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a b s t r a c t 

Due to its highly contagious nature, Avian Influenza (AI) is 

considered an animal health emergency affecting commercial 

sector and wild bird populations. Several genome sequencing 

databases have been created to help researchers understand 

how AI viruses evolve, spread, and cause disease. However, 

for a global epidemic monitoring approach, they need to be 

combined to public health surveillance systems, the well- 

one being EMPRES-i from the World Organisation for Animal 

Health (WOAH) and the Food and Agriculture Organization of 

the United Nations (FAO). 

This paper presents a new AI dataset, in which EMPRES-i is 

enriched thanks to the genome sequence data of Avian In- 

fluenza cases affecting bird species from 2012 to 2021, pub- 

licly provided by the Bacterial and Viral Bioinformatics Re- 

source Center (BV-BRC). This dataset is obtained by automati- 

cally linking sequence information in BV-BRC to the AI events 

in EMPRES-i, which results in “putatively ” linked events be- 

tween these two sources. The collected data is structured by 

nature, but it is preprocessed and normalized for the purpose 

of high-quality data linkage. Moreover, several data linkage 

strategies and missing information handling are introduced. 
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To show the usefulness of our dataset, we quantitatively eval- 

uate the proposed strategies in randomly sampled events and 

present in the end a diffusion network inference task. 

© 2025 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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pecifications Table 

Subject Computer Science: Information System 

Specific subject area Linked Avian Influenza Epidemiological and Genomic Data 

Type of data Tabular data (∗ .csv). Raw and Standardized. 

Data collection The surveillance data were retrieved from EMPRES-i and the sequence 

information from BV-BRC. Disease: Avian Influenza, Host: Birds, Study period: 

2012–2021. 

Data source location The data are hosted on the INRAE Dataverse in the context of the MOOD 

(MOnitoring Outbreaks for Disease surveillance in a data science context) 

project 1 . 

Data accessibility Repository name: Data INRAE (Dataverse) Data identification number: doi: 

10.57745/JNA7N9 Direct URL to data: https://doi.org/10.57745/JNA7N9 

Related research article None. 

. Value of the Data 

• This dataset contributes to the available resources in the field of Avian Influenza surveillance

and epidemic intelligence. 

• It completes the genetic information of the spatio-temporal AI events. 

• It is useful for epidemiologists and computer scientists for studying AI transmission dynam-

ics. 

• It can be used for evaluation or training purposes for classification and network inference

tasks. 

. Background 

The emergence and spread of Avian Influenza (AI) has serious consequences for animal health

nd a substantial socio-economic impact for agriculture. For instance, the 2021–2022 season

ave witnessed the largest observed highly pathogenic avian influenza (HPAI) cases in Europe

o far, with a total of 2467 outbreaks in poultry, 3573 HPAI events in wild birds, and 48 million

irds culled in the affected establishments 2 . Due to this highly contagious nature, it is critical to

onitor the ongoing AI cases. To this aim, epidemic intelligence has been used to remedy this

nimal health emergency. 

For a global epidemic monitoring approach, several national and international surveillance

ystems are used, the well-known one being the EMPRES-i database from the World Organisa-

ion for Animal Health (WOAH) and the Food and Agriculture Organization of the United Nations

FAO) [1] . This database regularly collects structured and verified official animal health threats,

ereafter referred to as epidemiological events (or events for short), through routine national

urveillance systems and public health authorities. As a result, it is a well-populated official

atabase for Avian Influenza and has been often used as reference gold standard in the litera-

ure [2–4] . 
1 https://mood-h2020.eu/ . 
2 http://www.ecdc.europa.eu/en/news-events/2021-2022-data-show-largest-avian-flu-epidemic-europe-ever . 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.57745/JNA7N9
https://doi.org/10.57745/JNA7N9
https://mood-h2020.eu/
http://www.ecdc.europa.eu/en/news-events/2021-2022-data-show-largest-avian-flu-epidemic-europe-ever
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Table 1 

Statistics on the two datasets Dstrict and Drelaxed . The columns represent all possible AI strains found in DE MPRE S−i , grouped 

by the H subtype for simplicity, and the rows correspond to yearly periods from 2012 to 2021. The last column (resp. 

row) summarizes the statistics by row (resp. column). Finally, each entry in the table has the form of x/y/z, in which x , 

y and z represent the number of events in Dstrict , Drelaxed and DE MPRE S−i , respectively. 

