areas feature by a higher animal flow and optimize resources to, control wild boar popula-

tion and disease spread. Indeed, the suitability score could provide an indirect indication of

the likely wild boar density, when data are not available. The hunting activity should be

focused on highest suitable area, to preventively reduce wild boar population in areas not

yet infected [124–126]. However, culling strategies should be properly designed, since hunt-

ing pressure could favour wild boar migrations, increasing the risk of wild boar dispersal in

ASF affected areas, and therefore ASF spreading [127, 128].

In tandem, the connectivity map would recommend on which zones/paths to target and

prioritize carcass search and barrier construction of wild boar dispersal corridors. Primary dis-

ruption of corridors with higher probability of passage (higher connectivity value) through

construction and reinforcement of man-made (e.g., fences, highways) or natural (e.g., rivers)

barriers would efficiently contain the disease spread. On the other hand, the impact on other

species should not be ignored, as landscape connectivity guarantees their preservation, migra-

tion, biodiversity, and gene flow [129, 130]. Veterinary epidemiological services should work

synergistically with conservation experts to find a compromise that can preserve both the ecol-

ogy of local species and animal health.
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Conclusion

The maps of suitable habitats and major corridors of wild boar spreading made available in

this study represent a significant step forward in understanding and controlling ASF in North-

ern Italy. Having estimated the suitability and connectivity of the territory from wild boar

presence data, not related to disease outbreaks, make the maps obtained in this study transver-

sally applicable in other investigations, related to other transmissible diseases (e.g., Aujeszky

disease, Classical swine fever, Tuberculosis, etc.), as well as in other research fields. Similarly,

the replication of the framework here adopted in other Italian regions and other countries,

necessarily represents a future perspective to act in prevention, especially considering the wild

boar population density, and the related food/tourism market in some regions (e.g., Tuscany).

The fruitful use of open-source presence data, collected by citizen associations and naturalists,

demonstrates how citizen science is a promising approach that even indirectly could improve

veterinary surveillance. Additionally, the application of species distribution methods, com-

monly used in the field of ecology and conservation, for the development of tools aimed at

enhancing control and surveillance of diseases of veterinary concern, attests the potential of

multidisciplinary approaches in addressing present and future challenges.
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26. Podgórski T, Borowik T, Łyjak M, Woźniakowski G. Spatial epidemiology of African swine fever: Host,

landscape and anthropogenic drivers of disease occurrence in wild boar. Prev Vet Med. 2020;177.

https://doi.org/10.1016/j.prevetmed.2019.104691 PMID: 31122672
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30. Morelle K, Bubnicki J, Churski M, Gryz J, Podgórski T, Kuijper DPJ. Disease-Induced Mortality Out-

weighs Hunting in Causing Wild Boar Population Crash After African Swine Fever Outbreak. Front Vet

Sci. 2020; 7: 515607. https://doi.org/10.3389/fvets.2020.00378 PMID: 32850993

31. Niemi JK. Impacts of African Swine Fever on Pigmeat Markets in Europe. Front Vet Sci. 2020; 7:

560588. https://doi.org/10.3389/fvets.2020.00634 PMID: 33062656

32. Giammarioli M, Alessandro D, Cammà C, Masoero L, Torresi C, Marcacci M, et al. Molecular Charac-

terization of the First African Swine Fever Virus Genotype II Strains Identified from Mainland Italy,

2022. Pathogens. 2023; 12. https://doi.org/10.3390/pathogens12030372 PMID: 36986294

33. Pavone S, Iscaro C, Dettori A, Feliziani F. African Swine Fever: The State of the Art in Italy. Animals

2023, Vol 13, Page 2998. 2023; 13: 2998. https://doi.org/10.3390/ani13192998 PMID: 37835604

34. Iscaro C, Dondo A, Ruocco L, Masoero L, Giammarioli M, Zoppi S, et al. January 2022: Index case of

new African Swine Fever incursion in mainland Italy. Transbound Emerg Dis. 2022; 69: 1707–1711.

https://doi.org/10.1111/tbed.14584 PMID: 35511712

35. Dei Giudici S, Loi F, Ghisu S, Angioi PP, Zinellu S, Fiori MS, et al. The Long-Jumping of African Swine

Fever: First Genotype II Notified in Sardinia, Italy. Viruses. 2023; 16. https://doi.org/10.3390/

v16010032 PMID: 38257733

36. Salazar LG, Rose N, Hayes B, Hammami P, Baubet E, Desvaux S, et al. Effects of habitat fragmenta-

tion and hunting activities on African swine fever dynamics among wild boar populations. Prev Vet

Med. 2022; 208: 105750. https://doi.org/10.1016/j.prevetmed.2022.105750 PMID: 36054970

37. ENETwild consortium, Croft S, Smith G, Acevedo P, Vicente J. Wild boar in focus: Review of existing

models on spatial distribution and density of wild boar and proposal for next steps. EFSA Supporting

Publications. 2018; 15. https://doi.org/10.2903/sp.efsa.2018.en-1490

38. Elith J, Leathwick JR. Species distribution models: Ecological explanation and prediction across space

and time. Annu Rev Ecol Evol Syst. 2009; 40: 677–697. https://doi.org/10.1146/ANNUREV.

