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The soybean-cyst nematode (SCN; Heterodera glycines) is one of the most destructive pests affecting 
soybean crops. Effective management of SCN is imperative for the sustainability of soybean 
agriculture. A promising approach to achieving this goal is the development and breeding of new 
resistant soybean varieties. Researchers and breeders typically employ exploratory methods such 
as Genome-Wide Association Studies or Quantitative Trait Loci mapping to identify genes linked 
to resistance. These methods depend on extensive phenotypic screening. The primary phenotypic 
measure for assessing SCN resistance is often the number of cysts that form on a plant’s root system. 
Manual counting hundreds of cysts on a given root system is not only laborious but also subject 
to variability due to individual assessor differences. Additionally, while measuring cyst size could 
provide valuable insights due to its correlation with cyst development, this aspect is frequently 
overlooked because it demands even more hands-on work. To address these challenges, we have 
created Nemacounter, an intuitive software designed to detect, count, and measure the size of cysts 
autonomously. Nemacounter boasts a user-friendly graphical interface, simplifying the process for 
users to obtain reliable results. It enhances productivity by delivering annotated images and compiling 
data into csv files for easy analysis and reporting.
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Soybeans rank among the most widely cultivated crops, with Brazil and the United States being the largest 
producers. In the 2021–2022 growing season, soybean production reached 399.50 million metric tons serving 
as a significant source of both human food and animal feed (​h​t​t​p​:​/​​/​w​w​w​.​w​​o​r​l​d​a​g​​r​i​c​u​l​t​​u​r​a​l​p​​r​o​d​u​c​t​​i​o​n​.​c​o​​m​/​c​r​
o​p​​s​/​s​o​y​b​e​a​n​.​a​s​p​x). The ability of legumes like soybeans to form symbiotic relationships with rhizobia bacteria 
diminishes the need for external fertilizer application making soybean very useful in crop rotations1,2. One 
of the major threats to soybean cultivation is the soybean cyst nematode (SCN; Heterodera glycines), a highly 
destructive phytopathogen3. There are only relatively few resistance sources deployed into available soybean 
cultivars and their effectiveness is slowly eroded by the development of novel virulence phenotypes in SCN 
populations. Consequently, there is an urgent need to breed additional resistant germplasms and to develop 
novel pest management strategies4. Such novel management avenues will require extensive SCN research, 
including high volume phenotyping.

Cyst nematodes are filiform worms (juvenile stage 2; J2) that invade the roots of soybean plants and reach 
the vascular cylinder, adopting a sedentary lifestyle. They induce the formation of a feeding structure by 
manipulating root cells to alter their cell walls and fuse iteratively with adjacent cells, forming a syncytium5. 
Nematodes feed exclusively on this structure after its formation, withdrawing nutrients and energy necessary 
for its further development. These nematodes reproduce sexually, with fertilized females producing hundreds 
of eggs. The egg-laden female hardens into a cyst on the surface of infected roots. These cysts easily dislodge 
into the soil, and new juvenile nematodes hatch from the eggs within5,6. Therefore, the quantity and size of cysts 
found on a plant’s roots are crucial measures of infection success by SCN.

New sources of resistance to cyst nematodes can be discovered through both classical and reverse genetic 
screening methods. Forward screening techniques, such as Genome-Wide Association Studies (GWAS) 
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and Quantitative Trait Loci (QTL) analysis, are potent tools for identifying genes that confer resistance to 
pathogens7–9. The effectiveness of GWAS and QTL analysis is heavily dependent on the precision of infection 
measurements10. This requirement for accurate infection assessment is equally important in reverse genetic 
screening in which specific genes are evaluated for their ability to influence infection levels. Such assessments 
are critical for determining whether a particular gene plays a role in the interaction between SCN and soybean 
plants.

At present, most scientists assess cyst numbers manually under a binocular microscope. Manual counting of 
cysts is not only labor intensive and time-consuming but also very prone to inconsistencies, underlying the need 
for more efficient and uniform methods for assessing infection rates. Accurate phenotyping of SCN infection 
success is vital in breeding efforts and also to evaluate the effects of host genetic mutations or environmental 
conditions. Subtle variations in cyst numbers might be overlooked if the phenotyping method lacks precision 
and accuracy. Additionally, despite its importance, measuring each cyst’s size to detect developmental delays and 
reproductive success is rarely done in nematology research due to the laborious and time-intensive nature of the 
task if performed manually, except in cases where the difference is starkly apparent11.