Year H3 H5 H6 H7 H9 H10 Total 

2012 0/0/0 231/544/732 0/0/0 6/42/52 185/187/192 0/0/0 422/773/976 

2013 0/0/0 164/474/688 0/0/0 273/347/430 172/172/180 1/1/1 610/994/1,299 

2014 0/0/0 263/964/1,266 0/0/0 600/690/705 24/25/26 2/2/3 889/1,681/2,0 0 0 

2015 0/0/0 992/2,662/3,062 0/0/0 87/303/312 16/16/17 0/0/0 1,095/2,981/3,391 

2016 0/0/0 453/1,54 8/2,04 9 0/0/0 102/192/234 9/9/21 0/0/0 564/1,749/2,304 

2017 0/0/0 561/2,360/3,449 0/0/1 266/1,035/1,040 4/4/6 0/0/0 831/3,399/4,496 

2018 0/0/0 162/403/780 0/0/0 9/18/31 4/4/4 0/0/0 175/425/815 

2019 7/7/7 29/86/239 0/0/0 1/8/62 1/1/1 0/0/0 31/95/309 

2020 0/0/0 89/414/1,554 0/0/0 1/3/44 0/0/0 0/0/0 90/417/1,598 

2021 0/0/0 89/785/3,723 0/0/0 1/1/7 0/0/0 0/0/0 90/786/3,729 

Total 7/7/7 3,033/10,240/17,542 0/0/1 1,346/2,639/2,917 415/418/447 3/3/4 4,797/13,300/20,918 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Currently, EMPRES-i does not provide any linkage between its epidemiological events and the

corresponding genome sequence information. However, combining epidemiological information 

and geomapping in the analysis of AI can contribute to a better understanding and description

of AI epidemiology. In the literature, [5] has already proposed in 2013 to enhance the EMPRES-i

database for H5N1 and H7N9 serotypes, but their genetic module is not operational anymore. For

this reason, we propose in this paper a new AI dataset, in which EMPRES-i is enriched with the

genome sequence data of AI cases, publicly provided by the Bacterial and Viral Bioinformatics

Resource Center (BV-BRC) [6] . This new dataset concerns the AI events in EMPRES-i, affecting

bird species from 2012 to 2021. It is worth highlighting that the AI host types (e.g. mammals)

other than birds are not in scope of this work. 

3. Data Description 

Our goal in this work is to enrich the AI cases in the EMPRES-i database DE MPRE S−i with ge-

netic information provided by the BV-BRC database DBV −BRC . As explained later in Section 3.2 ,

we employ two linkage strategies to associate the genetic information in DBV −BRC to DE MPRE S−i :

1-to-1 and 1-to-many linking. In the first one, a genome sequence can be associated to only one

EMPRES-i event, whereas this unicity constraint is omitted in the second one in order that a

genome sequence can be linked to multiple EMPRES-i events. The first (resp. second) strategy is

more strict (resp. relaxed) and always produces less (resp. same or more) linked data compared

to the other strategy. Ideally, the 1-to-1 strategy must be the only choice for such a task. How-

ever, due to possibly erroneous and imperfect information in our databases, it might be bene-

ficial to use in practice the 1-to-many strategy to have more linked cases between DBV −BRC and

DE MPRE S−i , depending on the application at hand. Finally, the application of these two strategies

results in two datasets, that we call Dstrict and Drelaxed , respectively. We detail their distributions

per year and disease serotype in Table 1 . In total, Dstrict and Drelaxed contain 4797 and 13,300

events, respectively. 

It is worth mentioning that both Dstrict and Drelaxed are not the fusion of the AI cases from

DE MPRE S−i and DBV −BRC , rather they are directly related to the EMPRES-i database. For this rea-

son, they contain only the serotypes and avian host names available in DE MPRE S−i (see the online

supplementary material for all the available information). Although there are some discrepancies

in the disease/host focus of both databases and they are therefore complementary (see the on-

line supplementary material for more details and comparative results), merging them to obtain

a single large AI database is not in scope of this work. 
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Fig. 1. Workflow regarding our data processing and normalization tasks applied to the events of BV-BRC. 
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. Experimental Design, Materials and Methods 

This section details how we obtain our final datasets Dstrict and Drelaxed by using data nor-

alization ( Section 3.1 ) and data linkage strategies ( Section 3.2 ). 

.1. Data processing and normalization 

In this section, we describe the data processing and normalization tasks applied to DBV −BRC ,

s illustrated in Fig. 1 . These tasks are required for data linkage explained later in Section 3.2 .

ere, the data processing operations aim to clean and reformat the raw entries, and to complete

he missing information, if possible. These are essential operations, because raw entries can be

ometimes problematic, as illustrated with an example in Table 2 . 

For the normalization task, we use the same normalization operations used in [4] , applied

or DE MPRE S−i . This task consists in normalizing the attributes of each event by transforming a

aw text into one of well-defined taxonomy classes (i.e. hierarchical representation), assuming

hat the events are defined as in Section 3.1.1 . Concretely, these processing and normalizing op-

rations concern the spatial ( Section 3.1.2 ), temporal ( Section 3.1.3 ), disease ( Section 3.1.4 ) and

ost ( Section 3.1.5 ) information of the events in DBV −BRC . 