ECOLSYS.110308.120159/1

39. Bosch J, Peris S, Fonseca C, Martinez M, de La Torre A, Iglesias I, et al. Distribution, abundance and

density of the wild boar on the Iberian Peninsula, based on the CORINE program and hunting statis-

tics. 2012; 61: 138–151. https://doi.org/10.25225/FOZO.V61.I2.A7.2012

40. Alexander NS, Massei G, Wint W. The European Distribution of Sus Scrofa. Model Outputs from the

Project Described within the Poster–Where are All the Boars? An Attempt to Gain a Continental Per-

spective. Open Health Data. 2016; 4. https://doi.org/10.5334/OHD.24

41. Croft S, Chauvenet ALM, Smith GC. A systematic approach to estimate the distribution and total abun-

dance of British mammals. PLoS One. 2017; 12: e0176339. https://doi.org/10.1371/journal.pone.

0176339 PMID: 28658248

42. Pittiglio C, Khomenko S, Beltran-Alcrudo D. Wild boar mapping using population-density statistics:

From polygons to high resolution raster maps. PLoS One. 2018; 13. https://doi.org/10.1371/journal.

pone.0193295 PMID: 29768413

PLOS ONE Habitat suitability mapping and landscape connectivity analysis for wild boars in Northern Italy

PLOS ONE | https://doi.org/10.1371/journal.pone.0317577 January 30, 2025 21 / 26

https://doi.org/10.2478/ACVE-2023-0001
https://doi.org/10.2903/j.efsa.2022.7290
http://www.ncbi.nlm.nih.gov/pubmed/35515335
http://eagri.cz/public/web/mze/legislativa/pravni-predpisy-mze/tematicky-prehled/Legislativa-MZe_uplna-zneni_zakon-
http://eagri.cz/public/web/mze/legislativa/pravni-predpisy-mze/tematicky-prehled/Legislativa-MZe_uplna-zneni_zakon-
https://doi.org/10.3201/eid2506.190286
https://doi.org/10.1016/j.prevetmed.2019.104691
http://www.ncbi.nlm.nih.gov/pubmed/31122672
https://doi.org/10.1111/tbed.13690
http://www.ncbi.nlm.nih.gov/pubmed/32564507
https://doi.org/10.3390/v11090866
http://www.ncbi.nlm.nih.gov/pubmed/31533266
https://doi.org/10.2903/j.efsa.2023.8016
https://doi.org/10.2903/j.efsa.2023.8016
http://www.ncbi.nlm.nih.gov/pubmed/37223755
https://doi.org/10.3389/fvets.2020.00378
http://www.ncbi.nlm.nih.gov/pubmed/32850993
https://doi.org/10.3389/fvets.2020.00634
http://www.ncbi.nlm.nih.gov/pubmed/33062656
https://doi.org/10.3390/pathogens12030372
http://www.ncbi.nlm.nih.gov/pubmed/36986294
https://doi.org/10.3390/ani13192998
http://www.ncbi.nlm.nih.gov/pubmed/37835604
https://doi.org/10.1111/tbed.14584
http://www.ncbi.nlm.nih.gov/pubmed/35511712
https://doi.org/10.3390/v16010032
https://doi.org/10.3390/v16010032
http://www.ncbi.nlm.nih.gov/pubmed/38257733
https://doi.org/10.1016/j.prevetmed.2022.105750
http://www.ncbi.nlm.nih.gov/pubmed/36054970
https://doi.org/10.2903/sp.efsa.2018.en-1490
https://doi.org/10.1146/ANNUREV.ECOLSYS.110308.120159/1
https://doi.org/10.1146/ANNUREV.ECOLSYS.110308.120159/1
https://doi.org/10.25225/FOZO.V61.I2.A7.2012
https://doi.org/10.5334/OHD.24
https://doi.org/10.1371/journal.pone.0176339
https://doi.org/10.1371/journal.pone.0176339
http://www.ncbi.nlm.nih.gov/pubmed/28658248
https://doi.org/10.1371/journal.pone.0193295
https://doi.org/10.1371/journal.pone.0193295
http://www.ncbi.nlm.nih.gov/pubmed/29768413
https://doi.org/10.1371/journal.pone.0317577
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75. Thuiller W, Lafourcade B, Engler R, Araújo MB. BIOMOD–a platform for ensemble forecasting of spe-

cies distributions. Ecography. 2009; 32: 369–373. https://doi.org/10.1111/J.1600-0587.2008.05742.X

76. Stockwell D, Peters D. The GARP modelling system: problems and solutions to automated spatial pre-

diction. International Journal of Geographical Information Science. 1999; 13: 143–158. https://doi.org/

10.1080/136588199241391

77. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic

(ROC) curve. Radiology. 1982; 143: 29–36. https://doi.org/10.1148/radiology.143.1.7063747 PMID:

7063747

78. Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence,

kappa and the true skill statistic (TSS). Journal of Applied Ecology. 2006; 43: 1223–1232. https://doi.

