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Preamble

I have done my internship at CIRAD, the French Agricultural Research Centre for Interna-

tional Development (Centre International de Recherche en Agronomie pour le Développement).

Founded in 1984 by merging former French tropical agricultural research organizations,

this research center is an EPIC (Public Establishment of Industrial and Commercial inter-

est), under the authority of the Ministry of Higher Education, Research and Innovation

and the Ministry for Europe and Foreign Affairs. As such, it supports French science

and diplomacy operations, by working for the sustainable development of tropical and

Mediterranean regions. Its aim is to use research and innovation to design resilient farm-

ing and food systems for a more sustainable and inclusive world. Its expertise supports

the entire range of stakeholders, from producers to public policymakers.

I worked more precisely at AGAP institute (Genetic Improvement and Adaptation of

mediterranean and tropical Plants), within the PhenoMEn team (Phenotyping and Mod-

eling of plants in their agro-climatic Environment) 1.

In this team, plant ecophysiology is a key discipline to identify and prioritize the

traits and associated processes that explain the variability of plant performance at differ-

ent organizational levels (tissue, organ, plant, crop) and functional levels (biochemistry,

physiology, growth and development, etc.). This performance variability depends on the

Genotype, Environment and Cropping System (GxExC). The complexity of the biologi-

cal systems implies the acquisition of massive and heterogeneous data, at various spatio-

temporal scales, by implementing adapted phenotyping methodologies. The analysis of

these data, in order to evaluate and predict optimal combinations of traits and cultural

practices in current or future agro-climatic scenarios, can only be done with the support of

applied mathematics and computer science: modeling (statistical, mechanistic, predictive

or explanatory) and modeling support tools, in particular software platforms and model

exploration algorithms.

1https://umr-agap.cirad.fr/nos-recherches/equipes-scientifiques/

phenotypage-et-modelisation-des-plantes-dans-leur-environnement-agro-climatique/

contexte-et-enjeux
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1 Introduction

Crop simulation models are dynamic computational models that simulate the development

and growth of a crop in relation to environmental conditions (e.g. air temperature, soil

water, evaporative demand, atmospheric CO2 concentration) and management practices

(e.g. sowing date, irrigation, N fertilizer application, crop residue). Crop models have

several purposes, from explaining complex processes happening in agricultural systems,

to simulating possible situations (i.e. Genotype x Environment x Management (GxExM)

interactions) and even predicting yields. Thus, crop models are crucial tools to aggregate

an ever-growing knowledge of crop functioning, and provide informed support for deci-

sions and policies.

Crop models are often developed in modeling platforms (i.e. environments in which crops

models are executed), to ensure their future extension and to ease coupling with other

models, like a soil model and a crop management event scheduler [11].

The crop modeling community has been active for about fifty years, resulting in a

wide diversity of models in use. So, there is a growing need for systematic model inter-

comparison, maintenance and improvement at the process level, in order to avoid a too

large variability between the outputs of the models [17].

That’s why, since 2010, the Agricultural Model Inter-comparison and Improvement Project2

(AgMIP) community of experts has been improving and harmonizing tools and protocols

to analyse and model agricultural systems, in order to be able to assess and predict the

impacts of climate change and other factors on agriculture, food security, and poverty at

local to global scales more accurately. This project strives for the interconnection of dif-

ferent research fields, linking agriculture with other topics like land use, nutrition, shocks,

and others, resulting in the active participation of about 1,000 agricultural modelers and

stakeholders worldwide.

AgMIP is establishing research standards, with for example the same assumptions across

regions and models, and developing a rigorous process to evaluate agricultural models. As

its name suggests, the AgMIP program relies on the inter-comparison of models, which is

crucial for improving their components.

2https://agmip.org/
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However, the diversity of implementation languages, software design and architectural

constraints of crop models makes it difficult to exchange model components and code (i.e.

algorithms) between platforms/models, which is impeding progress in this area. Further,

it is crucial to foster collaboration among ecophysiologists, crop modelers, software en-

gineers and model users to facilitate the integration of new knowledge in plant and soil

sciences into crop models (i.e. exchange the knowledge rather than building black-box

models), as well as to increase capabilities and responsiveness to stakeholder’ needs.

To this end, several leading groups in the field have recently established the Agricultural

Model Exchange Initiative (AMEI) [17, 31]. The AMEI is an open initiative that aims to

tackle various challenges related to exchanging model units at different levels of granularity

(from individual processes to whole plant) between modeling frameworks. The initiative’s

objectives include: (i) defining standards to describe unit and composite model exchange

format using a declarative representation; (ii) implementing unit tests with invariants and

shared standard parametrizations; and (iii) developing a web-platform that serves as a

hub for publishing, documenting, and exchanging the model units [17].

Following FAIR principles (Findable, Accessible, Interoperable, Reusable) of open sci-

ence, the AMEI designed a centralized framework, named Crop2ML, for exchanging and

reusing model components between crop modeling platforms [18, 20].

Crop2ML has been developed recently, and has never been tested for a whole crop

model. Therefore, no detailed methodology for its use has been provided and tested yet.

In this work, I propose a methodology that covers: (i) the implementation of a model in a

high-level language according to Crop2ML standards; (ii) the transpilation of this model

using Crop2ML; and (iii) the modularization of a crop model, adapted for its reusability

and exchangeability. I tested this methodology on a use case: crop model SAMARA.
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2 Models

2.1 Crop2ML

Crop2ML (Crop Meta Modeling Language) is a centralized platform-independent frame-

work for exchanging and reusing process-based crop model components between modeling

platforms. A software framework is an abstraction that provides a standard way to build

and deploy applications. Crop2ML has been developed by the AMEI, within the PhD

thesis of Cyrille Midingoyi [18, 20, 19].