To address these challenges, we have developed “Nemacounter” a user-friendly software utilizing the pre-
trained neural network You Only Look Once12–14 version 5 (YOLOv5) combined with the Segment Anything 
Model (SAM). Our software precisely and accurately identifies, counts, and measures the size of each SCN cyst 
in a 1040 × 1040 pixel size image taken on a white background without the need for specialized equipment. 
Nemacounter is straightforward to use and generates output that includes labeled images and an Excel 
spreadsheet containing detailed information about the count and size of each cyst per image, as well as the 
average pixel cyst size per picture, along with SD and SE. The accuracy of cyst detection using the Nemacounter 
software has been evaluated at ~ 95%, which is roughly the same rate achieved by a trained human. Moreover, 
to improve upon this 5% error rate, Nemacounter allows the user to optionally review automatically annotated 
pictures one-by-one, and easily adjust the annotation manually before the segmentation. The software can be 
installed and run locally on a Windows or Linux computer using a standard central processing unit (CPU), 
offering flexibility for users, for which we provide a detailed installation procedure. The Nemacounter software 
can be downloaded here: https://github.com/DjampaKozlowski/NemaCounter and we provide an installation 
manual and utilization manual as supplementary data.

Results
Nemacounter: a high-precision SCN cyst counting and sizing software
We introduce Nemacounter, a user-friendly software designed using a custom Python script (Fig.  1). 
Nemacounter leverages the YOLOv5-xl Object Detection pre-trained neural network for object (cyst) detection 
and the SAM15 for precise size extraction of each detected cyst (Fig. 1). We chose this set-up after comparing 
different approaches. We first explored the possibility of using various versions of the YOLO algorithm for object 
detection, particularly focusing on recent iterations such as YOLOv5, YOLOv8 and YOLO-NAS. The YOLOv8 
and YOLO-NAS advanced versions demonstrate enhanced efficiency compared to YOLOv5-xl, as highlighted 
in previous research (https://github.com/ultralytics/ultralytics). However, they exhibit reduced stability 
during training and are unsuitable for processing images of 1040 × 1040 pixels on an A100 GPU due to their 
substantial computational requirements. Attempts to mitigate this issue by resizing images to dimensions such as 
640 × 640 using those recent versions resulted in a noticeable decline in detection performance when comparing 
YOLOv8-m using 640 × 640 image input to YOLOv5-xl using 1040 × 1040 image input (Fig. S1). Consequently, 
the latest versions of YOLO were deemed unsuitable for our purposes.

Our objective was also to develop a software capable of accurately quantifying the size of each cyst. Initially, 
we considered employing the YOLOv5-xl Instance Segmentation variant, which utilizes polygonal annotations 
to delineate objects, thereby directly extracting masks corresponding to cyst areas. We annotated cysts using 
polygons and trained this model using 640 × 640 resized pictures (Fig. S2). This approach yielded suboptimal 
results in cyst detection compared to the YOLOv5-xl Object Detection model (Fig. 2) but has the advantage 
of providing size measurements for each cyst. To address these limitations, we used a hybrid method which 
involves applying SAM within the bounding boxes identified by the YOLOv5-xl Object Detection model (Fig. 3). 
This new approach retains the high-quality detection rate of the YOLOv5 Object Detection model and also 
allows cyst size extraction by SAM. Upon comparing the two methodologies, it was evident that this combined 
approach produced masks of superior resolution compared to the standalone YOLOv5 Instance Segmentation 
method (Fig. 2), and therefore was implemented in the Nemacounter software.

Neural network training and performance metrics
Utilizing a NVIDIA A100 GPU, the YOLOv5-xl Object Detection neural network was trained on a dataset 
composed of 262 pictures (231 for training and 31 for validation) for a total of 19,521 cysts manually annotated 
(Fig. S3; Fig. S4). At the 394th epoch, considered the best weight, the model displayed a box loss of 0.04824, 
indicating minimal error in bounding box location predictions (Fig.  4). The object loss stood at 0.60982, 
reflecting the model’s accuracy in object detection. Notably, the precision metric reached 0.97427, illustrating 
high accuracy in positive instance prediction, and a recall of 0.95417, highlighting the model’s ability to identify 
relevant instances (Fig. 4). The Mean Average Precision (mAP) at an Intersection over Union (IoU) threshold 
of 0.5 was an impressive 0.97899, showcasing accuracy in object detection with moderate overlap. However, at 
varying IoU thresholds (0.5 to 0.95), the mAP dipped to 0.73155 indicating a performance decrease when cysts 
overlapped too much (Fig. 4).
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User interface and functionality
Nemacounter’s GUI, built in customtkinter package, allows users to select input folders containing cyst images in 
various formats (JPG, JPEG, PNG, TIFF). The software automatically processes results to a chosen output folder. 
Users can adjust detection thresholds via a slider, with the default setting at 0.5, as well as the IoU threshold with 
the default setting at 0.3 to filter objects identified as cysts with over 50% probability and 0.3 IoU threshold. The 
default input image size is 1040 × 1040 pixels. Confidence levels on each cyst as well as the mean confidence are 
scored in the generated .globinfo file (Fig. 3).

