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A B S T R A C T

Deep learning models have demonstrated great promise in plant disease identification. However, existing
approaches often face challenges when dealing with unseen crop-disease pairs, limiting their practicality in
real-world settings. This research addresses the gap between known and unknown (unseen) plant disease
identification. Our study pioneers the exploration of the zero-shot setting within this domain, offering a new
perspective to conceptualizing plant disease identification. Specifically, we introduce the novel Cross Learning
Vision Transformer (CL-ViT) model, incorporating self-supervised learning, in contrast to the previous state-
of-the-art, FF-ViT, which emphasizes conceptual feature disentanglement with a synthetic feature generation
framework. Through comprehensive analyses, we demonstrate that our novel model outperforms state-of-the-
art models in both accuracy performance and visualization analysis. This study establishes a new benchmark
and marks a significant advancement in the field of plant disease identification, paving the way for more robust
and efficient plant disease identification systems. The code is available at https://github.com/abelchai/Cross-
Learning-Vision-Transformer-CL-ViT.
1. Introduction

Plant diseases pose a significant threat to agricultural-producing
countries and are primarily caused by pathogenic organisms such as
bacteria, fungi, or parasitic plants. The plant disease identification
approaches have undergone continuous evolution over the last few
decades. Traditionally, this task was exclusively performed by plant
pathologists or experts, utilizing labor-intensive laboratory techniques
that demanded extensive knowledge and experience. However, the
challenge arises from the fact that the same pathogen can infect dif-
ferent host crops, and the visual symptoms of different plant diseases
often exhibit similarities, creating difficulties for non-experts in the
field. The introduction of automated plant disease identification based
on computer vision aims to assist individuals in accurately identifying
plant diseases.

Recently, deep learning (DL) models have shown promising results
for plant disease identification. Initially, their main focus was on the
identification of multiple diseases within a single crop [1]. However,
with the advent of DL models in big data analysis, the research commu-
nity has broadened its scope. Larger datasets have been collected and
efforts have expanded to identify diseases across multiple crops [2].
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Despite this progress, the samples available in the largest publicly
accessible PlantVillage (PV) dataset from [3] remain considerably lim-
ited in the global context, and the data collection process is proving
prohibitively expensive. As a result, several studies have emerged to
transfer knowledge gleaned from training datasets to perform identifi-
cation tasks on data that is not present in the training dataset [4–6].
This scenario in the plant disease field is formally referred to as ‘‘unseen
plant disease identification’’.

In the work by Lee et al. [7], a proposed solution to this issue
involves either repurposing the model to concentrate exclusively on
disease classes by excluding the crop, or implementing a post-prediction
approach using a late fusion method to amalgamate probabilities as-
sociated with distinct common disease symptoms. While this work
stands as a reference in the field, its relatively poor performance
on unseen classes underscores the imperative for further exploration,
especially within multi-plant contexts. A recent publication of the same
author [8] has taken a step forward by incorporating conditional links
to strengthen the contextual relationship between diseases and plants.
However, the improvement remains fairly modest and does not com-
pletely resolve the major obstacle of disentangling the characteristics
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Fig. 1. The diagram illustrates the motivation behind our proposed methods, leveraging the power of self-supervised and supervised learning mechanisms to enhance feature
distribution space. This aims to reduce the gap between seen and unseen features while preserving intra- and inter-class separation.
of the plant from those of the disease. To guide the model towards
acquiring a more generalized understanding of plant diseases, we pro-
pose to incorporate specific inductive biases to constraint the model’s
parameter space. The idea is to ensure that the disparities in feature
distribution between seen and unseen classes are minimized, leading to
a more generalized and robust model, while preserving the necessary
inter- and intra-class separation.

To achieve this, we propose a novel way of conceptualizing the
plant disease identification task. Specifically, we view plant disease
identification as a compositional task, where each sample consists of
plant and disease concepts. For instance, consider Tomato as the plant
concept and Target spot as the disease concept, which together form the
Tomato_Target spot composition class. The context of our ‘‘unseen’’ class
can be defined as plant samples within the combined composition class
that are not present in our training dataset. However, it is important
to note that the individual plant or disease concepts comprising this
class may already exist within the training dataset. For example, if we
introduce Tomato_Bacterial spot as an unseen class in our experiment,
this specific composition would not be present in our training dataset.
Nonetheless, the individual Tomato plant and Bacterial spot disease con-
cepts might be found within other compositions, such as Tomato_Target
spot and Pepper_Bacterial spot compositions.

When delving into the field of compositional plant disease iden-
tification, a practical solution would be to exploit the features from
individual concepts and repurpose them to characterize the unseen
data through the integration of these concepts. One possible approach
is to project the visual images, converting input from the original
visual space into low-dimensional embedding spaces that capture the
semantic information of the original input [9]. To be more precise,
we can begin by disentangling plant and disease concepts into their
individual embedding spaces, and these embedded features can sub-
sequently serve a multitude of downstream tasks. For example, by
disentangling Tomato_Early blight, Tomato_Late blight, Potato_Early blight
and Potato_Late blight, we could learn the feature representation of 2
crop species (potato and tomato) and 2 disease types (early blight
and late blight). Then, this information can be applied to another
composition with a similar individual concept of crop and disease. For
example, Tomato’s features learned via the aforementioned composi-
tion can be used to represent the characteristics of the crop of the
new composition of Tomato_Bacterial Spot, placing less demand on the
training dataset. This can be beneficial for unseen identification tasks
where joint compositions are not present in the training dataset, as the
model can draw on the knowledge of individual learned concepts from
seen compositions. In the work by [9], where we refer to the model as
FF-ViT, has been proposed with a pairwise feature generation module.
This module is designed to generate joint synthetic features of unseen
2 
compositions from seen compositions. Such an approach allows the
model to be exposed to both seen and unseen feature distributions.

Given that FF-VIT the model has never seen actual unseen data,
minor deviations in the distribution of joint synthetic features from the
original plant disease samples can significantly impact the performance
of unseen class identification. Experimental results from [9] demon-
strate a substantial performance gap between seen and unseen tasks.
This essentially creates a bottleneck and drives the search for alterna-
tives capable of learning more robust features that are less sensitive
to distribution shifts. Self-supervised learning (SSL) approaches have
recently proven to be effective alternatives for learning generalized
features that reduce the disparities caused by domain shifts [10–13].
These methods utilize SSL techniques to simultaneously minimizing
intra-class variance while maximizing inter-class variance across differ-
ent domains. As a result, they enable models to learn more robust and
discriminative feature representations from different domains, thereby
enhancing adaptability to various downstream tasks. Motivated by
these studies, our paper adapts SSL principles to develop features that
are applicable to both seen and unseen data. Specifically, the model can
identify visual appearances or disease symptoms common to different
plant species or disease types. For instance, the model can learn the
features of spots, which are symptoms common to different plants, as
illustrated in Fig. 2. Hence, by using generalized features, the model
able to perform on both seen and unseen data.