Crop2ML offers a unified and abstracted description of model components (meta-information

and algorithms), to overcome the limitations of modeling platforms. Through an au-

tomatic transformation system, it converts high-level models, as often developed by

agronomists, into platform-compliant components.

CyML, an intermediate language

Bidirectional source-to-source transformation systems between multiple languages require

using intermediate languages and representation [27]. Crop2ML defines the CyML lan-

guage, which is a subset of the Cython language to express the main constructs of the

common computer languages (e.g. C, C++, Fortran, Java, C#, Python) that are used for

crop model implementation in crop modeling platforms (DSSAT, BioMA, Record, SIM-

PLACE, OpenAlea, etc.). CyML is a minimal domain language for the description of

associated algorithms of crop models [18], hence, for instance, it does not handle complex

data structures, such as trees, dictionaries, etc.

Transpilations using CyMLTx and CyMLT

The bidirectional source-to-source transformation (i.e. transpilations) happens in two

steps, using two tools: CyMLTx [19] and CyMLT [20].

CyMLTx generates automatically Crop2ML model components from existing platform-

specific crop model components written in different languages. Conversely, CyMLT trans-

forms Crop2ML models into model components in different languages and is targeted

either at a specific platform (equivalent executable Python, java, C#, C++ components

and packages usable from existing crop simulation platform), or to components with no
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dependency to a specific platform (only a language is targeted).

Both tranpilations rely on a similar transformation workflow. CyMLTx transformation

workflow is described in Figure 1. The transformation system integrates model docu-

mentation of the source code, that corresponds to the model specifications of Crop2ML

models.

Modular approach

Crop2ML is based on a declarative architecture of modular model representation to de-

scribe the biophysical processes and their transformation to model components that con-

form to crop modeling platforms. The levels of granularity of modeling processes cor-

respond to Crop2ML concepts such as ModelUnit and ModelComposite (respectively re-

ferred as ”unit model” and ”composite model” in the following text). Currently, Crop2ML

can only handle two levels of granularity, i.e. one level of composition. A composite model

is considered as a directed graph of unit models (i.e. a sequential order of the sub-models),

connected by their inputs and outputs to manage model complexity [20].

Crop2ML tools and website

Crop2ML framework includes several tools to enable project development.

Pycrop2ML is an open, modular, and extensible library developed in Python that im-

plements all the steps of Crop2ML model life cycle. PyCrop2ML can be executed via a

command line interface, even by users with no knowledge of the Python language [20].

CropMStudio is a JupyterLab environment for Crop2ML model life cycle management.

It makes the transpilations as easy as pushing a button.

Crop2ML has its own website3, that contains a web-repository, CropMRepository, en-

abling registration, search and discovery of CropML models.

Note that Crop2ML does not provide a modeling solution that would compete with crop

model simulation platforms.

2.2 SAMARA

SAMARA (Simulator of crop trait Assembly, MAnagement Response and Adaptation)

[14, 15, 23, 24] is a deterministic mono-crop model, developed by CIRAD, specifically

3https://crop2ml.org/
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Figure 1: Schema of the main steps of the CyMLTx transformation workflow for Crop2ML
model generation from platform model components. Green arrows show the three main
steps of the transformation process: (Step 1) parsing of the code of model components
using the ANother Tool for Language Recognition (ANTLR) parser generator [26]), then
generation of the Concrete Syntax tree (CST) and extraction of meta-information from
the Abstract Syntax Trees (ASTs) of the source code; (Step 2) pre-processing of the
ASTs and generation of the Abstract Semantic Graphs (ASGs) of the source of the algo-
rithms, initialization and auxiliary functions, for a language-independent representation;
and (Step 3) transformation of the ASGs into the CyML language and merging with
model specifications to generate a Crop2ML model component. Image from Midingoyi et
al. (2023) [19].
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designed for rice and sorghum cereal crops. It operates at a daily time step and requires

daily agro-meteorological weather data, including variables such as hours of sunshine,

temperature, humidity, wind speed, and rainfall. Additionally, hydrological topsoil prop-

erties such as volumetric water content at different soil moisture levels, percolation rate

under flooded conditions, and soil depth limit for root growth are essential inputs for the

model. SAMARA is implemented in C++ in the Artis platform, which also hosts other

crop models like EcoMeristem [16] and XPalm [25], and is available on Windows. I worked

with SAMARA V2.1.

Features of SAMARA

SAMARA distinguishes itself from other agronomy-scale crop models in its treatment

of assimilate partitioning among plant sinks, incorporating more detailed morphology

and phenology [6]. Unlike models that only consider carbon assimilation as the limiting

factor, SAMARA also accounts for organ sink capacity, which refers to the potential size

and number of plant organs that can grow and respire on a given day. This demand-

supply interaction, measured by the state variable IC (Index of internal Competition),

influences various morphogenetic and physiological processes, including tiller initiation or

senescence, leaf size, internode elongation, root growth, and panicle dimensioning.

SAMARA considers the availability of water resources and stresses such as drought,

logging, submergence, and thermal stresses. It does not incorporate mineral nutrition

(i.e. N, P, K) into its calculations. However, it allows for simulating phenotypic plas-

ticity, adaptive or non-adaptive, and different adaptation strategies based on resource

utilization. It considers various crop management options, including transplanting versus

direct seeding, flexible water management practices like stress cycles, alternate wetting

and drying, deficit irrigation, and mulching.

SAMARA’s conceptual model is provided in Figure 2, as an overview of the main processes

interactions in SAMARA crop model.

Purpose of SAMARA

SAMARA’s primary purpose is to facilitate the study and evaluation of in-silico plant

type concepts (i.e. ideotypes) under different climatic, soil, and management conditions.