.1.1. Event definition 

We define an event throughout this work as the detection of the AI virus for a specific

ost at a specific date and in a specific location. Moreover, we also consider its genetic in-

ormation, when available. For instance, this information is available for BV-BRC and our final

atasets Dstrict and Drelaxed , but not for EMPRES-i. All these different information constitute the
Table 2 

Example of raw texts associated with an isolate record in DBV−BRC regarding its spatial, temporal, disease and host infor- 

mation. These information can be sometimes problematic, as illustrated in this example. For the sake of completeness, 

we list here all possible issues with the raw texts. 1) Spatial: A region information can be provided with an ISO or 

ADM1 code. For instance, in this example the code ENG correspond to England. Furthermore, when several spatial at- 

tributes are provided, they might not be ordered in a hierarchical manner. For instance, in this example Skelmersdale 

is a town in England . Therefore, it must be placed after England in order to respect the hierarchal order. 2) Temporal: 

This information can be partially complete. For instance, in this example the day information is missing. 3) Disease: 

This information can be partially complete. For instance, in this example the N subtype information is missing (e.g. the 

N1 part in H5N1). 4) Host: This information can be very detailed (e.g. with gender and age) and can have multiple host 

keywords. For instance, in this example the keywords mallard, duck and bird are found in the same description. 

Location Date Disease Host Isolate 

United Kingdom, 

Skelmersdale, ENG 

03–2021 H5 mallard duck; bird; gender 

Female; age Adult 

{PB1: 11320.124852, 

PB2: 11320.124884} 
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Table 3 

Normalized event representation in a hierarchical manner for the raw texts of an isolate record illustrated in Table 2 

after the event normalization task is applied (see Section 3.1 for more details). For the sake of simplicity, we represent 

the isolate information as an additional event attribute, although it is disease-related information. 

Hierarchy level Location Date Disease Host Isolate 

1 Europe 2021 avian flu aves (bird) {PB1: 

11320.124852, PB2: 

11320.124884} 

2 United Kingdom 03–2021 H7 neognathae 

3 England week 13 H7N9 galloanserae 

4 Lancashire 31-03-2021 anseriformes 

5 West Lancashire anatidae 

6 Skelmersdale anatinae 

7 anas (duck) 

8 anas platyrhynchos 

(mallard duck) 

Table 4 

Compact view of the normalized event in Table 3 . Each column corresponds to an event attribute. We show in these 

columns only the information available at the finest-grained level. 

Location Date Disease Host Isolate 

Skelmersdale 31-03-2021 H7N9 serotype mallard duck {PB1: 11320.124852, PB2: 11320.124884} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

attributes of an event. Note that in an event, a location is expressed as the names of polygons

(e.g. country or city names), but its spatial coordinates can be easily retrieved through a geocod-

ing tool thanks to our normalization step (see Section 3.1.2 ). Moreover, the genetic information

in DBV −BRC is organized as virus isolates. An isolate is the name for a virus that we have isolated

from an infected host. In an AI isolate, there are in total eight segments: PB1 (polymerase ba-

sic 1), PB2 (polymerase basic 2), PA (polymerase acidic), HA (hemagglutinin), NP (nucleoprotein), NS

(nonstructural protein), NA (neuraminidase) and M (matrix protein) [7] . However, in some isolates

in DBV −BRC , it is possible to have only some of these segments, which gives the partial view of an

isolate. For instance, in the example of Table 2 , only the segments PB1 and PB2, out of eight, are

present. Note that we even make use of these partial isolates in data linkage strategies explained

in Section 3.2 . 

For comparison purposes, the attributes of an event are usually normalized. This normal-

ization step allows representing an event attribute in a hierarchical manner, thanks to well-

defined hierarchical taxonomy classes. For instance, we obtain the normalized event illustrated

in Table 3 , after the event normalization task is applied to the raw entries in Table 2 . Note that

each event attribute can have a different hierarchical level. For the sake of compactness and sim-

plicity, we show in this work only the information available at the finest-grained level for each

event attribute. For instance, the compact view of the normalized event in Table 3 is illustrated

in Table 4 . 

4.1.2. Spatial information 

Each AI case in DBV −BRC has the spatial information. But, this information can be at different

spatial scale from one case to another (country, city, etc). Next, we describe our spatial entity

disambiguation and normalization steps. 

First, we need to perform spatial entity disambiguation. Indeed, due to the hierarchical nature

of this information, some values can be ambiguous, because there is not any rule regarding the

attribute order. For instance, the city information can randomly be preceded or succeeded by its

region name (see Table 2 for an example). This makes the normalization task difficult. Therefore,
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e use three geocoding tools (ArcGIS 3 , Nominatim 

4 , GeoNames 5 ) to solve this attribute order

ssue. The goal is not to normalize spatial entities, rather identifying which part of the text

orresponds to spatial entity attributes. For instance, after solving the attribute order issue in

able 2 , we find out that Skelmersdale is a town, which is contained in England. 

Then, we perform the normalization of spatial entities. This task consists in assigning ge-

graphic coordinates to spatial entities. In this work, we perform this task with the gazetteer

eoNames, as done in [4] . For a given query of spatial entity, GeoNames outputs a ranked list of

ost appropriate geographic coordinates associated with the input text. We simply take the first

esult, associated with the desired country name. For instance, if GeoNames proposes two re-

ults for Skelmersdale with two different country information (e.g. United Kingdom and Sweden ),

hen we keep the result with United Kingdom , which is the desired country name according to

able 2 . 