Inspired by the insights gained from our background study, we
introduce our novel model, CL-VIT. The core principle revolves around
providing the model with prior knowledge to refine the search space,
ultimately minimizing the gap between seen and unseen features. Prior
knowledge is injected through SSL mechanisms where the model is
able to refine its search space by finding implicit patterns in the actual
disease data, independent of the label. Building upon this concept, we
have devised a novel approach that eliminates the need for generating
synthetic data in FF-ViT model. Instead, the model, equipped with self-
supervisory signals, serves as prior knowledge to guide the training
process, effectively aligning the feature distribution between seen and
unseen classes and demonstrating superior performance compared to
our initial model. We illustrate the difference between FF-VIT and
CL-VIT in terms of feature distribution space in Fig. 1

To our knowledge, this is the first initiative in tackling the zero-shot
setting in plant disease identification, introducing a novel approach
to conceptualizing plant disease identification. We introduce a new
concept in plant disease identification to recognize unseen classes, with
a focus on improving efficiency by incorporating a guided learning
mechanism. This mechanism is specifically designed to reduce the
feature distribution gap between seen and unseen plant disease data.
In summary, the contributions of this paper are outlined below:
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Fig. 2. The diagram illustrates the visual symptoms of bacterial spot disease for different plants. The SSL aims to learn general features that able to represent all plants ignoring
other features such as shape or color.
1. We introduce a novel model called CL-ViT, featuring unique
conceptual designs, setting a new benchmark in the field of
unseen plant disease identification.

2. We demonstrate that the incorporation of a guided learning
mechanism surpasses conventional approaches in the multi-plant
disease identification benchmark. Furthermore, we show that
the CL-ViT model, integrating a SSL approach, outperforms the
FF-ViT model employing a purely supervisory learning scheme
for unseen plant disease identification tasks.

3. In our qualitative analyses, we illustrate that CL-ViT learns a
feature space capable of discriminating between different classes
while minimizing the domain gap between seen and unseen data.
This underscores the superiority of CL-ViT in implementing a
more effective guided learning mechanism.

The rest of this paper is organized as follows. Section 2 discusses
the work in the literature related to unseen plant disease identification
and domain adaptation through supervised learning (SL) and SSL.
In Sections 3 and 4, we present our discussion in detail for our CL-VIT
architecture and dataset. In Section 5, we compare the performance of
CL-VIT to other existing approaches, and Section 6 conducts ablation
studies to evaluate the robustness of our best model. In Section 7,
we analyze the models qualitatively in terms of feature distribution
visualization to further justify the performance differences between
models. Finally, a conclusion aiming at synthesizing the obtained re-
sults, highlighting limitations, and suggesting potential future work is
presented in Section 8.

2. Related work

In this section, we provide an overview of the pertinent advance-
ments related to our work.

2.1. Deep learning in plant disease identification

Plant disease identification has evolved rapidly over the past few
decades. In the past, it was mainly carried out by plant patholo-
gists by time-consuming laboratory techniques that required in-depth
knowledge and experience.

Today, it can be easily assisted by DL models trained from visual
images [1,14]. Previously, plant disease identification focused on the
identification of a single plant species/crop and multiple diseases [1].
Since the emergence of DL technology, the research community has
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collected new datasets that encompass more classes, including multiple
plant species and multiple diseases [2,3]. With these new datasets,
models need to learn both species and disease information for multi-
species and multi-disease identifications. Convolutional neural net-
works (CNNs) have been widely used in the field of plant disease
identification [3,15]. However, recent studies have revealed that vision
transformer (ViT) models tend to perform better than CNNs, with the
latter focusing in some cases on regions that are irrelevant in plant
disease identification [7,16,17]. Motivated by this growing body of
evidence, our study adopts ViT models as the backbone model for our
proposed network architecture.

The current DL model heavily relies on the size of the training
data; a larger dataset leads to better model performance. However,
in the context of plant disease identification, acquiring sufficient data
is challenging. This limitation has prompted us to address the core
issue where no training samples are available. The recent approach
proposed by [9] aims to bridge this gap. Motivated by these studies, we
incorporate a new strategy to further enhance the unseen plant disease
identification framework.

2.2. Unseen plant disease identification

In plant disease identification, where pathogens attacking different
crops are categorized under the same disease class primarily due to
their similar visual symptoms [18], researchers utilize the concept
of transferring knowledge learned from one crop disease to another.
This approach leverages the similarities in disease visual symptoms,
allowing models trained on one crop’s disease to be effectively applied
to others, including both seen and unseen classes. Existing mainstream
methods focus on converting unseen plant disease identification tasks
into general identification tasks. They aim to directly transfer the
knowledge learnt from seen data and perform on unseen data ignor-
ing their distribution shift. For example, [7] proposed to train their
models with a disease-oriented classifier that only focuses on disease
features and disregards plant/species features. However, this approach,
which omits species-specific features, may not be consistent with the
perception of expertise in distinguishing plant diseases, particularly
when information on host species is often needed to delineate lists of
diseases associated with host species [19]. Besides, the disease-oriented
classifier also limits the performance of model towards multi-plant
species identifications.

Other mainstream methods presented in [8] trained both species-
oriented and disease-oriented classifiers which resolved the limitation
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of previous studies in [7] that were unable to perform on plant identifi-
cations. However, their models are only trained with labeled seen data
which results in the models tend to bias towards seen data. Although
they established a conditional link between the plant features and dis-
ease features to encourage knowledge sharing between both features,
the performance on unseen identification has not shown significant
improvement. Therefore, we notice that it is important to obtain a
generalized feature representation so that the knowledge learned from
seen data can be applied to unseen data.

The recent proposal, FF-ViT [9] incorporates a new strategy to
reduce the disparities between seen and unseen classes via a synthetic
feature generation scheme. FF-ViT marked a significant milestone as
the benchmark for addressing unseen plant disease identification. De-
spite its innovation, we observed a potential limitation: the feature
distribution of synthetic compositions might not faithfully represent
the true feature distribution of unseen compositions. Consequently,
a performance gap emerged between seen and unseen identification
tasks.

In the field of general unseen identification tasks, [20] enhances
seen and synthetic features using its Feature Refinement (FR) mod-
ule, which learns unified features for seen and synthetic data. Simi-
larly, [21] improves its model with its Multi-Decision Fusion Model
(DMFM), which exploits different image views. While previous work
has focused on refining their feature learning modules through im-
provements to the model architecture or the use of different views
of the input image, we address this challenge using an alternative
approach. We introduce a new CL-ViT model, which integrates SSL and
SL to learn a unified feature representation. We show that this novel
approach improves the learning process by capturing relevant and
generalized features of individual concepts, ensuring a more accurate
and complete understanding of both seen and unseen classes, thus
closing the performance gap between them.

2.3. Learning feature representation with self-supervised learning

The aim of SSL is to diminish the distance between features of
the same class while amplifying the distance between features of dif-
ferent classes from unlabeled data [22,23]. This learning technique
is widely applied to a variety of tasks, encompassing not only visual
images but also videos [24]. Recently, the Contrastive Language-Image
Pre-Training (CLIP) model was introduced by [25], which integrates
visual and textual features using SSL. The CLIP model demonstrates
outstanding performance on various downstream tasks, including those
involving unseen data. However, the model’s effectiveness depends
on meticulous parameter tuning and the selection of appropriate text
prompts. To address these challenges, [26,27] have improved on the
original model by introducing techniques such as layer-wise prompt
learning and Video Object Segmentation (VOS), respectively, to ease
the burden of data annotation. Despite these advances, the field of plant
disease identification presents unique challenges, primarily due to the
lack of standardized textual descriptions for disease types. Hence, in
this study, we focus on visual features, enhancing the visual models.

There are also SSL approaches that leverages auxiliary pretext
tasks [28,29], which serve as a means to learn representations through
these tasks. These tasks can be thought of as pseudo-labels or labels
automatically generated based on the dataset’s attributes. Inspired by
a recent proposal for unsupervised domain adaptation that employs
self-supervision through auxiliary pretext tasks to align the learned
representations of two domains in a shared feature space [10], and
supported by evidence demonstrating its effectiveness in reducing
disparities in plant domain data [11], we further explore this concept.
Specifically, we initiate an exploration to assess the potential of lever-
aging various auxiliary pretext tasks, within plant disease visual data,
to learn general features applicable to unseen plant disease classes.