The model serves as a valuable tool for pre-breeding research, aiding in the characteri-
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Figure 2: SAMARA’s conceptual model. Image by Michael Dingkuhn.

zation of target environments and the development of in-silico ideotypes [23]. However,

for applications such as agronomic decision support or mapping climatic yield potential,

SAMARA may be considered over-parameterized, given the large number of parameters,

some of which are difficult to calibrate due to their indirect measurability [14].

3 Method

The following method is my contribution to the AMEI.

3.1 Transpiling a crop model towards and from Crop2ML

This section describes the method to document, format and transpile from a language or

crop modeling platform to another a crop model using Crop2ML.
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3.1.1 Tailoring a crop model to Crop2ML standards

Documentation

Documentation is a crucial step in model development life cycle. It is essential for any kind

of reuse, by the same person some time later or by another user, whatever his/her back-

ground. Explicit documentation is required for an efficient maintenance and (re)usability

of any model.

The documentation of models, functions, variables and parameters (i.e. model specifica-

tions) has to follow a specific syntax to be understood by Crop2ML. All the specifications

are described on Crop2ML Read the Docs4. For each unit model, the documentation must

be written as a docstring, stating the name of the unit model, its version, its time step, its

description (including the title, the author(s), the reference, the institution for which the

authors work, an extended, and optionally a short, description), the inputs (parameters

and variables, with their name, description, category, type, unit, etc.). All those model

specifications must be organized in a hierarchy of indentations, with dashes and asterisks,

as shown in Figure 3.

Code formatting

Tags have to be added to mark up the code area for CyMLTx (e.g. model beginning tag

’%%CyML Model Begin%%’ in Figure 3).

Data types have to be precised, whatever the initial language, in order to meet the re-

quirements of all languages (in particular languages with explicit type expression) the

model could be transpiled towards.

Some more adjustments may have to be made, depending on the specificities of the initial

model. For example, global variables have to become inout variables in the unit and com-

posite models. Moreover, Crop2ML only supports some basic libraries, for which there

are equivalents in every language. Nevertheless, crop models usually don’t need more

complex libraries.

The implementation of unit and composites models is documented on Crop2ML Read the

Docs5.

4https://crop2ml.readthedocs.io/en/latest/user/specifications/specM2.html
5https://crop2ml.readthedocs.io/en/latest/user/index_spec.html
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Figure 3: Formatting of the first lines of a source code (here, source code is written in
Python language) according to Crop2ML requirements.

3.1.2 Replicating a crop model in different languages

Transpilation process through Crop2ML

Once the model has been formatted accordingly, in any language supported by Crop2ML,

it can be transpiled. There are two stages of transpilation: (i) from initial language (or

platform) to Crop2ML; and (ii) from Crop2ML to another language (or platform). The

documentation and comments of a model are parsed and transformed during the tran-

spilation to Crop2ML. Generated CyML code is written in PYX files. Meta-information

about the model (unit and composite models) is stored in XML files. A PNG image of

the workflow of each composite model (i.e. the sequential execution of the unit models

within it, a connection between two unit models corresponding to an exchange of vari-

ables) is generated only by the transpilation to any language or platform. A tree view of

the structure of a Crop2ML model component package is available in [20] (Fig. 8).
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Transpilations can be done using the user interface CropMStudio, or with command lines

(example in §4.1) in a conda environment with the following specifications:

$ conda i n s t a l l −c amei −c openalea3 −c conda−f o r g e pycropml

Any transpilation process can be assimilated to an identity function, such that, the models

before and after transpilation can give the same outputs for any given inputs, i.e. a

simulation through one model must be reproducible with the other one. Only the language

and the implementation of the model has to change by transpiling, not its functionality

and behavior.

One-to-many transpilations

Crop2ML supports 7 different languages (CyML, Python, R, C++, C#, Fortran, Java)

and 8 different platforms (OpenAlea, DSSAT, BioMA, APSIM, SIMPLACE, Record,

SiriusQuality, and STICS), which means that transpiling through a centralized framework

like Crop2ML enables to replace (8)(8−1)
2

= 28 different converters or wrappers.

3.2 Modularizing a crop model

3.2.1 Modularity & Model reuse

Definition of modularity

Modularity is the degree to which a system’s components may be separated into modules,

that can be recombined. The concept of modularity implies interdependence within and

independence across modules [2]. In other words, the goal of modularizing a system is to

form loosely coupled and self-contained parts of it.

Here, the system I considered is a set of connected unit models, that I aimed to modularize

in order to form composite models. I have used the terms ”modules” and ”composite

models” interchangeably.

Modularity applied to crop models

When modularizing a crop model (or a sub-set of a crop model) with the aim of exchanging

and reusing its modules, a first concern should be about the biological and functional

coherence of the modules, i.e. each module corresponds to a given plant or environmental
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process. But soon, two other issues emerge: (i) the granularity of the modularization,

i.e. how many modules should be formed and of which size and hierarchy; and (ii)

the distribution of the model variables among the modules should be as optimized as

possible, so that unit models that are in different modules exchange as few variables as

possible. Indeed, crop models often work with large amounts of variables (e.g. around

300 for SAMARA), which, moreover, are not necessarily the same among the different

crop models.

State of the art

Some models (e.g. DSSAT, Monica, APSIM, etc.) are already built with a notion of

modularity. In the literature, some suggestions, provided by experts, of ways to consider

separately the different plant processes can be found. They are shown in Table 1.