.1.3. Temporal information 

Each AI case in DBV −BRC has also the collected date information, which is in the form of YYYY-

M-DD . However, this information in several cases is partially complete, in that the day and/or

onth information is missing. We handle these incomplete dates with two strategies. If the

emporal information only misses the day attribute, we simply consider it the first day of its

onth. Otherwise, when both the day and month attributes are missing, we duplicate the event

2 times, one for each month. The last operation aims to ease the data linkage process between

BV −BRC and DE MPRE S−i . Finally, we normalize the temporal expressions according to the TIMEX3

nnotation standard. 6 

.1.4. Disease information 

The serotype information of some AI cases in DBV −BRC are partially completed, for instance H5

r N1 instead of H5N1. To make the data at hand more available in data linkage, we estimate

heir exact serotype information, thanks to our auxiliary database DGS of isolate similarity scores,

btained from all pairs of events in DBV −BRC . This DGS auxiliary database is more detailed later

n Section 3.2 . Concretely, for a given event with partial serotype information, we first take from

GS the isolate similarity scores between the isolate in question and most likely other isolates,

hen the isolate with highest similarity score determine its exact serotype. For instance, if the

erotype is H5, then we select in DGS all isolates with the H5 subtype (e.g. H5N1, H5N2, etc.). We

ormalize these disease values with custom taxonomy classes in order to group the serotypes

ithin the same H subtype (e.g. H5N1 and H5N2 are grouped for H5). 

.1.5. Host information 

The host information can be very detailed (e.g. with gender and age). For this reason, we

elect only avian names through the NCBI Taxonomy database. In the end, an AI case in DBV −BRC 

an have multiple host keywords extracted (see Table 2 for an example). Then, for each AI case,

e normalize these host keywords against the NCBI Taxonomy database [8] , using a manually

omposed table of species name synonyms. Then, we keep the host name, which is at finest-

rained level. For instance, if the keywords mallard duck and duck are both present, we keep

nly mallard duck . 

.2. Data linkage 

In this section, we take in input the preprocessed and normalized events (hereafter, simply

vents ) from DBV −BRC and DE MRPRE S−i , as explained in Section 3.1 . Our goal is to identify common
3 https://www.arcgis.com . 
4 https://nominatim.org . 
5 https://www.geonames.org . 
6 http://timeml.org/site/publications/timeMLdocs/timeml_1.2.1.html . 

https://www.arcgis.com
https://nominatim.org
https://www.geonames.org
http://timeml.org/site/publications/timeMLdocs/timeml_1.2.1.html
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Fig. 2. Workflow for event linking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i.e. ”putatively ” linked) events between DBV −BRC and DE MRPRE S−i in an automatic manner, which

is not a trivial task. We illustrate in Fig. 2 the workflow regarding this data linkage task. In the

following, we first introduce how we compute the similarity of two events ( Section 3.2.1 ), then

pass to the data linkage strategies ( Section 3.2.2 ). 

4.2.1. Event similarity 

For event linking, we need to assess the similarity of two events in the presence of hierar-

chical data. This hierarchical data requires us to rely on an ontology-based semantic similarity

measure. Due to this specificity, we use the similarity measure proposed in [4] , which is similar

to the state of the art measures, but tailored for epidemiological events. For the sake of clarity,

we briefly explain it here. 

In the similarity assessment, the main idea is that two events are considered similar, if 1)

all their event attributes are identical or hierarchically linked, and 2) their event dates are close

enough. Otherwise, they are penalized with a large negative value in the calculation in order

that the underlying events are not linked. We slightly change the calculation proposed in [4] for

the spatial attribute, tough. In its initial version, two events of different countries cannot be

linked. We change it in order that two events of neighboring or geographically close countries to

be linked. Concretely, we first calculate the similarity for each event attribute, and then we sum

up the obtained values in order to get the final score. In the end, we obtain a similarity matrix,

in which each entry correspond to the similarity score for a given event pair from DE MRPRE S−i 

and DBV −BRC (see Fig. 2 for an illustration). 

4.2.2. Data linkage strategies 

In this section, we present two linkage strategies: 1) 1-to-1 ( Section 3.2.2.1 ) and 2) 1-to-

many ( Section 3.2.2.2 ) linking. In the first strategy, an event in DBV −BRC can be associated with

only one event in DE MRPRE S−i , whereas in the second strategy the same event in DBV −BRC can be

mapped to multiple events in DE MRPRE S−i . In both strategies, we rely on the similarity matrix S of

DBV −BRC and DE MRPRE S−i . The term Si j represents the similarity score between events ei ∈ DBV −BRC 

and e j ∈ DE MRPRE S−i , and it is calculated as described in Section 3.2.1 . 