A common approach in SSL through auxiliary pretext tasks involves

employing pixel-wise data augmentations [30–33]. The model learns to
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recognize these augmented versions to capture fine-grained features.
It is notable that recent proposals [10,29] have explored alternative
SSL techniques that move beyond pixel-wise data augmentations. These
approaches focus on non-pixel-wise data augmentations such as rota-
tion and flipping to solve the problems of domain adaptation as they
claimed that features learned from these augmentations can induce
alignment between the source and target domain.

This becomes particularly crucial in tasks like unseen plant disease
identification, where the primary challenge lies in transferring knowl-
edge acquired from seen data to unseen data. Although visual disease
symptoms may appear similar, variations in leaf patterns and structures
among different plant species can result in differences in the overall
visual appearance across various plant species. The use of pixel-wise
data augmentations might result in learned features that are overly
specific to the seen data, making it challenging to generalize and extract
useful information for the unseen data. Therefore, drawing inspiration
from recent proposals [10,29], we have designed a novel model with
carefully chosen pretext tasks. These tasks are seamlessly integrated
into our proposed CL-ViT model, ensuring that the learned features
encompass a broader range of plant species, including both the seen
and unseen, that share similar disease symptoms.

3. Methods

3.1. Problem formulation

For ease of reference, we provide a list of key abbreviations and no-
tations in Table 1. In this study, the plant disease samples are associated
with compositions of plant species/crop concepts, 𝑃 = (𝑝0, 𝑝1,… , 𝑝𝑚)
and disease concepts, 𝐷 = (𝑑0, 𝑑1,… , 𝑑𝑛) where 𝑚 and 𝑛 are denoted
as total unique species and disease concepts respectively. The total
unique compositions are denoted as 𝐶 = 𝑚 × 𝑛. Besides, we also
prepared two disjoint sets 𝐶𝑠 and 𝐶𝑢 where both are subset of 𝐶.
Specifically, 𝐶𝑠 and 𝐶𝑢 represent the seen compositions and unseen
ompositions respectively. The goal of our unseen composition plant
isease identification is to recognize both compositions from 𝐶𝑠 and 𝐶𝑢.
ote that, in the FF-ViT model [9], identifications are solely based on

he knowledge extracted from 𝐶𝑠. In contrast, the CL-ViT model learns
rom both 𝐶𝑠 (labeled) and 𝐶𝑢 (unlabeled).

In the following sections, we first present the framework of our
roposed CL-ViT model along with a detailed explanation of its com-
onents. Before diving into the experimental results, we also discuss
he strategies we discovered for further improving the existing FF-ViT
odel [9] to better benchmark our novel CL-ViT.

.2. Cross Learning Vision Transformer (CL-ViT)

Recent publications have highlighted a pervasive bias in models
rained with SL, where they tend to favor the distributions of seen data.
hese models often have the ability to learn very complex decision
oundaries tailored to the seen data features, irrespective of the broader
eature distribution in the training dataset [34,35]. This observation
as prompted our focus on a critical issue: the need for models to learn
elevant and generalized individual concept features. This emphasis is
ssential for transferring knowledge acquired from seen data to unseen
ata in the context of multi-task plant disease identifications. Inspired
y the work in [10,36] that leveraged SSL to reduce disparities between
ross-domain data, we envision the deployment of SSL as a means to
earn feature distributions that closely align with both seen and unseen
lant disease data. This strategic alignment could help to minimize
nowledge and domain gaps. Specifically, we introduce a new model
nown as Cross-Learning Vision Transformer (CL-ViT).

CL-ViT employs multiple self-supervised tasks that can operate con-
urrently with SL. The essence of CL-ViT lies in its dual purpose: firstly,
t unifies the embedding learning process for both plant and disease
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Table 1
The key abbreviations and notations.
Abbreviation and Notation Definition

SSL Self-supervised learning
SL Supervised learning
PV PlantVillage
FF-ViT Feature Fusion Vision Transformer model
CL-ViT Cross Learning Vision Transformer model

𝑃 Plant concept
𝑃 Features of plant concept
𝐷 Disease concept
𝐷̂ Features of disease concept
𝐶 Total compositions which consist of both plant and disease concepts
𝐶𝑠 Seen composition in both training and testing dataset
𝐶𝑢 Unseen composition (unlabeled) in testing dataset
𝐶̂ Features of total compositions
𝑅̂ Feature from rotational SSL task
𝐹 Feature from flipping SSL task
𝐼 Feature from image patch SSL task
CLS CLS token from attention output
Patch Attention output exclude CLS token
𝐿𝑆 Supervised loss for seen compositions
𝐿𝑆𝑆𝑆

Self-supervised loss for seen compositions
𝐿𝑆𝑆𝑈

Self-supervised loss for unseen compositions
Fig. 3. The figure shows the architecture of our proposed CL-ViT model. SAL represents self-attention layer with Gaussian Error Linear Units (GeLU) activation. CAL represent
cross-attention layer with GeLu activation.
components, facilitating the establishment of essential contextual re-
lationships vital for characterizing plant disease data. Notably, this
approach tackles the intricate challenge of disentangling features when
disease and species details intricately interweave in leaf samples. Sec-
ondly, CL-ViT guides the learning of the feature distribution space using
actual disease data through SSL. By doing so, it effectively reduces
the disparities between seen and unseen data, aligning the model’s
understanding with the actual distribution of plant diseases in the real
world.

CL-ViT model can be separated into three main modules which are
the data preprocessing module, feature extractor module and cross-
learning module. The data preprocessing module will perform data
augmentation for all input images based on our carefully designed self-
supervised tasks. After the feature extraction process, these detailed
features are projected into separate spaces for SL and SSL.

3.2.1. Data preprocessing module
This module plays a crucial role by applying random augmentations

to input plant disease images, mapping them with specific pretext
5 
labels. The purpose is to facilitate the training of the feature extractor
on non-annotated data, enabling the learning of valuable features that
can serve as robust priors aligning the feature distribution between seen
and unseen classes.

However, it is important to note that not all pretext tasks are
suitable for capturing plant disease characteristics. For instance, those
that delve into pixel-level details, such as predicting pixel colors or fine-
grained brightness adjustments, are not ideal as they do not support
high-level visual concepts essential for bridging the similarity gap
between seen and unseen classes. The inclusion of such references
could lead to a separation between seen and unseen class distributions,
ultimately biasing the model towards seen classes due to the influence
of supervised signals. Careful consideration in choosing pretext tasks
is essential to avoid this undesirable bias. Therefore, in this study,
we deliberately choose data augmentations that are able to extract
the essential structural information from plant disease images. These
augmentations are then transformed into a range of classification-based
self-supervised tasks, drawing inspiration from prior research [29].
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Fig. 4. The figure above shows a comparison between a healthy and an infected tomato plant. The pathogens have infected various regions of the leaf samples, obscuring plant
details such as venation and leaf shape.
Due to the characteristics of disease symptoms that can occur in dis-
tinct leaf regions, the patch location prediction methodology employed
in [10] is not suitable for our plant disease identification tasks. The
approach consists of cropping the original image into several patches
and the cropped images may not necessarily reflect the plant-disease
relevant features, thereby hindering the model’s effective learning of
task-specific features. To address this limitation, we proposed a new
self-supervised task called ‘‘image patch randomization prediction’’.
Specifically, we avoid constraining the model to look at designated
patches but instead, examine holistic patches of an image in a random
manner. We present below the detail of each self-supervised task chosen
for our study:

• Rotation prediction: The input images are rotated into 4 differ-
ent angles which are 0◦, 90◦, 180◦ and 270◦. The task is to predict
the rotational angle as an identification task.