Wery (2005) [34] Hay and Porter (2006) [9] Adam (2010) [1]

- Phenology (vegetative and
reproductive development)
- Leaf area expansion
- Production of assimilates
- Partitioning of assimilates
- Nitrogen dynamics
- Transpiration

- Phenological development
- Leaf canopy development
- Biomass production
- Biomass partitioning over
the plant organs

- Phenology (vegetative and
reproductive development)
- Light interception (leaf
area expansion, leaf canopy
development)
- Dry matter production
- Partitioning / allocation
(development of sink and
assimilate partitioning)
- Production level (e.g. wa-
ter stress)

Table 1: Modularity of plant processes according to crop model experts

One can first observe that there is a certain consensus about isolating the phenology of

the plant, which can be viewed as the timer of the plant development, as well as the plant

and canopy development. However, the latter is strongly linked to the other processes,

as light interception, along with water uptake, condition assimilation and is regulated by

biomass production and stresses. And the challenge of modularizing a crop model mainly

lies in those other processes.
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3.2.2 Quantitative Graph Theory approach for Modularization

Mathematical tools are often helpful to get an objective view, even though those tools are

chosen by the user and therefore biased. They can still serve to support decision. In the

quest of modularizing crop models, I chose to use a quantitative graph theory approach

in order to optimize the community structure of the crop model, i.e. its separation into

modules.

Choice of graph

A process-based crop model can indeed be seen as a graph, whose vertices are its unit

models, inputs and outputs are ports associated with vertices, and edges are directed

from one output port of a vertex (e.g. a model) to the input port of another one to pass

information. I considered the graphs associated to crop model as directed graphs, because

the order in which the unit models are executed in the crop model can’t be ignored. There

are nevertheless several ways to formalize more precisely the connections between the unit

models, depending on which aspect of the model is worth being emphasized. A port graph

is very detailed and stores every port-to-port connections between the vertices (i.e. all

variables exchanged between the unit models), whereas a workflow of a crop model only

links two unit models if they exchange at least one variable. The graph I wanted to

modularize was a hybrid, because it only records the number of connections between the

vertices (i.e. the number of variables exchanged between the unit models). Indeed, when

it comes to modularizing a crop model, which is a kind model involving many variables

(e.g. about 300 variables in SAMARA), it can be interesting to consider the number of

variables exchanged by the different unit models. However, a port graph would be harder

to manipulate.

I have referred to this last directed weighted graph as ”the graph of unit models”. The

mathematical definitions of all those graphs are provided below.

Definitions

Port graph of the model - The port graph associated to a crop model is a directed

graph G = (V, Pin, Pout, E)(ϕin,ϕout) where:

V = {v1, . . . , vn}, n ∈ N is a finite set of vertices (i.e. nodes), here the unit models in

their order of execution in a simulation;
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Pout = {(ps1 , as1), . . . , (psn , asn)}, n ∈ N and Pin = {(pt1 , at1), . . . , (ptn , atn)}, n ∈ N are

finite sets of tuples of, respectively, output and input ports, and their attributes, here the

names of the variables;

ϕin : Pin −→ V and ϕout : Pout −→ V are applications associating respectively input and

output ports to vertices; here it corresponds to associating input and outputs variables

with a unit model; and

E = {(sx, (psx , asx)), (ty, (pty , aty)) | sx, ty ∈ V, x < y, (psx , asx) ∈ Pout, (pty , aty) ∈ Pin, asx =

aty} is a finite set of edges connecting output ports to input ports of vertices with a higher

index (considering the order of the unit models in a simulation) when they have their at-

tributes are equal; here it means that an edge is created when, among the output variables

of one unit model and the input variables of another one executed after, two variables

share the same name.

Workflow of the model - The workflow of a crop model corresponds to the daily se-

quential execution of the unit models, hence it can be formalized as a directed unweighted

graph G = (V,E ′) where:

E ′ = {(sx, ty) | sx, ty ∈ V, x < y, ∃(sx, (psx , asx)), (ty, (pty , aty)) ∈ E} is a finite set of di-

rected graph edges connecting vertices; two vertices are connected if there exists at least

one port-to-port edge between the two same vertices in the port graph.

Graph of unit models - A directed weighted graphG = (V,E ′′) can then be obtained

from the port graph, such that:

E ′′ = {((sx, ty), w) | (sx, ty) ∈ E ′, w =
∑

(si,(psi ,asi )),(tj ,(ptj ,atj ))∈E
δ((si, tj) = (sx, ty))} is a

finite set of directed weighted graph edges connecting vertices, where the weight of an

edge corresponds to the number of port-to-port edges between two vertices in the port

graph.

Pre-processing

This was an assertive choice, guided by expert knowledge, to perform a pre-processing in

order to work with a less complex network.

First, I formed some composite models manually, when some kind of consensus has been

reached (e.g. for phenology, cf §3.2.1). In practice, the unit models concerned were then
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removed from the weighted graph of unit models (the nodes and edges linked to them),

in order to perform community detection algorithms only on unit models that are hard

to classify.

Another pre-processing maneuver has been to quotient the weighted graph of unit models

by forming groups that would correspond to systems of equations, considering another

abstraction level between the unit and composite models. In the end, the goal was to

form communities of systems of equations.

Exploring different graph community detection algorithms

To compute modules from the graph of unit models, I used community detection algo-

rithms using different methods, of which I wanted to compare the outcome (a review of

community detection algorithms can be found in [12]).

There was no issue of time or space complexity in the choice of the algorithms since I

dealt with a rather small network. For format compatibility purposes, I worked with

NetworkX graph (from Python library NetworkX), and all the algorithms chosen were

either available in NetworkX or used this library (as for generalized k-means on graphs6

[8]). The algorithms also had to work for directed weighted graphs.

The details of the chosen algorithms are displayed in Table 2.

Hierarchical community detection algorithms, such as Clauset-Newman-Moore [4] [32]

[22] and Girvan-Newman [7] algorithms, operate by building a hierarchy of community

structures. There are two main strategies to get this outcome: (i) agglomerative, i.e. a

bottom-up approach where each observation starts in its own cluster, and pairs of clusters

are merged as one moves up the hierarchy; and (ii) divisive, i.e. a top-down approach

where all observations start in one cluster, and splits are performed recursively as one

moves down the hierarchy. The merges and splits are often determined by optimizing a

metric in a greedy manner (i.e. making the locally optimal choice at each stage).