1-to-1 Event Linking As a first strategy, an event in DBV −BRC can be associated with only one

event in DE MRPRE S−i . We propose to model this task as an assignment problem based on the

matrix S, as already done in the literature (e.g. [9] ). It can be solved through the well-known

Hungarian algorithm [10] . In the end, we obtain a set of ”putatively ” associated events between

DBV −BRC and DE MRPRE S−i . Finally, in the solution of the assignment problem, some events might be

assigned to other events with negative or weak positive similarity scores. Therefore, we perform

a post-processing by removing the assignment results, whose similarity scores are lower than

some threshold value. In the end, we obtain our final dataset Dstrict . 

1-to-many Event Linking As a second strategy, an event in DBV −BRC can be associated with

multiple events in DE MRPE S−i in order to cover as many events as possible in DE MRPE S−i . This
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eans that each event in DE MRPE S−i is associated to the event in DBV −BRC with highest similarity

core. Concretely, for each event in DE MRPE S−i , we take the column-wise maximum in S. Finally,

s in Section 3.2.2.1 , some events might be assigned to other events with negative or weak

ositive similarity scores. Therefore, we only keep assignment results, whose similarity scores

re lower than some threshold value. In the end, we obtain our final dataset Drelax . 

. Limitation: Missing Isolate Information 

In our final datasets Dstrict and Drelaxed , some of their events has missing isolate information

fter the data linkage process, due to the different data sizes in DBV −BRC and DE MPRE S−i and pos-

ibly erroneous and imperfect information in these sources. In this section, the goal is to show

ow we manage to handle the missing isolate information in Dstrict and Drelax , which can be

eneficial for an application at hand (e.g. as our practical case in Section 6 ). In the following,

e first introduce how we define isolate similarity ( Section 4.1 ), then present the construction

f an auxiliary database of isolate similarity scores ( Section 4.2 ). Finally, we present our four

trategies for the missing isolate information ( Section 4.3 ). 

.1. Isolate similarity 

Recall that in an AI isolate, there are in total eight segments: PB1 (polymerase basic 1), PB2

polymerase basic 2), PA (polymerase acidic), HA (hemagglutinin), NP (nucleoprotein), NS (nonstruc-

ural protein), NA (neuraminidase) and M (matrix protein) [7] . Each segment is associated with

 genome sequence. In the isolate similarity assessment, we compute the similarity value for

ach same segment pair (e.g. PB1 vs. PB1, PB2 vs. PB2), then take its average to obtain the final

imilarity score. 

To compute the similarity of two segments (i.e. genome sequence), we rely on pairwise se-

uence alignment. This is the process of aligning two sequences to each other by optimizing

he similarity score between them based on a predefined substitution matrix [11] . In this work,

e use a default substitution matrix proposed in the Bio.Align Python package [12] . Finally, the

btained raw similarity score from the substitution matrix is normalized by the maximum sim-

larity score obtained when each sequence is compared to itself. 

.2. Construction of an auxiliary database: isolate similarity scores 

We take advantage of the large size of genome sequence information provided by BV-BRC

o constitute an auxiliary database DGS of isolate similarity scores. These scores are obtained

ith the similarity measure explained in Section 4.1 for all pairs of temporally close events in

BV −BRC with complete serotype information (e.g. H5N8 vs. H5N8, H5N8 vs. H5N1). The temporal

istance is fixed in such a way that two events of the same year or subsequent years are only

ept (e.g. 2017 vs. 2017, 2017 vs. 2018, 2018 vs. 2017). Note that this auxiliary database is used

or two purposes: 1) completion of partial serotype information ( Section 3.1.4 ) and 2) handling

issing isolate information in the datasets Dstrict and Drelax ( Section 4.3 ). 

As an example, we show in Table 5 an excerpt from these scores for only the events with

5N8 serotype, occurring in South Africa and Namibia. In this table, we call source and tar-

et events to distinguish two events in the similarity calculation. Moreover, to show how many

imilarity scores are computed by serotype pair in DGS , we show some statistics in Table 6 . The

ery large numbers in this table highlight the importance of DGS and its capability of precise

stimations in any task. 
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Table 5 

Excerpt from DGS . Only some events with H5N8-H5N8 serotype pair, occurring in South Africa and Namibia, are shown. 

In this table, we call source and target events to distinguish two events in the similarity calculation. 

Source country vs. 

Target country 

Source sequence name Source 

year 

Target sequence name Target 

year 

Similarity 

score 

A/African penguin/ South 

Africa/18010422/2018 

2018 0.99 

South Africa vs 

South Africa 

A/African oystercatcher/ 

South Africa/18030214/2018 

2018 A/Guinea fowl/ South 

Africa/17080243/2017 

2017 0.92 

A/African penguin/ South 

Africa/476266/2018 

2018 0.92 

A/African penguin/ Namibia/ 

146S/2019 

2019 0.71 

South Africa vs 

Namibia 

A/African oystercatcher/ 

South Africa/18030214/2018 

2018 A/African penguin/ Namibia/ 

218-1/2019 

2018 0.61 

A/African penguin/ Namibia/ 

288-1/2019 

2018 0.80 

Table 6 

Sizes of some serotype pairs in DGS . 