• Flip prediction: The input images are either not flipped, horizon-
tally flipped, or vertically flipped. The task is to predict whether
the images are either flipped or not.

• Image patches randomization prediction: The input images are
either uncropped, cropped into 16 image patches, or cropped into
64 image patches. After that, the order of these image patches
is shuffled randomly before being reassembled into their original
image size. By using this task, the global or structural information
of the images will be distorted in order to ensure the model learns
local features while all relevant visual features such as disease
symptoms are still retained in the input images. The task is to
predict the total number of cropped pieces.

3.2.2. Feature extractor module
FF-ViT [9] introduces a methodology that involves disentangling

plant and disease features. However, the intricate nature of disease
development often results in pathogens infecting diverse regions of
leaf samples, obscuring specific plant details and making it impracti-
cal to disentangle them into individual concept features, as depicted
in Fig. 4. Attempting to force the model to unravel these complex
features risks learning irrelevant aspects, deviating from the intended
concept. Consequently, the CL-VIT feature extractor adopts a unified
approach, consolidating the embedding learning process for both plant
and disease components.

This unified strategy is designed to establish essential contextual
relationships crucial for characterizing plant diseases effectively. In
this module, we utilize similar backbone from FF-ViT model which
is ViT model (vit_base_patch16_224) from [37] as plant disease fea-

̂ 𝑠
ture extractor, 𝑘(𝜙) to extract plant disease features, 𝐶 = 𝑘(𝐶 ).
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These extracted features are subsequently passed to the subsequent
cross-learning modules to project the features into class categorical
distribution space.

3.2.3. Cross learning module
Our cross-learning model is designed to acquire a generalized class

categorical distribution space that encompasses both seen and unseen
classes while preserving the discrimination between classes. It com-
prises three main components: supervised learning tasks, multiple SSL
tasks, and cross-attention mechanisms.

• Supervised learning. In the SL tasks, the model is trained to
discern the distinctions between plant disease classes, learning
the decision boundaries using labeled data. We employ two linear
classifiers, each corresponding to species and disease concepts,
similar to [8,38]. Attention layers are utilized to enhance the dis-
criminative features of each concept. The features of each concept
can be formulated as disentangled plant features, 𝑃 = 𝐴𝑡𝑡1(𝐶̂) and
disentangled disease features, 𝐷̂ = 𝐴𝑡𝑡2(𝐶̂) from entangled plant
disease features, 𝐶̂.

• Self-supervised learning. One of the key differences from FF-
Vit is the incorporation of SSL to reinforce the distribution of
learned features, encompassing both seen and unseen data. This
SSL acts as prior knowledge, guiding the model to align the
distribution between the two. The features learned in SSL are
mapped to selected pretext tasks, including rotation, flip, and
image patches randomization prediction, detailed in our earlier
data preprocessing module. These tasks are specifically designed
to capture the intrinsic characteristics of plant disease data. The
features of each self-supervised features can be formulated as
rotational features, 𝑅̂ = 𝐴𝑡𝑡3(𝐶̂), flip features, 𝐹 = 𝐴𝑡𝑡4(𝐶̂) and
image patch features, 𝐼 = 𝐴𝑡𝑡5(𝐶̂) from entangled plant disease
features, 𝐶̂.

• Cross attention. Both SL and SSL play crucial roles in different
aspects. SL tasks ensure that the model learned from labeled data.
This is essential because the individual concepts learned within
that seen space can serve as important clues for unseen classes.
On the other hand, SSL ensures that the feature distribution space
learned can encompass both seen and unseen data, promoting
the generalizability of the model. To ensure that each modality
can be optimized without bias towards either SL or SSL tasks,
we deploy a cross-attention learning mechanism to reweight the
tasks. This mechanism not only reduces bias towards either SL
or SSL tasks but also, within the self-supervised tasks, acts as the

primary regulator for selecting the most discriminative structural
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representation needed to represent plant diseases. This concept
is designed to avoid the potential pitfall of forcing the model to
rely on representations of irrelevant structural features. Instead,
it gives the model the flexibility to discern and select the most
relevant structural features on its own as it learns the model.
Specifically, The features from SL and SSL will be projected from
different embedding spaces into the same embedding space. Each
of the features consists of a class token (CLS) and an image
patch token (Patch) to represent global features and local features
learned from the input. We exchange the CLS token from SL
features and SSL features and fuse them with their own patch
token following the setting from [39]. The features of each final
features can be formulated as below:

𝐹 𝑖𝑛𝑎𝑙 𝑝𝑙𝑎𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑃𝑓 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡(𝐶𝐿𝑆𝑅∕𝐹∕𝐼 + 𝑃𝑎𝑡𝑐ℎ𝑃 ) (1)

𝐹 𝑖𝑛𝑎𝑙 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝐷̂𝑓 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡(𝐶𝐿𝑆𝑅∕𝐹∕𝐼 + 𝑃𝑎𝑡𝑐ℎ𝐷) (2)

𝐹 𝑖𝑛𝑎𝑙 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑅̂𝑓 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡(𝐶𝐿𝑆𝑃∕𝐷∕𝐹∕𝐼 + 𝑃𝑎𝑡𝑐ℎ𝑅)

(3)

𝐹 𝑖𝑛𝑎𝑙 𝑓 𝑙𝑖𝑝 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝐹𝑓 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡(𝐶𝐿𝑆𝑃∕𝐷∕𝑅∕𝐼 + 𝑃𝑎𝑡𝑐ℎ𝐹 ) (4)

𝐹 𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 𝑝𝑎𝑡𝑐ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝐼𝑓 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡(𝐶𝐿𝑆𝑃∕𝐷∕𝑅∕𝐹 + 𝑃𝑎𝑡𝑐ℎ𝐼 )

(5)

3.2.4. Training strategy
In this section. we will discuss in detail all the hyperparameters and

training schemes of CL-ViT models. All of the models are trained with
an initial learning rate of 0.001 and then decreased by a factor of 10
for at least 1 time when the models reach optimum loss. We use SGD
optimizer with a momentum of 0.9 and weight decay of 0.00001. We
run the training using an NVIDIA GeForce RTX 3060 graphic card. We
trained all models three times and averaged their performance results.
This approach balances resource constraints with the need for reliable
performance evaluation.