Generalized K-means on graph is a k-means-like community detection algorithm, adapted

to graphs, that utilizes centrality measures (e.g. PageRank, harmonic centrality, etc) [8].

6https://github.com/mhajij/Generalized_K-means_on_Graphs_Using_PageRank/tree/main
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Algorithm Method Metric (optimization) Parameter &
chosen range

Clauset-
Newman-
Moore7

[4] [32] [22]

Greedy
Hierarchical
Agglomerative

Modularity
(maximization)

Resolution γ (> 1 for
smaller communities)
[1.0, 1.2, 1.4, 1.6, 1.8,
2.0, 2.2, 2.4]

Girvan-
Newman8 [7]

Greedy
Hierarchical
Divisive

Edge betweenness
centrality
(edges with the largest
one progressively
removed)

Nb of communities
[3, 4, 5, 6, 7, 8,
9, 10, 11, 12]

Generalized
K-means
on graphs9 [8]

K-means-like
greedy
clustering from
randomly picked
nodes

Any centrality
measure available
in NetworkX

Nb of communities
[3, 4, 5, 6, 7, 8,
9, 10, 11, 12]

Table 2: Main features of the community detection algorithms used to form communities
from the reduced version of the directed weighted graph of the unit models.

Comparing the community structures using a metric

In order to compare and thus quantify (i.e. objectivate) the pertinence of the community

structures generated by the community detection algorithms, I wanted to rely on a metric.

So, according to the criteria mentioned §3.3, a metric that would suit this situation was

one taking into account the number of variables exchanged between the composite models,

that I wanted to minimize. I called this new metric ”model nearness”. An easy way to

implement it was to take the complement to 1 of the edge coverage of a community

structure. Indeed, the coverage of a community structure is the ratio of the number of

intra-community edges to the total number of edges in the graph:

coverage =
nb of intra-community edges

total nb of edges

, hence:

Model nearness = 1− coverage =
nb of inter-community edges

total nb of edges

The number of inter-community edges corresponds to the number of variables exchanged

between the composite models. Thus, this is model nearness that I aimed to minimize

while comparing the different community structures.
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Sensitivity analysis

Model nearness strongly depends on the number of communities. The community struc-

tures generated by the community detection algorithms or formed manually with expert

knowledge were only comparable if they had a similar number of communities. That’s

why I wanted to capture model nearness sensitivity to the number of communities.

Note that, in order to overcome the randomness of the generalized K-means algorithm,

I ran the algorithm many times (e.g. 1000 repetitions) and averaged the model nearness

for each value of the parameter (e.g. from 3 to 12 communities). This of course did not

allow for an analysis of the pertinence of the communities formed for a given value of the

parameter.

3.3 Software engineering method

3.3.1 Software engineering tools used for this project

As part of this work, I developed a new version of crop model SAMARA, called XSamara,

which stands for ”eXtended Samara”.

GitHub project - This project is public and I made it available on GitHub10. The use

of GitHub, as the most popular web-based version control and collaboration platform for

software developers, made the collaborative development of XSamara easier and more

efficient by being able to maintain a record of modifications made to the code, allow code

review, and provide feedback via pull requests and issues.

License - XSamara is under the open source license Cecill-C.

Documentation - XSamara crop model is provided with a Sphinx documentation and

tests on GitHub. The composite models are also separately available on CropMReposi-

tory11, with their own documentation.

The goal of these choices was to gain in visibility and to make the transfer of the model

and the methodology easier.

SAMARA’s original source code - The C++ script of the earlier version of

SAMARA can be found on GitHub12. From there, I drew the code of the unit mod-

10https://github.com/AgriculturalModelExchangeInitiative/XSamara/
11https://crop2ml.org/Repository
12https://github.com/PAMDeveloper/rSamara/

19

https://github.com/AgriculturalModelExchangeInitiative/XSamara/
https://crop2ml.org/Repository
https://github.com/PAMDeveloper/rSamara/


els, that I translated to Python, documented and then transpiled.

PyCrop2ML - Cloning PyCrop2ML repository13 and creating a conda environment

with the necessary requirements were necessary in order to use Crop2ML software. While

progressing in the development of XSamara using PyCrop2ML, I interacted with Py-

Crop2ML developers by reporting issues on GitHub.

IDE - I used Visual Studio Code as an IDE.

Python packages - Most of the code I produced was in Python, for both the transpilation

and the modularization part. Python was indeed interesting for the latter thanks to

Python libraries, in particular I used NetworkX for graph analysis.

Graph visualization software - Cytoscape [33] was used to create the layout of Figure

7, and VisuAlea [30, 29] enabled the visualization of the port graph associated with

XSamara, obtained by transpilation to OpenAlea platform.

3.3.2 Modeling workflow for end user

The aim was to create a user-friendly modeling workflow that could allow any non-

computer-scientist to easily make their crop model or model component available in

Crop2ML and reusable on any platform. This workflow is conceptualized in Figure 4.

This workflow does not explain how to integrate foreign model components to crop mod-

els. This step might imply many adjustments that are proper to each case.

4 Results & Discussion

4.1 SAMARA to XSamara

Rewriting of the unit models of SAMARA in Python

First, I wrote all the 84 unit models of SAMARA V2.1 from C++ to Python. The

goal of this first transformation was: (i) to get to know this crop model, understand the

hypotheses made and the physiological processes taken into account; (ii) to make sure

13https://github.com/AgriculturalModelExchangeInitiative/PyCrop2ML/
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Figure 4: Modeling workflow for end user.

not to forget any feature of the model for which the transformation with Crop2ML would

be hazardous; and (iii) to start the whole process from a high-level language in order

to understand the issues that the researchers could possibly encounter using Crop2ML.