Serotype pair Size 

H5N1 vs H5N1 1,308,268 

H5N8 vs H5N8 605,345 

H7N9 vs H7N9 545,614 

H9N2 vs H9N2 34,845,712 

H5N1 vs H5N8 567,071 

H5N8 vs H7N9 356,169 

Table 7 

Illustration of the first strategy with H5N8-H5N8 serotype pair, which is used when only one event has missing isolate 

information. 

Source sequence name Target country Similarity score 

A/African oystercatcher/South 

Africa/18030214/2018 

South Africa 0.95 

Zimbabwe 0.92 

Belgium 0.53 

A/African penguin/Namibia/146S/2019 Namibia 0.99 

Nigeria 0.79 

Pakistan 0.64 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Handling missing isolate information 

If two events in DE MRPE S−i have their associated isolate information, we can simply compute

the isolate similarity between them. However, despite of two linkage strategies proposed in

Section 3.2.2 , it is possible not to assign an isolate to an event in DE MRPE S−i . This can be due

to automatic normalization issues or incompleteness of DBV −BRC . To overcome this issue, we pro-

pose four strategies for handling the absence of isolation information in Dstrict and Drelax . The

goal here is to take advantage of DGS in order to compute average similarity scores with respect

to some selected event attributes. 

Given event pairs, the first and second strategies are used when only one event has miss-

ing isolate information, and not the other one. In this case, the one with isolate information is

referred to as source event, and the other as target event. The first strategy is used, when the se-

quence information of the source event, i.e. source sequence , and the country information of the

target event, i.e. target country , are known in DGS , given a serotype pair. We illustrate this with

an example in Table 7 . For instance, the first row corresponds to the average similarity score be-
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Table 8 

Illustration of the second strategy with H5N8-H5N8 serotype pair, which is used when only one event has missing isolate 

information. 

Source sequence name Similarity score 

A/African oystercatcher/South Africa/18030214/2018 0.85 

A/African penguin/Namibia/146S/2019 0.72 

Table 9 

Illustration of the third strategy with H5N8-H5N8 serotype pair, which is used when none of the two events has an 

isolate information. 

Country pair Similarity score 

South Africa vs South Africa 0.97 

South Africa vs Zimbabwe 0.96 

South Africa vs Belgium 0.56 

Namibia vs Namibia 0.99 

Namibia vs Nigeria 0.79 

Namibia vs Pakistan 0.68 

Table 10 

Illustration of the fourth strategy with H5N8-H5N8 serotype pair, which is used when none of the two events has an 

isolate information. 

Serotype pair Similarity score 

H5N5 vs H5N5 0.99 

H5N8 vs H5N8 0.85 

H5N5 vs H5N8 0.70 

t  

i  

r  

u  

s

 

m  

n  

t  

i  

c  

p  

a

6

 

s  

a  

w  

e  
ween A/African oystercatcher/South Africa/18030214/2018 7 and South Africa . This similarity score

s obtained by taking the average of all similarity scores obtained from event pairs, both occur-

ing in South Africa with known isolate information. Otherwise, if the first strategy cannot be

sed, we use the second strategy, in that only source sequence is used to compute an average

imilarity score without taking the target country into account, as illustrated in Table 8 . 

The third and fourth strategies are used when none of the two events has an isolate infor-

ation. The third strategy relies on the country information of both events. If a pair of county

ames, for a given serotype, is known in DGS , then we compute the average similarity score by

aking all similarity scores obtained for event pairs with known isolate information, occurring

n both countries. This is illustrated in Table 9 . Otherwise, we use the fourth strategy. In this

ase, we compute the average similarity score by taking all similarity scores obtained from each

air of events with complete isolate information, without taking the country information into

ccount. This is illustrated in Table 10 . 

. Quantitative Evaluation 

In this section, we evaluate the proposed strategies to deal with the completion of partial

erotype information ( Section 3.1.4 ), data linkage between two event databases ( Section 3.2.2 )

nd handling missing isolate information in Dstrict and Drelax ( Section 4.3 ). For these assessments,

e create a subset Dgt of events from our data, which contains in total 500 randomly sampled

vents with complete isolate information. Since all the events in Dgt have complete isolate in-
7 We use the same textual format as in the database DBV−BRC . 
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Table 11 

Evaluation of the event linking process between Dgt and four perturbed datasets of events Dppert =0 . 25 , Dppert =0 . 50 , Dppert =0 . 75 

and Dppert =1 . 00 . 