This model consists of three modules which are data preprocessing
module, feature extractor module, and cross-learning module. The data
preprocessing module will perform image augmentations correspond-
ing to the selected pretext tasks. The feature extractor module will
extract plant disease features, 𝐶̂, from the images formed by the data
preprocessing module. The cross-learning module will then combine
and regulate the features, 𝐶̂, by using both SL and SSL. SL learns two
linear classifiers of plant and disease by using cross-entropy loss. The
supervised loss function can be defined as below:

𝐿𝑆 = 𝐿𝑃 + 𝐿𝐷 (6)

𝐿𝑃 =
𝑛
∑

𝑖=1
𝑃𝑖𝑙𝑜𝑔(𝐶̂𝑝_𝑖) (7)

𝐿𝐷 =
𝑛
∑

𝑖=1
𝐷𝑖𝑙𝑜𝑔(𝐶̂𝑑_𝑖) (8)

𝑃𝑖 and 𝐷𝑖 are the truth label for plant and disease for the 𝑖 sample
in the dataset respectively. On the other hand, the self-supervised loss
function can be defined as below:

𝐿𝑆𝑆 = 𝐿𝑆𝑆1 + 𝐿𝑆𝑆2 + 𝐿𝑆𝑆3 (9)

𝐿𝑆𝑆1, 𝐿𝑆𝑆2 and 𝐿𝑆𝑆3 are losses from each self-supervised pretext
tasks. The loss of each self-supervised pretext tasks can be further
dissociate into seen and unseen images losses for example 𝐿𝑆𝑆1 =
𝐿𝑆𝑆1𝑆𝑃 + 𝐿𝑆𝑆1𝑆𝐷 + 𝐿𝑆𝑆1𝑈 . Therefore, the seen and unseen images
self-supervised losses can be defined as below:

𝐿𝑆𝑆𝑆
= 𝐿𝑆𝑆𝑆𝑃

+ 𝐿𝑆𝑆𝑆𝐷
(10)

𝐿 = 𝐿 + 𝐿 + 𝐿 (11)
𝑆𝑆𝑆𝑃 𝑆𝑆1𝑆𝑃 𝑆𝑆2𝑆𝑃 𝑆𝑆3𝑆𝑃
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𝐿𝑆𝑆𝑆𝐷
= 𝐿𝑆𝑆1𝑆𝐷 + 𝐿𝑆𝑆2𝑆𝐷 + 𝐿𝑆𝑆3𝑆𝐷 (12)

𝐿𝑆𝑆𝑈
= 𝐿𝑆𝑆1𝑈 + 𝐿𝑆𝑆2𝑈 + 𝐿𝑆𝑆3𝑈 (13)

𝐿𝑆𝑆𝑆
and 𝐿𝑆𝑆𝑈

represent the total self-supervised losses for seen
and unseen images respectively. 𝐿𝑆𝑆𝑆𝑃

and 𝐿𝑆𝑆𝑆𝐷
denote the self-

supervised losses for seen images corresponding to plant and disease
concepts respectively. We assign 𝛼 and 𝛽 as weighting coefficients to
balance between supervised and self-supervised loss. The final loss
function for our CL-ViT can be defined as follow:

𝐿𝑓𝑖𝑛𝑎𝑙 = 𝛼(𝐿𝑆 ) + 𝛽(𝐿𝑆𝑆𝑆
+ 𝐿𝑆𝑆𝑈

) (14)

3.3. Feature Fusion Vision Transformer (FF-ViT)

To better benchmark our novel CL-VIT, we revisited the existing FF-
ViT [9], as shown in Fig. 5. Basically, the architecture of FF-ViT, can
be separated into three main modules: the concept feature extractor
module, pairwise feature generation module and composition feature
extractor module.

The concepts feature extractor module will extract individual plant,
𝑃 and disease concepts, 𝐷̂ features into separated embedding space.
Specifically, two ViT models (vit_base_patch16_224) from [40] are used
as plant feature extractor, 𝑔(𝜙) and disease feature extractor, 𝑓 (𝜙).
Each of the ViT model consists of 12 attention layers (12 attention
heads with 768 embedding dimensions) and the final classification
head is removed to convert visual images into feature embeddings and
project them into plant embedding space and disease embedding space.
The disentangled plant features, 𝑃𝑚 = 𝑔(𝐶𝑠) and disentangled disease
features, 𝐷̂𝑛 = 𝑓 (𝐶𝑠) can be obtained from their respective embedding
space.

The pairwise feature generation module will harvest individual
plant, 𝑃 and disease concepts, 𝐷̂ features from previous module and
generate synthetic composition features, 𝑆̂ that include seen, 𝐶𝑠 and
unseen compositions, 𝐶𝑢. In particular, the module obtains disentan-
gled plant features, 𝑃𝑚 and disentangled disease features, 𝐷̂𝑛 from the
concept feature extraction module as inputs, and combines them via
feature summation [41] to generate synthetic composition features,
𝑆̂ = (𝑃𝑚, 𝐷̂𝑛). Unlike conventional feature fusion strategies where only
two individual features from the same image are combined to obtain a
combined composition, this module combines individual features from
different images to generate different unique compositions. The total
number of unique synthetic compositions can be formulated as 𝑆 ∈ 𝑚×
𝑛. In short, this module is capable of generating synthetic compositions,
𝑆 which include seen compositions, 𝐶𝑠 and unseen compositions, 𝐶𝑢 for
the composition feature extraction module.

After that, the final composition feature extractor module will ex-
tract features from the generated synthetic composition features, 𝑆̂
to perform downstream identification tasks. Specifically, multiple self-
attention layers [40] are used to exploit the features of synthetic com-
positions and obtain synthetic disentangled plant, 𝑆𝑃 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑆̂)
and synthetic disentangled disease features, 𝑆𝐷 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑆̂).

To preserve entanglement information in the disentangled features
and encourage knowledge sharing between the original and synthetic
compositions, a residue connection of complementary features from the
original disentangled features is introduced for each of the synthetic
disentangled features, inspired by the CMTL architecture of [8]. Finally,
the final synthetic disentangled plant features, 𝑆𝑃 = 𝑆𝑃 + 𝐷̂ and final
synthetic disentangled disease features, 𝑆𝐷 = 𝑆𝐷 + 𝑃 will be used to
perform seen and unseen plant disease identification tasks.
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Fig. 5. The diagram shows the architecture of FF-ViT model. The pairwise feature generation module will generate synthetic compositions for both seen and unseen data to enrich
the plant and disease embedding space for composition feature extractor module. The FF-ViT model utilizes the distribution of synthetic data to perform both seen and unseen
plant disease identification tasks.
3.3.1. Improved FF-VIT
FF-ViT* (PWA + a) [9], recognized as the pioneering benchmark in

this domain, has been subject to additional refinements driven by our
extensive studies and insights into training schemes and design flows.

We enhance the model through a revised training process and a syn-
thetic unique composition generation scheme (rs). The original training
process proposed in [9] optimizes the concept feature extraction mod-
ule to a certain weight range before optimizing the composition feature
extraction module. However, this may limit the correlation and sharing
of features learned for both modules, especially features of unseen
synthetic compositions that are only available in the later module.
Therefore, we propose to optimize both modules simultaneously by
removing the moving weighted sum, a in the illustrated loss function,
𝐿𝑓𝑖𝑛𝑎𝑙 = 𝑎(𝐿𝑃 + 𝐿𝐷) + (1 − 𝑎)(𝐿𝑆𝑃

+ 𝐿𝑆𝐷
), as introduced in the prior

method [9]. This is to associate synthetic composition features with the
plant and disease embedding space from the concept feature extraction
module. This may also improve the generalization capability of the
FF-ViT model, as the composition feature extraction module is highly
dependent on the concept feature extraction module.

The revised scheme (rs) implements feature summation for disen-
tangled plant features, 𝑃𝑚 and disentangled disease features, 𝐷̂𝑛 in the
data preprocessing phase. This contrasts with the method demonstrated
in [9], which performed this summation in the mini-batch. By relo-
cating this feature summation process, our pairwise feature generation
module can generate a scheme based on information from the entire
training dataset, rather than relying solely on samples from each mini-
lot. As a result, the scheme ensures a more balanced distribution of
total samples for each unique synthetic composition. In addition, it also
reduces the bias of FF-ViT model towards any dominant class.