Unit tests were performed for each unit models to ensure that the translated code was

functional. This step was purely methodological, as I didn’t know SAMARA and its

implementation.
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Documentation of the unit models

A documentation of the SAMARA model is available online14. From this, I had to write

a formatted documentation in each unit model (syntax explained in §3.3.1.), so that it is

readable by Crop2ML.

I created a database (i.e. an XLSX file) recording all the variables and parameters of the

model (approximately 400 in total), in order to get organized while documenting the code.

For each variable, their whole characteristics were specified: description, category, type,

unit, default, min and max values, as well as the unit models they appear in, as input

(in), output (out) or both (inout). The information found in this database is the same

as the one provided in the documentation generated on https://crop2ml.org/ with the

XML files.

Transpilations of the unit models

Once the files were correctly formatted (cf Code formatting in §3.1), they could undergo

transpilation using Crop2ML. At this stage of the project, I considered the model as

unmodularized, i.e. I only implemented one composite model XSamara.

I transpiled from Python to Crop2ML the code automatically using CyMLTx. I transpiled

the unit models and the XSamara component from Python to Crop2ML automatically,

using CyMLTx, with the following command line:

$ C:\XSamara> cyml −c samara . py

This transpilation created in a crop2ml directory: XML files for the metadata and PYX

files for the CyML code in a algo\pyx\ directory.

Afterwards, I transpiled the unit models and the XSamara component from Crop2ML

to any target language or platform available in Crop2ML automatically, using CyMLT,

with the following command line:

$ C:\> cyml −p XSamara XSamara t a r g e t l anguag e o r p l a t f o rm

The first XSamara corresponds to the project directory, and the second one to the

name of the directories created to store the output files. This transpilation created in

14https://umr-agap.cirad.fr/nos-recherches/equipes-scientifiques/modele-samara, docu-
ments on the left
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Figure 5: Tree view of the file architecture of XSamara project.

C:\XSamara\: (i) the generated code is stored in a directory src\target language\XSamara\;

(ii) tests in test\target language\XSamara\; (iii) PNG figures of the generated workflows

of the composite models in doc\images; and, only for a transpilation to OpenAlea plat-

form, (iv) the graph of the whole model (i.e. an edge list with weights, as an XLSX files)

in doc\. The file architecture of XSamara is provided in Figure 5.

Validation of code functional integrity after transpilation process

I had to make sure that the code provided the same results after either its rewriting to

Python and its transpilation with Crop2ML. For this purpose, I transpiled SAMARA to

C++, in order to execute this new version with the same environment as SAMARA V2.1.

Some adjustments have been made because the C++ code obtained with CyMLT had a

different way to manage the variables, mainly. Then, I could check whether simulations

with SAMARA V2.1 and with the C++ version of XSamara, starting with the same input

values, give the same outputs. The trace of the simulation has been validated with the

help of a Qt application, specially designed for SAMARA.
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4.2 Modularization

Pre-processing

The initial SAMARA model contained 84 unit models. There were two ways to reduce

the number of unit models to include in the graph of unit models given to the commu-

nity detection algorithms: (i) by merging together unit models when it was pertinent

(e.g. when they were involved in the same precise plant process, or when they con-

tained only one equation); and (ii) by forming manually, with expert knowledge, some

modules whenever suitable (as described Pre-processing in §3.4): Phenology (vegetative

and reproductive development, influenced by photo-thermal time), Temperature-induced

Stresses and Sterility, Water Stresses (drought and logging), Rice-specific (transplanting,

irrigation), and Sorghum-specific (mortality). In the end, I only had to deal with 49 unit

models.

Moreover, I quotiented (i.e. partitioned) the graph of unit model minimally, not to con-

strain to much the modularization, grouping only the unit models related to organ struc-

tural demand on one side, and those related to organ structural growth on another side,

in order to make sure that the unit models in each group stay together during modular-

ization.

Sensitivity analysis

Model nearness increased with the number of communities, whatever the community de-

tection method applied, as can be observed on Figure 6. It seems logical since the more

communities there are, the more variables are exchanged in all.

The behavior of Girvan-Newman algorithm was singular, as it made some plateaus

(i.e. small increase in model nearness with the separation of a community). It means that

only a few cuts in the graph made model nearness highly increase, i.e. separated groups

of unit models that share a consequent number of variables.

The first ”leap” from 3 (model nearness = 0.08) to 4 communities (model nearness =

0.23) corresponded to the separation of a ”plant architecture and organ structural de-

mand” community from the other plant processes, such as C assimilation and supply, IC,

dry matter production, and leaf area factors (LAI and SLA) computation. Indeed, many
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variables are shared among these two blocks, as organ structural demand depends on the

IC and C supply, organ growth on the demand, and leaf area factors on plant architecture.

The second ”leap” from 8 (model nearness = 0.28) to 9 communities (model nearness =

0.38) marked the separation of leaf area factors (LAI and SLA) computation from the

large community comprising C assimilation and supply, IC and dry matter production.

Between those ”leaps”, the plateaus corresponded most of the time to the creation of

communities containing only one unit model (e.g. communities number 5, 6, and 7 cor-

respond respectively to models that compute the actual radiation use efficiency (RUE),

the maximal root speed, or the actual root depth). Yet, separating single unit models

often had less meaning, even though it helps minimizing model nearness. Without those

cuts in the graph, one could easily imagine that the difference of model nearness between

the community structures obtained with Girvan-Newman algorithm and the other ones

would be much smaller.