During inference, the processing time per image averages 300 ms. After inference, the output folder includes 
images with detected cysts, and corresponding bounding box coordinates stored in a .globinfo file. Users can 
review results by going into this output folder while the software is open and adjust results by re-running 
inferences with different thresholds, creating additional output folders as needed.

Manual correction, segmentation process, and results summary
If users identify incorrectly annotated cysts, they can manually correct annotations using Nemacounter’s 
OpenCV-based tool, which allows the user to draw or remove bounding boxes on each picture (Fig. S5). Following 
the optional manual corrections, segmentation is initiated to extract cyst sizes within each updated bounding 
box’s coordinates present in the new .globinfo file generated by clicking on the “Segmentation” button. This 
process generates a “Segmentation” folder containing visual representations of segmented cysts with red masks 
on original images, along with a randomly multicolored mask image to verify individual cyst segmentation on a 
black background (Fig. 3). Additionally, a .globinfo file and a summary.csv file are generated, listing the number, 
size, and statistical analysis (average, SD, and SE) of cysts in each image (Fig. 3).

Validation of Nemacounter’s object detection performance
To rigorously evaluate Nemacounter’s detection capabilities, without applying any manual corrections afterwards, 
we conducted tests using eight images previously unseen by the neural network. This set comprised four ‘clean’ 
cyst samples and four ‘dirty’ cyst samples that also contained root debris (Fig. 5), each manually annotated. The 
Nemacounter script was employed for detection and segmentation on both datasets. Based on the coordinate of 

Fig. 1.  Nemacounter workflow. Nemacounter is based on a custom python script using customtkinder library 
for the GUI interface. The inference is performed through the YOLOv5-xl Object Detection model and the 
custom script to create an « output » folder containing the original pictures with the detected bounding boxes 
in red, a .csv file containing the picture name and the corresponding cyst count, as well as .globinfo files 
containing each bounding box position for each cyst per picture. A manual correction step can be applied 
using the OpenCV-tool library that modifies the previously generated .globinfo file after manual correction. 
The segmentation is performed through the SAM developed by Meta inside each updated bounding box’s 
coordinates contained in the glob info file. After segmentation, an output folder called « segmentation » 
is created and contains: the original pictures with the overlapping mask (in red), the same pictures with 
random multicolored masks on a black background, and tables that summarize the results for each picture 
including (i) the cyst count, (ii) size for each cyst per picture, and (iii) the average pixel cyst size as well as each 
corresponding SD and SE per picture.
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each mask extracted automatically for these pictures, we calculated the centroids of each cyst using the following 
methodology:

Centroids calculation
Utilizing OpenCV’s cv2.moments function, we calculated the moments of each cyst contour that correspond to 
the weighted averages of the pixel intensities in the contour of the cyst. A contour represents the continuous line 
forming the boundary of the cyst in the image. The zeroth spatial moment, denoted as M[‘m00’], corresponds 
to the area of the contour. The first order spatial moments, M[‘m10’] and M[‘m01’], are integral in determining 
the centroid’s coordinates. The centroid’s X-coordinate (Cx) is computed as the ratio of the first order moment 
along the x-axis to the zeroth moment, i.e., Cx= M[‘m10’]/ M[‘m00’]. Similarly, the Y-coordinate (Cy) is obtained 
by dividing the first order moment along the y-axis by the zeroth moment, i.e., Cy= M[‘m01’]/ M[‘m00’]. The 
calculated coordinates, (cx, cy), represent the centroid’s position on the image (Fig. S6).