org/10.1111/J.1365-2664.2006.01214.X

79. Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A. Evaluating the ability of habitat suitability models

to predict species presences. 2006. https://doi.org/10.1016/j.ecolmodel.2006.05.017

80. Guberti Khomenko, Masiulis Kerba. African swine fever in wild boar—Ecology and biosecurity Second

edition. FAO Animal Production and Health Manual No 28 Rome, FAO, World Organisation for Animal

Health and European Commission. [cited 24 Jun 2024]. Available: https://doi.org/10.4060/cc0785

81. Anantharaman R, Hall K, Shah VB, Edelman A. Circuitscape in Julia: High Performance Connectivity

Modelling to Support Conservation Decisions. JuliaCon Proceedings. 2020; 1: 58. https://doi.org/10.

21105/JCON.00058/STATUS.SVG)

82. Capinha C, Larson ER, Tricarico E, Olden JD, Gherardi F. Effects of climate change, invasive species,

and disease on the distribution of native European crayfishes. Conserv Biol. 2013; 27: 731–740.

https://doi.org/10.1111/cobi.12043 PMID: 23531056

83. Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A. Predicting species distributions

from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J Bio-

geogr. 2007; 34: 102–117. https://doi.org/10.1111/J.1365-2699.2006.01594.X

84. Ramirez-Reyes C, Bateman BL, Radeloff VC. Effects of habitat suitability and minimum patch size

thresholds on the assessment of landscape connectivity for jaguars in the Sierra Gorda, Mexico. Biol

Conserv. 2016; 204: 296–305. https://doi.org/10.1016/J.BIOCON.2016.10.020

85. Fattebert J, Baubet E, Slotow R, Fischer C. Landscape effects on wild boar home range size under

contrasting harvest regimes in a human-dominated agro-ecosystem. Eur J Wildl Res. 2017;63. https://

doi.org/10.1007/S10344-017-1090-9

86. ENETWILD-consortium, Pascual-Rico R, Acevedo P, Apollonio M, Blanco-Aguiar J, Body G, et al.

Wild boar ecology: a review of wild boar ecological and demographic parameters by bioregion all over

Europe. EFSA Supporting Publications. 2022;19. https://doi.org/10.2903/sp.efsa.2022.EN-7211

87. Wang YH, Yang KC, Bridgman CL, Lin LK. Habitat suitability modelling to correlate gene flow with

landscape connectivity. Landsc Ecol. 2008; 23: 989–1000. https://doi.org/10.1007/S10980-008-9262-

3/TABLES/3

PLOS ONE Habitat suitability mapping and landscape connectivity analysis for wild boars in Northern Italy

PLOS ONE | https://doi.org/10.1371/journal.pone.0317577 January 30, 2025 23 / 26

https://doi.org/10.1111/JBI.13734
https://doi.org/10.1111/JBI.13734
https://doi.org/10.32614/CRAN.PACKAGE.HH
https://doi.org/10.1111/j.1461-0248.2005.00792.x
http://www.ncbi.nlm.nih.gov/pubmed/34517687
https://doi.org/10.1016/j.ecolind.2022.109487
https://doi.org/10.1016/j.ecolind.2022.109487
https://doi.org/10.1890/07-2153.1
http://www.ncbi.nlm.nih.gov/pubmed/19323182
https://doi.org/10.1023/A%3A1021374009951/METRICS
https://doi.org/10.1890/ES13-00066.1
https://doi.org/10.1007/s10980-021-01371-y
https://doi.org/10.1007/s10980-021-01371-y
https://doi.org/10.1111/J.1600-0587.2008.05742.X
https://doi.org/10.1080/136588199241391
https://doi.org/10.1080/136588199241391
https://doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/pubmed/7063747
https://doi.org/10.1111/J.1365-2664.2006.01214.X
https://doi.org/10.1111/J.1365-2664.2006.01214.X
https://doi.org/10.1016/j.ecolmodel.2006.05.017
https://doi.org/10.4060/cc0785
https://doi.org/10.21105/JCON.00058/STATUS.SVG
https://doi.org/10.21105/JCON.00058/STATUS.SVG
https://doi.org/10.1111/cobi.12043
http://www.ncbi.nlm.nih.gov/pubmed/23531056
https://doi.org/10.1111/J.1365-2699.2006.01594.X
https://doi.org/10.1016/J.BIOCON.2016.10.020
https://doi.org/10.1007/S10344-017-1090-9
https://doi.org/10.1007/S10344-017-1090-9
https://doi.org/10.2903/sp.efsa.2022.EN-7211
https://doi.org/10.1007/S10980-008-9262-3/TABLES/3
https://doi.org/10.1007/S10980-008-9262-3/TABLES/3
https://doi.org/10.1371/journal.pone.0317577


88. Duflot R, Avon C, Roche P, Bergès L. Combining habitat suitability models and spatial graphs for more

effective landscape conservation planning: An applied methodological framework and a species case

study. J Nat Conserv. 2018; 46: 38–47. https://doi.org/10.1016/j.jnc.2018.08.005
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