Figure 6: Graph of Model nearness = f(nb of communities)
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Analysis of the community structures formed by the community detection

algorithms

As observed in the sensitivity analysis, looking only to minimize model nearness may not

be sufficient to form ”optimal” communities, as it biases toward low-granularity commu-

nity structures. Yet, opting for a very low granularity, i.e. big communities, cannot be

considered as a well done modularization, as it does not really solve the black-box issue

of crop models. Indeed, when asked to form only 3 communities, Clauset-Newman-Moore

(CNM) and Girvan-Newman (GN) algorithms formed one for soil water dynamics, one

for light interception (and C assimilation and respiration with CNM) and one for all the

other plant processes.

Thus, instead of wanting to fix a threshold for model nearness, under which the commu-

nity structure would be automatically considered as suitable, it would be more adapted

to first fix the desired level of granularity (that would correspond here to a certain range

of number of communities, as only one level of granularity can be implemented with

Crop2ML) and then try to find trade-off between: (i) a relatively low value for model

nearness; and (ii) the biological coherence of the community structure.

Regarding the general aspect of the community structures formed by the community

detection algorithms, one can first observe that the generalized K-means algorithm did

not provide relevant community structures overall. Indeed, as this algorithms starts by

picking random unit models as heads of the future communities, regardless of their ”prox-

imity” in the graph, the clustering might for example split communities that are very

close. So, it can’t be used on its own.

Therefore, let’s focus on the results of the two other algorithms. Similar communities

emerged with both algorithms (disregarding the issue of single unit models with GN

mentioned in the previous paragraph). CNM algorithm gave particularly promising com-

munity structures, up to a resolution of 1.6 (5 communities formed, model nearness =

0.35), above which some small meaningless communities were formed.

Post-processing and choice of community structure for XSamara

For the modularization of XSamara, I wanted to form about 5 or 6 communities. The

most relevant community structures that would correspond to this constraint (equivalent
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to a level of granularity) were: (i) the one obtained with CNM algorithm by setting a

resolution of 1.6, giving 5 communities for a model nearness of 0.35; and (ii) the one got

with GN algorithm by setting the number of communities to 9 (which would be equivalent

to 6 without the single-model communities) for a model nearness of 0.38. The community

structures are detailed in Table 3. I attributed names to the communities or groups of

communities for better comprehension. The unit models in italic are the ones that have

been manually changed during post-processing, guided by expert choice, to obtain the

community structure retained for implementation in XSamara, showed in Figure 7.

Algorithm CNM GN

Nb of communities 5 9

Model nearness 0.35 0.38

Soil water dynamics SurfaceEvaporation

FTSW

SoilSurfWaterAfterET

MaxRootSpeed

RunoffAndDrainage-

-SoilWaterReservoirs

FilledSoilWaterReservoirs

WaterLoggingUpland

UpdateSoilWaterReservoirs

AvailableWater4Roots

ActualRootDepth

PotET

SeparationPotET

Transpiration

PotAndActualET

SurfaceEvaporation

FTSW

SoilSurfWaterAfterET

RunoffAndDrainage-

-SoilWaterReservoirs

FilledSoilWaterReservoirs

WaterLoggingUpland

UpdateSoilWaterReservoirs

AvailableWater4Roots

CarbonAndWaterBalances

MaxRootSpeed

ActualRootDepth

Evapo-transpiration PotET

SeparationPotET

Transpiration

PotAndActualET
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Plant architecture

& organ structural

demand

LeafAppearance

PlantHeightAndWidth

PotLeafLength

TotNbOfTillers

TotNbOfLeavesPerHill

DeadTiller

DemandLeaf

DemandSheath

DemandRoot

DemandInternode

DemandPanicleStruct

LeafAppearance

PlantHeightAndWidth

PotLeafLength

TotNbOfTillers

TotNbOfLeavesPerHill

DeadTiller

DemandLeaf

DemandSheath

DemandRoot

DemandInternode

DemandPanicleStruct

Light interception

& C assimilation

DeadLeaf

TotalDryMatter

LAI

LightInterception

SLAMitch

DeadLeaf

TotalDryMatter

LAI

SLAMitch

IncidentPAR

InterceptedPAR

ActualRUE

Assim

CarbonAndWaterBalances

IncidentPAR

InterceptedPAR

LightInterception

ActualRUE
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Dry matter

production

& IC

MaintenanceRespiration

TotalSupply

ICVegetative

GrowthLeaf

GrowthSheath

GrowthRoot

GrowthInternodeStruct

GrowthPanicleStruct

PaniclePriorityPhase4

TotalGrowthStruct

ICReproductive

PanicleGrainFilling

GrowthInternodeReserve

GrowthRootWithExcess-

-Assim

Assim

MaintenanceRespiration

TotalSupply

ICVegetative

GrowthLeaf

GrowthSheath

GrowthRoot

GrowthInternodeStruct

GrowthPanicleStruct

PaniclePriorityPhase4

TotalGrowthStruct

ICReproductive

PanicleGrainFilling

GrowthInternodeReserve

GrowthRootWithExcessAssim

Table 3: Most relevant community structures generated by community detection aglo-
rithms Clauset-Newman-Moore (CNM) and Girvan-Newman (GN).

The model nearness computed for this community structure of 6 communities was of

0.34. This was lower than for both community structures, obtained by algorithms, from

which this chosen community structure was inspired.

In comparison, the community structure of 5 communities suggested in Adam et al. (2010)

[1], so only formed with expert knowledge and obviously biologically relevant, had a value

of model nearness of 0.48. The algorithms performed better locally (i.e. for a neighboring

number of communities), whatever the community detection method they used. Even

though the algorithms chosen do not directly take model nearness into account in their

community detection method, they integrate in their way the concept of modularity de-

fined in §3.2.1, and model nearness focused on the ”independence across modules” aspect.

However, their greediness doesn’t allow for a global optimum to be reached.