Strategy Description Evaluation with 

ppert = 0 . 25 

Evaluation with 

ppert = 0 . 50 

Evaluation with 

ppert = 0 . 75 

Evaluation with 

ppert = 1 . 00 

1-to-1 Proportion of correctly 

linked cases 

0.95 0.92 0.85 0.75 

Proportion of falsely linked 

cases 

0.03 0.05 0.08 0.14 

Proportion of unlinked 

cases 

0.02 0.03 0.07 0.11 

1-to-many Proportion of correctly 

linked cases 

0.98 0.94 0.88 0.81 

Proportion of falsely linked 

cases 

0.01 0.02 0.05 0.07 

Proportion of unlinked 

cases 

0.01 0.03 0.07 0.12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

formation, we use the dataset Dgt in our assessments as the ground-truth. Next, we detail our

three quantitative evaluation tests by using Dgt and show their corresponding results. 

First, we evaluate how successful our proposed completion strategy in Section 3.1.4 is for

dealing with partial serotype information. For this assessment, we create another dataset De v al 

of events by duplicating Dgt and making the disease serotype information of all its 500 events

partially complete (e.g. H5 or N1 instead of H5N1 ). Then, we perform the completion of partial

serotype information based on the auxiliary database DGS , as explained in Section 3.1.4 , in order

to compare the results with Dgt . As a result, our evaluation test finds out that the proposed

strategy correctly estimate the complete serotype information in 4 4 4 events (0.89 in proportion).

Second, we are also interested in the evaluation of the event linking process between two

event databases, as explained in Section 3.2.2 . For this assessment, we first create multiple

datasets of events by duplicating Dgt and perturbing the events to the extent of the pertur-

bation parameter ppert , which is in the range of [0,1]. Concretely, the perturbation process first

randomly selects with the probability of ppert the attributes of an event for which the modifi-

cation is done, and it then makes the selected attributes coarser (i.e less precise) based on the

corresponding taxonomy trees. When the value of ppert is close to 0 (resp. 1), this means that the

events of Dgt are modified to small (resp. large) extent and they are very (resp. not very) close

to their initial counterpart. In our evaluation test, we use four ppert values, which are 0.25, 0.50,

0.75 and 1.00, and this results in four datasets of events, which we call Dppert =0 . 25 , Dppert =0 . 50 ,

Dppert =0 . 75 and Dppert =1 . 00 , respectively. 

Then, we apply the 1-to-1 and 1-to-many event linking strategies between Dgt and all four

perturbed datasets of events. Ideally, the linking process is supposed to link the same events,

which can be verified based on their event identifiers. If the process finds (resp. does not find)

the same events, we say that they are correctly (resp. falsely) linked. It is also possible that the

linking process fails to link some event pairs in two event datasets (i.e. unlinked cases). We

show in Table 11 the proportion of the correctly and falsely linked event pairs, as well as that of

unlinked cases, for four perturbed event datasets. We see from the table that the performance

of event linking gets worse when the perturbation degree increases, as expected. However, the

proportion of correctly linked cases is still large enough (i.e. the scores of 0.75 and 0.81), even

when ppert = 1 . 00 . 

Finally, we also assess how correct the estimation of the applied four strategies is for han-

dling missing isolate information in Dstrict and Drelax ( Section 4.3 ). Recall that these strategies

are applied when at least one event has missing isolate information for the isolate similarity

calculation of two events. We perform our evaluation test in two parts. In the first part, we

explore to what extent the proposed four strategies are in practice used. To do so, we create

another dataset De v al of events by duplicating Dgt and removing the isolate information of its
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Table 12 

Proportions of use of four strategies proposed in Section 4.3 for the pairs of events in De v al , when when at least one 

event has missing isolate information (see the column Isolate information ). 

Strategy Isolate information Proportion of use 

1 (source sequence vs. target country) only one of the events 0.54 

2 (source sequence only) only one of the events 0.05 

3 (source country vs. target country) none of events 0.30 

4 (default, serotype pair) none of events 0.11 

Fig. 3. Evaluation of how close the computed isolate similarity scores in De v al with the four strategies proposed in 

Section 4.3 , compared to Dgt . 

2  

e  

t  

u

 

s  

t

a  

D  

b  

b  

r  

s  

c  

c

7

 

f  

c  
50 events. We show in Table 12 the proportion of use of these four strategies in the pairs of

vents in De v al , when when at least one event has missing isolate information. We see from this

able that the strategies 1 (with the score of 0.54) and 3 (with the score of 0.30) are prevalently

sed in practice. 

In the second part, we also rely on Dgt and De v al , and assess how close the computed isolate

imilarity scores in De v al are after the estimation with the four strategies, compared to Dgt . For

his assessment, we first separately compute the isolate similarity among pairs of events in Dgt 

nd De v al . Then, we calculate the absolute difference values for the same event pairs in Dgt and

e v al to see how close these results are. Note that the same event pairs in Dgt and De v al can

e verified based on their event identifiers. We show in Fig. 3 a the absolute difference values

etween Dgt and De v al . We see that approximately 80 % of the estimated scores are in the error

ange of [0,0.1] (i.e. yellow and green bars). Furthermore, for the sake of completeness, we also

how in Fig. 3 b the distribution of the calculated similarity scores in Dgt and De v al , before the

alculation of absolute difference values. We observe that their overall distributions are suffi-

iently similar, with some small skewness differences. 