4. Dataset

In this study, we assess the models’ performance using two different
datasets that represent laboratory-centric and real-world environments.
The datasets include (1) PV dataset (largest publicly available lab-
oratory images from [3]) and (2) real-world plant disease dataset
(challenging dataset proposed in [8]).
8 
PV dataset consists of 38 plant disease class pairs with 54,305
images. We separated the dataset into 80% training set and 20% testing
set according to the previous study in [3]. We further divide the original
test set into a seen test set (37 plant disease pairs from PV) and an
unseen test set (only Pepper bell bacterial spot). Given that the PV dataset
is captured in a controlled environment without a noisy background,
our analysis is honed in on evaluating the robustness of plant disease-
oriented features learned by our proposed models. Specifically, we are
keen on understanding how effectively these features can transition
from the seen to the unseen data.

The real-world plant disease dataset consists of a mixture of both the
laboratory image and the field. It is composed of PV dataset, Digipathos
dataset, IPM dataset and Pl@ntNet dataset. The dataset consists of 1146
plant disease class pairs with 10,226 training images and 1951 seen
testing images. We also use INRAEdi dataset from [8] which consists
of 388 images as additional unseen testing images.

5. Quantitative performance evaluations

In this section, we begin with the performance analysis of the
enhanced FF-VIT, which serves as the crucial benchmark for our novel
CL-VIT. Subsequently, we assess the performance of CL-VIT against
various state-of-the-art (SOTA) models. Following that, we present a
comprehensive ablation study on CL-VIT.

5.1. Improvement of FF-ViT

FF-ViT* (PWA + a) [9], acknowledged as the pioneering benchmark
in this domain, has undergone additional improvements based on our
in-depth studies of training schemes and design flows. This section
provides a comparative analysis of the performance among various
enhanced FF-ViT models.

From Table 2, it can be seen that the FF-ViT* (PWA + a) archi-
tecture proposed in [9], achieved 99.69% accuracy for seen and 9.26%
for unseen plant disease identification. We show that with rs, FF-ViT
(PWA + rs + a) outperforms FF-ViT* (PWA + a) on the unseen task,
achieving an accuracy of 15.74%, with comparable performance in
the seen class. The performance disparity shows that FF-ViT with rs
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Table 2
Performance comparison between SOTA models and our proposed model on seen and
unseen plant disease identification for PV dataset.

Model Seen Unseen Time per Total
Top 1 Top 1 epoch (min) parameters

ViT (PWA) 99.52 4.17 17 86M
ViT (NPWA) 99.43 7.87 17 86M
DINO-ViT (NoFT) 98.42 12.50 7 87M
CMTL-ViT [8] 99.49 6.94 11 89.4M
FF-ViT* (PWA + a) [9] 99.69 9.26 27 200M

FF-ViT (PWA + rs + a) 99.60 15.74 47 200M
FF-ViT (PWA + rs) 99.75 19.44 47 200M
FF-ViT (NPWA + rs) 99.67 20.37 46 200M
CL-ViT 99.31 32.41 34 125M

PWA and NPWA are pixel-wise and non-pixel-wise data augmentation strategies
respectively. NoFT is without fine-tune of DINO backbone. FF-ViT* (PWA + a) is
riginal model architecture and training scheme from [9]. a and rs are the moving
eighted sum and revised generation scheme for FF-ViT. The results for SOTA models
re reproduced by using our training and testing data.

hat learns a balance distribution based on the entire training dataset,
s capable of learning features of each unique composition including
nseen compositions.

The original training process [9] involved the integration of a
eighting coefficient, a to sequentially optimize the concept feature
xtraction module and the composition feature extraction module.
owever, through a rigorous performance monitoring of our FF-ViT
odel, we observed that excluding the weighting coefficient, a, led to
noticeable performance improvement for seen and unseen identifi-

ation tasks of 0.15% and 3.70% respectively. Henceforth, we deduce
hat simultaneous optimization of both modules is crucial to strengthen
he neurons’ co-adaptation, thus improving the overall feature learning
apability across the entire network.

.2. Comparison between different SOTA model

In this section, we compare our novel CL-VIT model against various
tate-of-the-art (SOTA) models. CL-VIT is designed based on the opti-
al values derived from our comprehensive studies, highlighting the

uperiority of NPWA over PWA and the effectiveness of SSL networks
n capturing generalized features for unseen plant disease images.
etailed experiments on these sub-modules can be found in Section 5.3.

One notable finding is that our proposed CL-VIT model achieved
he highest performance on the unseen task with a 32.41% accuracy.
his demonstrates that the hybrid concept of combining SL and SSL can
ffectively improve feature learning compared to models trained solely
ith either approach. Such a hybrid model effectively leverages the
est features of both training schemes, further enhancing the learned
eature distribution to encompass both seen and unseen plant disease
lasses.

Another observation is that CL-VIT could surpass the best FF-ViT
odel in the unseen task but achieve comparable performance in the

een task. This shows that the synthetic unique compositions generated
rom our improved pairwise feature generation module in FF-ViT model
re able to further optimize the learned feature distributions to delin-
ate better decision boundaries for seen data. However, the synthetic
nseen features in FF-ViT, which may not accurately represent the
ctual distribution of unseen plant disease features, lead to lower
erformance in the unseen task.

We also noticed that DINO-ViT (NoFT) outperformed ViT models
or unseen identification tasks. This may be due to DINO-ViT’s ability
o extract more generalized features for downstream identification
asks, as reported in [42]. However, in the field of plant diseases,
ertain classes of plants or diseases may have notable visual similarities,
osing a significant challenge to DINO-ViT’s generalized features in
istinguishing them effectively. As a result, DINO-ViT achieved the
9 
lowest performance among all models for the seen identification task
with an accuracy of 98.42%.

Additionally, we perform a comparative analysis of computing re-
sources, evaluating particularly time per epoch and total number of
parameters for all models. Our results indicate that the CL-ViT model
shows superior efficiency, with a 27.7% reduction in time per epoch
and a 37.5% decrease in total number of parameters compared to the
FF-ViT model (PWA + rs), which is the best-performing FF-ViT variant.
This efficiency is attributed to the design of the FF-ViT model, which
learns plant and disease features separately, requiring dual feature
extractors. Conversely, the CL-ViT model uses a unified approach,
which learns both features simultaneously, improving computational
efficiency. Furthermore, the results presented in Table 2 also demon-
strate that the CL-ViT model is capable of learning more generalized
features than the FF-ViT model.

5.3. Pixel-Wise (PWA) and Non-Pixel-Wise (NPWA) data augmentation

In this section, we conduct a thorough analysis of pretext tasks rele-
vant to plant disease identification. Specifically, we compare two differ-
ent data augmentation strategies, NPWA and PWA. The NPWA consists
of random resize crop, transpose, horizontal flip, vertical flip, shift scale
rotation, hue saturation value and random brightness contrast whereas
the PWA is only rotation, flipping and image patches randomization.
We initially compare these two data augmentation strategies on the
baseline model ViT, which serves as the backbone for the FF-ViT and
CL-ViT models. Subsequently, we analyze the performance differences
in the improved FF-ViT model.

According to Table 2, ViT (NPWA) shows a slight decrease in
accuracy on the seen task by 0.09% but demonstrates an improvement
of 3.7% in the unseen task when compared to ViT (PWA). A similar
trend can be seen in FF-ViT (NPWA + rs), where the seen task suffers
a degradation of 0.08%, while the unseen task improves by 0.93%
when compared to FF-ViT (PWA + rs). The performance disparity is
attributed to the utilization of PWA or NPWA in the model training
process. PWA enforces the model to learn class-specific features at a
pixel-wise granularity. However, such fine-grained details may not be
robust or appropriate for unseen plant disease classes. Despite discrim-
inative features being learned for the seen classes, the characteristics
that are learned without incorporating high-level visual concepts fail
to generalize across unseen plant disease data, often occurring in
different domains with variations in visual appearance. Therefore, we
deduce that the importance of retaining the high-level concept, with
our proposed NPWA, is much more effective in learning features that
are more generalized across both seen and unseen plant disease data.
These important findings are incorporated into our new CL-VIT model.