Therefore, post-processing a result obtained with algorithms thanks to expert input seems

to be a nice combination. Indeed, it enables to optimize both model nearness (both thanks
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to the algorithms and also by manual post-processing) and the biological pertinence of

the community structure.

Figure 7: Sub-set of the community structure retained for XSamara after post-processing.
Displayed using Cytoscape, with a force-directed layout.

4.3 Transfer to users

XSamara crop model and its documentation

XSamara crop model and its Sphinx documentation, as an HTML page, are available in

the XSamara GitHub project15.

Composite models from XSamara

The separate composite models from XSamara have been uploaded and are now available,

on CropMRepository16. Each composite model and the unit models within have their own

15https://github.com/AgriculturalModelExchangeInitiative/XSamara/
16https://crop2ml.org/Repository
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documentation on CropMRepository, and can also be downloaded.

5 Limitations and perspectives

5.1 On a widespread use of Crop2ML

Crop2ML is a rather young framework (created around 2020), so there are still some ad-

justments to be made. I already addressed some GitHub issues that will be treated later

by the developers. The tool in itself is very promising, but using it implies to change the

way crop models are conceived.

The whole process of documenting, formatting the code, modularizing the model, etc. can

be time- and labor-intensive, which could explain the reluctance of some researchers to

adopt this practice. Nevertheless, one should consider that this is the ”price to pay” any-

way in order to build a long-lasting, multiple-user, user-friendly, easy-to-maintain model.

Exchanging and reusing model components requires collaboration between the scientific

teams in different research units, universities or even countries, as well as the willingness

to share their model as an open source piece of work. Enabling a wider (i.e. international)

use of this framework, in a field where every research unit has a platform of preference,

seem to have more to do with their own politics than with technical issues (even though

there are still some).

Transpilation sprints have already been organized internationally by the AMEI, for some

crop model components (e.g. soil temperature and energy balance). This helps with com-

paring the different approaches for some special processes, and also finding equivalences

(thanks to a common formalism), as well as building partnership between the research

teams around the world. Model components exchanges between crop modeling platforms

are currently being tested.

5.2 On modularizing crop models

Using community detection algorithms for modularizing a crop models has proved to be

interesting to guide towards an optimized modularization, but not sufficient.

Relying on a metric enables to objectively compare community structures (automatically
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or manually formed). Model nearness was particularly interesting in our case, as it implies,

in practice, a lower number of adjustments to be made to make any model components

work together. One could imagine implementing a new community detection algorithm

whose metric to optimize would be model nearness.

Nonetheless, ultimately, a determining approach was adding expert-driven manual input,

which appears essential for achieving meaningful and reusable modules. This sentiment

aligns with the observation made by Miller and Elgard (1998), who aptly stated, ”mod-

ularity balances standardization and rationalization with customization and flexibility”

[21].

As part of the ”customization and flexibility” aspects of modularity, any desired level of

granularity can be chosen by the user, and the comparison of several community structures

using a metric is only possible for a given level of granularity. However, in the current

version of Crop2ML framework, it is only possible to implement one level of granularity

(i.e. it is currently impossible to form composites of composites).

Simulations with a crop model are performed with a daily time-step, so that, every

day of a simulation, all unit model are executed in a certain order, updating the variables

in a certain order. At the end of the day, the output variables are given as input for the

next day. Even though the order of execution of the unit models (i.e. crop processes) is

most of the time immutable during a given day, some unit models are dedicated to the

computations of variables that could, theoretically, be done either at the end of one day,

or at the beginning of the next one. However, all the graphs described in §3.2.2, and in

particular the simulation workflow, only represent what happens in one day of simulation.

In other words, those are not cyclic graphs as they don’t take into account the exchange of

variables between the unit models from one day to another, and it biases the connections

between the models (for any level of granularity), and thus model nearness.

5.3 On semantic standardization

Crop models often involve a large amount of variables and parameters (e.g. around 400

for Samara), and different ones across models. Thus, there is a particular concern whereas

to how to deal with them while reusing and exchanging model components. Indeed, even

though many of them might refer to the same measures and concepts, equivalents have
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to be found despite different names. It is easier to refer to the same concepts with a same

name. So, there is a need of semantic standardization among crop models [28].

One possible solution could be to follow the semantic standard of the ICASA dictionary17

[3]. This project is still developing and the ICASA dictionary does not contain all the

imaginable variables and parameters used in crop models yet.

6 Conclusion

In this work, I : (i) implemented the unit models of SAMARA V2.1 crop model in a high-

level language (Python); (ii) documented and formatted them, complying with Crop2ML

requirements; (iii) created a new version of SAMARA crop model that I called XSamara,

with some additional changes; (iv) set up and tested a method to modularize crop models

based on graph theory; (v) modularized XSamara; (vi) transpiled XSamara (as a whole

and modularized) from Python to Crop2ML, and from Crop2ML to C++, OpenAlea

platform, etc.; (vii) uploaded the modules of XSamara on CropMRepository, giving them

visibility and a proper web documentation; (viii) generated a Sphinx documentation for

XSamara; and (ix) provided a modeling workflow for the end user.

Crop2ML has the potential to become a major tool in the crop modeling community

(the AgMIP in particular), as it facilitates model components exchange and reuse, and

thus inter-comparison and improvement. An available easy-to-use workflow for modular-

izing and transpiling crop models using Crop2ML will benefit its wide use. Nevertheless,

there are still efforts to make in the crop modeling community for exchange and reuse of

model components to become common practices in crop model development.
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[18] Cyrille Ahmed Midingoyi, Christophe Pradal, Ioannis N. Athanasiadis, Marcello Do-

natelli, Andreas Enders, Davide Fumagalli, Frédérick Garcia, Dean Holzworth, Ger-
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