. Practical Case 

To illustrate the usefulness of our datasets of AI events, we present a diffusion network in-

erence task at meta-population level, publicly available online 8 . A network inference problem

onsists in estimating the underlying network structure, i.e. complete information on edge con-
8 https://github.com/arinik9/AIAGIS . 

https://github.com/arinik9/AIAGIS
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nectivity, node existence and the exact edge weights, from the event data at hand. In our con-

text, the nodes and edges in the network to be inferred correspond to the spatial zones at ADM1

level (i.e. first level of subnational boundaries) and the disease transmissions among them, re-

spectively. Generally speaking, we only know when an AI event occurs, but not exactly from

where it is propagated, i.e. the underlying transmission dynamics among the zones. Hence, this

network inference task aims to unveil the hidden AI transmission information in the presence

of the temporal, spatial and genetic information of AI events. 

To perform this task we adapt the method proposed in [13] to our dataset Drelax 
9 Briefly,

[13] adopts a space-time diffusion model and a survival analysis framework for estimating the

network structure. We simply extend their work by including the genetic information of AI

events. Similar to [13] , we use Rayleigh distribution with the parameter α to model the tem-

poral distances among the events, and Exponential distribution with the parameters β and γ
for the spatial and genetic distances, respectively. The values of α are what we estimate from

the network inference problem and the values of the parameters β and γ are fixed to 0.01. 

In this practical case, for illustrative purposes we select only a subset of our dataset, corre-

sponding to the AI H5N8 events occurred between October and December 2016 in Europe. This

period corresponds to the beginning of the H5N8 wave, which is the largest in the EU in terms

of number of poultry outbreaks, geographical extent and number of dead wild birds. [14] . There

are in total 606 events, in which 75 events do not have any isolate information despite of our

data linkage strategy. We rely on the four strategies of handling mission isolate information, as

explained in Section 4 , in order to compute the isolate similarity values among these 75 events

and the rest. To show the interest of including additional information, we sequentially infer three

networks Gt , Gst and Gstg for time-only, space-time and space-time-genetic information, respec-

tively. We filter out the edges, whose weight is lower than 0.05 to keep only the pertinent ones.

We evaluate the obtained results in a qualitative manner based on the phylogenetic analysis

conducted by [15] , which estimates the transmission flows among AI H5 cases in Eurasia for the

period 2016-17. In [15] , the authors mainly find out that the virus is carried by wild birds during

autumn migration 2016 to wintering locations in Europe through two main flows: 1) Russia →
countries around Baltic Sea → Netherlands → France and 2) Russia → Ukraine → Hungary. 

We first visualise the inferred networks Gt , Gst and Gstg in Fig. 4 . In this figure, a network

is plotted twice for the sake of clarity. The first one corresponds to the obtained network and

the second one represents the highlighted version of the first one. These highlights are based

on the network pairs Gt − Gst and Gst − Gstg , and show the evolution of the edges from Gt to

Gst and from Gst to Gstg , respectively. An edge is colored in black, if it exists in both networks.

Otherwise, its color is red in Gt (resp. Gst ), if it appears only in Gt (resp. Gst ) and not in Gst 

(resp. Gstg ). These red edges Gst (resp. Gstg ) indicate that they are filtered out from Gt (resp. Gst ).

Similarly, an edge is colored in green in Gst (resp. Gstg ), if it appears only in Gst (resp. Gstg ) and

not in Gt (resp. Gst ). These green edges in Gst (resp. Gstg ) indicate that they are inferred thanks

to the inclusion of the spatial and (resp. spatio-genetic) information. 

We can summarize the results in three points. First, we see from Fig. 4 that the network

inference task with additional spatial and genetic information make the networks sparser (i.e.

Gst compared to Gt and Gstg compared to Gst ), as indicated with the existence of multiple red

edges in Gt for Gst and Gst for Gstg . This can be seen as a filtering step towards reaching most

likely transmission pathways. For instance, including the genetic information allows keeping only

the transmission from Netherlands to the North of France by filtering out the transmission from

Germany. Second, adding the genetic information does not add any new (i.e. green) edges in

Gstg . Moreover, we only observe some slight differences between Gst and Gstg . This indicates that

the spatial and genetic distances between events are mostly correlated. Finally, our findings are

mainly in line with the results in [15] . Overall, the benefit of including the genetic information

is visually shown. 
9 We could also use the dataset Dstrict . 
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Fig. 4. Our three inferred networks Gt , Gst and Gstg based on the AI H5N8 events in Europe for the period October- 

Decembre 2016. In (a), (b) and (c), a network is plotted twice for the sake of clarity. The first one corresponds to the 

obtained network and the second one represents the highlighted version of the first one. These highlights are based 

on the network pairs Gt − Gst and Gst − Gstg , and show the evolution of the edges from Gt to Gst and from Gst to Gstg , 

respectively. Finally, country codes in ISO 3166-1 alpha-2 standard are shown in all maps. 
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