5.4. Supervised vs. self-supervised learning

Motivated by recent developments in the effectiveness of SSL net-
works, we explore their effectiveness in learning plant disease-related
features. Specifically, we compare the recently proposed architecture
DINO [42] with the most basic SL model to study the performance
disparity between them for the plant disease identification task. Before
diving into the comparative evaluation, it is essential to point out that
ViT (PWA) and DINO-ViT (NoFT) have the same backbone architecture.
In addition, the ViT and FF-ViT models were trained using SL, unlike
the DINO-ViT (NoFT) model, which was trained using a SSL approach.

It is evident from Table 2 that for the seen identification task, ViT
(PWA) outperformed DINO-ViT (NoFT) with an accuracy of 1.10%.
For the unseen identification task, on the other hand, we observe con-
siderable differences in model performance between the two learning
approaches. ViT (PWA) displays a decrease in performance with an
accuracy of 4.17%, while DINO-ViT (NoFT) performs better, with an

accuracy of 12.50%. The observed variance in performance can be
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Table 3
Performance comparison between SOTA models and our proposed model on plant
disease identification for real-world plant disease dataset. The test set consists of both
seen and unseen classes.

Model Top 1

ViT (PWA) 60.62
DINO-ViT (NoFT) 48.40
CL-ViT 61.31

attributed to the different learning methods employed to learn feature
distributions.

SL (ViT (PWA)) primarily focuses on learning class-specific features
to construct decision boundaries for distinguishing different classes, as
evidenced in previous research [43]. However, when unseen features
exhibit slight deviations from seen features, pre-established decision
boundaries may inadequately capture the feature distributions of both
seen and unseen classes. This is in contrast to SSL (DINO-ViT (NoFT)),
where the model’s feature extraction modules are learned without strict
constraints on class labels, resulting in more generalized adaptability to
diverse variant tasks. However, it is important to note that the feature
extractors, without proper guidance to adapt to the target dataset, may
impact their effectiveness. Despite DINO’s excellence in unseen tasks,
it shows a performance deficit compared with the improved FF-ViT
model, which is trained solely with a supervisory approach. The FF-ViT
model achieves an accuracy of 19.44%, which is 6.94% higher than the
DINO-ViT model.

5.5. Real-world plant disease dataset

In this study, we also assess the models’ performance using real-
world plant disease dataset (challenging dataset proposed in [8]). The
real-world plant disease dataset consists of a mixture of both the
laboratory image and the field. The real-world plant disease dataset is
used to evaluate the effectiveness of the models in learning generalized
features for real-world plant disease identification tasks.

To conduct a thorough comparative analysis, we benchmarked our
model against ViT (PWA) representing SL and DINO-ViT for SSL. The
results in Table 3 reveal that the CL-ViT model achieves an accuracy of
61.31%, surpassing the ViT (PWA) model by 0.69% and outperforming
the DINO-ViT model by a significant margin of 12.91%. Notably,
the DINO-ViT model, relying solely on generalized features extracted
through SSL, records the lowest accuracy at 48.40%. This underscores
the effectiveness of our novel cross-learning module in regulating essen-
tial generalized and discriminative conceptual features for real-world
plant disease identification tasks. Specifically, SL guides the feature
extractor to emphasize plant or disease-specific features, while SSL
further reinforces the model to learn generalized features applicable to
diverse sets of images captured in varying environments.

6. Ablation study of CL-ViT

In this section, we provide an empirical evaluation of our pro-
posed CL-VIT model. We assess the model performance under various
conditions.

6.1. Importance of unseen data in training pipelines

In this experiment, we analyze the impact of incorporating unla-
beled data in our training pipelines for the CL-ViT model. The unlabeled
data is utilized to leverage the features learned through the self-
supervised pipeline task. As depicted in Table 4, we observe that CL-ViT
with unseen data in the training pipelines improves seen and unseen
identification tasks by 0.09% and 8.8% respectively. This indicates
that the inclusion of unseen data features can enhance the feature
spaces and domain invariance of our model. The rationale behind this
improvement lies in the fact that prior knowledge gained from un-
seen data contributes to refining the unified feature mapping, thereby

reducing the domain gap between seen and unseen data. s
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Table 4
The ablation studies of CL-ViT model.

Unseen training Cross 𝛼 𝛽 Feature Seen Unseen
data attention dimension Top 1 Top 1

✓ 1.0 0.5 192 99.22 23.61
✓ 1.0 0.5 192 99.40 23.15
✓ ✓ 1.0 0.5 192 99.31 32.41
✓ ✓ 0.5 1.0 192 98.92 11.57
✓ ✓ 1.0 1.0 192 98.96 29.17
✓ ✓ 1.0 0.5 768 99.41 21.76
✓ ✓ 1.0 0.5 384 99.35 16.20
✓ ✓ 1.0 0.5 96 99.01 31.94

6.2. Importance of cross attention

In this section, we investigate the importance of cross-attention
in our cross-learning module in CL-ViT. The cross-learning module
aims to learn and regulate SL and SSL features to form unified fea-
tures for downstream tasks. According to Table 4, CL-ViT with the
cross-attention layer achieved comparable performance on the seen
identification task and improved on the unseen identification task by
9.26%. This observation clearly demonstrates that the cross-attention
layer in the cross-learning module, which uses different SL or SSL task
features for each task, is able to effectively optimize unified features
for both seen and unseen identification tasks.

6.3. Comparison in feature dimension

In this experiment, we study the impact of the different dimensions
of unified features (The features after cross attention (CAL) in Fig. 3).
The results show a notable trend: a drop in performance for the seen
identification task while observing an improvement in the unseen
identification task as the feature dimension decreases. This can be
attributed to the fact that a reduced feature embedding size leads to
features that are less biased towards the seen class, promoting general-
ization to the unseen class. A higher feature dimension may contribute
to model overfitting on the seen data. However, the performance in
the unseen identification task plateaus when the feature dimension is
further reduced. This observation suggests that an excessively small fea-
ture dimension may inadequately represent the distribution of features
learned from the SL and SSL tasks. Consequently, we determine that our
CL-ViT model achieves optimal performance when the unified feature
dimension is set to 192.

6.4. Comparison in weighting coefficients

In this experiment, we analyze the impact of weighting coefficients,
𝛼 and 𝛽, in our loss function (Eq. (14)) for CL-ViT. The loss function
onsists of supervised and self-supervised losses, and the weighting
oefficients, 𝛼 and 𝛽, serve as additional regulators to optimize the
nified features appropriately reweighted between supervised and self-
upervised features. Our results indicate that setting 𝛼 = 1.0 and
= 0.5 achieves the highest performance for both seen and unseen

dentification tasks.

.5. Comparison in batch size

In Fig. 6, we compare the performance of CL-ViT for unseen plant
isease identification with different batch sizes. Additionally, we in-
lude the previously proposed FF-ViT (PWA + rs) in this analysis
o provide a performance comparison between the two models. The
odels are trained using the PV dataset, and we intentionally set the
pper limit for batch size at 294, corresponding to the total unique
ompositions derived from the Cartesian product of the plant and
isease classes. The results exhibit a notable trend: an increase in batch

ize corresponds to improved performance for both models. However,
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Fig. 6. The performance comparison between FF-ViT and CL-ViT for unseen plant disease identification with various batch size.
Fig. 7. The performance comparison between FF-ViT and CL-ViT for unseen plant disease identification with various training data size.
the optimal performance for both models is achieved at a batch size
of 32. This suggests that the impact of batch size is closely correlated
with the characteristics of the dataset. Furthermore, in all batch size
configurations, the CL-ViT model consistently outperforms the FF-ViT
model, highlighting its superior performance in this context.

6.6. Comparison in size of training data

In Fig. 7, we evaluate the performance of CL-ViT in identifying
unseen plant diseases with different training data sizes. We also include
the previously proposed FF-ViT (PWA + rs) in this analysis to further
justify the superiority of the models. We prepare four training datasets
corresponding to different ratios of the original training PV dataset
11 
(40%, 60%, 80% and 100%). The results show a trend where the
performance of both models can be improved by using a larger training
data size. However, the increase in performance of the CL-ViT model
is greater than that of the FF-ViT model, suggesting that our CL-ViT
model is capable of learning a better feature distribution with larger
training data. Furthermore, the CL-ViT model regularly outperforms
the FF-ViT model in all training data size configurations, underlining
its dominance in this context.

7. Visualization analysis

In this section, we present feature distribution visualizations to offer
additional justification for the performance differences among various
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Fig. 8. The figure shows plant (a) and disease (b) feature maps for different models from T-SNE. Pepper bell bacterial spot (pink) is our testing unseen data. For plant feature
spaces (a), Pepper bell healthy is considered as relevant seen data due to similar plant concept (Pepper bell). For disease feature spaces (b), peach bacterial spot is considered as
relevant seen data due to similar disease concept (bacterial spot). The vertical and horizontal axes of each t-SNE map denote the two-dimensional embedding coordinates of the
sample images, where similar images or features are positioned closer together, indicating their proximity in the high-dimensional feature space.
model variants. We utilized T-SNE [44] to visualize the plant and
disease categorical feature embeddings. We randomly select images
from five classes of seen data and one class of unseen data. We ensure
that the classes selected included ‘relevant’ seen data, i.e. data that
shared similar plant or disease concepts to our unseen data.

7.1. Pixel-wise and non-pixel-wise data augmentation

Fig. 8 illustrates the plant and disease embedding space learned by
all models using t-SNE [44]. We first explore the impact of employing
distinct data augmentation techniques on feature representation learn-
ing. To illustrate this, we first direct attention to the features learned
by the ViT model shown in Fig. 8’s I and II. The feature distributions
I and II correspond to the plant (a) and disease (b) feature spaces for
PWA and NPWA respectively.

Firstly, we observe that both models can learn class-specific features
where features corresponding to each class exhibit distinct clustering
without perceptible overlap, and their performance in terms of seen ac-
curacy is comparable in Table 2. However, when evaluating the feature
distances between seen and unseen data, the features corresponding
to the Pepper bell bacterial spot (unseen data) in feature distributions
I(a) exhibit closer proximity to both relevant Pepper bell healthy and
irrelevant Tomato spider mites. Conversely, in feature distributions II (a),
the features of Pepper bell bacterial spot are primarily aligned with the
relevant Pepper bell healthy. We also observe a similar pattern in disease
feature spaces.

The discrepancy arises from the inherent characteristics of feature
learning in the two approaches, PWA and NPWA when faced with data
with slight distribution shifts. For example in Fig. 9, the visual appear-
ances of the data exhibit variations even for the same disease. The Peach
12 
bacteria spot showcases symptoms of brown spots spreading around
the leaf blade with substantial deviations in color. In contrast, Pepper
bacteria spot displays brown spots primarily concentrated on a greenish
leaf blade, illustrating the distinct visual characteristics within the
dataset. The model employing PWA, with its emphasis on fine-grained
features, may concentrate on capturing pixel-wise details, potentially
limiting generalization across diseases with similar symptoms. On the
other hand, NPWA, which correlates structural information and learns
long-range pattern features, offers greater adaptability, making it more
suitable for generalizing across plant samples exhibiting similar disease
symptoms. Based on this insight, we opt to incorporate NPWA into our
CL-ViT model.

7.2. Supervised and self-supervised learning

In this section, we investigate the extent to which SSL methods can
reinforce the underlying structure of learned features in plant disease
data. First, we draw attention to the features learned using DINO-ViT
(NoFT) with SSL, which claims to be able to learn generalized features
for the downstream tasks [42] in Fig. 8’s III (a) and (b). From the figure,
we can observe that the feature representation learned solely by SSL
is able to show distinct clustering between seen data in plant feature
space, but is unable to distinguish between seen data in disease feature
space. (overlap between seen data in circled region). This may be due
to the over-generalization of features learned through SSL, making
them insufficiently discriminating for precise identification tasks in
the disease domain. Nevertheless, these generalized features are still
effective in reducing the gap between relevant seen and unseen data
distances between relevant seen and unseen features are closer than
those of the ViT model with SL as shown in III (a) and III (b). This
prompted us to incorporate SSL into our final CL-ViT model.
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Fig. 9. The figure above shows a comparison of symptoms for bacterial spot disease between peach and pepper bell plant.
When comparing FF-ViT and CL-ViT, distinct clustering is evident
among each set of data. Notably, the feature distribution’s distance
between relevant seen and unseen data is closer for the CL-ViT model
than FF-ViT model. This difference is clearly illustrated in the disease
feature distributions of FF-ViT from IV(b) and CL-VIT from V(b). It
can be observed that the features of Pepper bell bacterial spot (unseen)
are close to both irrelevant disease classes, cherry powdery mildew and
tomato spider mites, for the FF-ViT model, whereas they are only close
to relevant disease class, peach bacterial spot for the CL-ViT model. This
divergence may stem from FF-ViT generating synthetic unseen data
as novel entries into the feature space, learning new decision bound-
aries without concurrent optimization of data distributions based on
the actual plant disease characteristics. In contrast, the CL-ViT model
optimizes the distributions between each set of data with our nov-
elty cross-attention module, ultimately reducing the feature distance
between seen and unseen data.

8. Conclusion

We introduce a novel approach, the CL-ViT model, which repre-
sents a significant advancement through its innovative SSL framework,
establishing a new benchmark in the field of unseen plant disease
identification. Specifically, we emphasize the crucial role of SSL in
guiding the model to learn and leverage not only the seen but also
unseen classes, thereby reducing the feature distribution gap. Our CL-
ViT outperforms the existing FF-ViT model, which relies solely on
a supervisory learning scheme, with a substantial improvement of
23.15%. Our visualization results further validate the effectiveness of
CL-ViT in learning a feature space capable of discriminating between
different classes while minimizing the domain gap between seen and
unseen data compared to other existing approaches. Thorough ablation
studies have been conducted to determine the most optimal parameter
setting for the best CL-ViT model performance.
Limitations and Future works: It is challenging to determine the most
appropriate set of self-supervised tasks capable of learning generalized
features for diverse plant disease identification tasks. Consequently,
future research may be directed towards the design and formulation
of self-supervised tasks capable of adapting to various settings within
the domain of plant disease identification. Another limitation is the
inadequate analysis of the model’s stability and robustness to changing
environmental conditions, including weather, soil health, and agricul-
tural practices. Overcoming this requires diverse datasets and extensive
data collection, as planned in the Pl@ntAgroEco project.1

1 https://plantnet.org/en/plantagroeco-2/.
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