Comparison of centroid detected automatically to manual annotation
We utilized a custom script to determine whether the centroids of automatically identified cysts fell within 
the manually annotated bounding boxes. If a given centroid detected automatically fell into a bounding box 
manually annotated, it means that the software is in accordance with the manual annotation for a given cyst 
in a picture. Each centroid was aligned to the nearest bounding center and uniquely assigned, preventing 
multiple assignments to the same box. This method enabled a direct visual comparison between cysts counted 
by Nemacounter with those identified manually, or those identified only by the Nemacounter (Fig. S6). Distinct 
categories were recognized: cysts counted by both methods, those counted exclusively by manual annotation, 
and cysts detected solely by Nemacounter (Fig. 5a). The comparative analysis revealed that Nemacounter aligns 

Fig. 2.  Comparison between the standalone YOLOv5-xl Instance Segmentation model and the combination 
of YOLOv5-xl Object Detection + SAM. The figure shows the results after segmentation for both methods. 
Blue arrows indicate errors made by the YOLOv5-xl Instance Segmentation model, or errors made by the 
combination of YOLOv5-xl Object Detection model + SAM models.
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with manual annotations with an average accuracy of 95% across both clean and dirty samples, which is similar 
to a human error rate when counting hundreds of cysts on a given picture (Fig. 5b). We pooled the count of the 
four pictures corresponding to the clean sample and calculated the Precision Score (0.9771), the Recall Score 
(0.9877), and the F1-Score (0.9823). We performed a similar analysis with the four pictures corresponding to 
the sample with debris and observed a Precision Score of 0.9774, a Recall Score of 0.9814, and F1-Score of 
0.9794. On its own, the Nemacounter performed with 95% accuracy, which can be further improved as needed 
by supplementing automatic annotations with manual correction inputs, thereby filling the 5% discrepancy if 
necessary (Fig. S5).

Fig. 3.  Example of output results obtained after using the Nemacounter software on a picture never seen 
before. On the left, the original picture before inference and a zoomed area. In the middle, a picture containing 
the bounding boxes that were detected by inference using the YOLOv5-xl Object Detection model. The 
zoomed area contains the confidence score of each cyst. The original picture is shown without labels and 
confidence scores. On the right, the random multicolored masks produced by the script on a black background 
after segmentation. At the bottom, an example of the automatically generated tables for this picture (SNAP-
1547755-0051).
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Testing the limits of Nemacounter’s capabilities
We used three levels of cyst densities to identify at which range Nemacounter performed with the highest 
precision (Fig. S7). Two pictures per density were used for this analysis, corresponding to low (71 and 94 cysts), 
medium (125 and 137 cysts) and high (300 and 371 cysts). We observed 97.26 and 94.95% accuracy for the low 
density, 99.21 and 95.80% accuracy for the medium density, and 93.46 and 92.06% accuracy for the high density.

We also tested the accuracy of Nemacounter under circumstances where cyst collections contained debris 
that may not be easily distinguished from cysts, combined with medium to very high cyst densities. We tested 
four pictures ranging from 154 to 491 cysts (medium to very high density containing round shape debris) and 
observed an accuracy of 93.67%, 93.64%, 93.50%, and 84.35% for the most extreme cases (Fig. S8). This indicates 
that Nemacounter loses precision when too many cysts and debris are present on the picture, and that proper 
sample preparation is important when using the software.

Analysis of cyst size measurement accuracy
To determine Nemacounter’s efficacy in discerning cysts of different sizes, we used ImageJ to manually sort 
cysts by size into three categories under a light microscope (small, medium, and large) and placed them into 
a 12 well-plate to take pictures (Fig. 6a). We generated three images for each category, allowing for a thorough 
examination of Nemacounter’s ability to accurately capture and reflect these size differences using the SAM 
technology. This approach aimed to validate whether the pixel size extraction feature of SAM could effectively 
detect and categorize varying cyst sizes in the samples, which will be particularly useful to assess if a given 
condition was affecting cyst development. We first ran these nine pictures (three pictures per category) through 
the Nemacounter and directly plotted the results from the automatically generated .globinfo file and observed 
a clear distribution of the three size categories, demonstrating Nemacounter’s accuracy to extract cyst size 
(Fig. 6a-b). Subsequently, we compared the cyst sizes that were manually determined using the ImageJ software 
to the masks extracted by Nemacounter. We manually measured each cyst present in each size group for a total 
of 323 cysts using ImageJ or Nemacounter (Fig. 6a, c). We observed a clear correlation between the size of each 
cyst for each manually or automatically labeled picture (Fig. 6d-f). Although, we observed a small discrepancy 
between the two methods, where the ImageJ method show higher cyst area compared to Nemacounter, this 

Fig. 4.  Training results of the YOLOv5-xl Object Detection pre-trained neural network. Each parameter 
resulting from the training such as metrics, precision or recall are plotted. The dotted line represents the best 
epoch 394. Below the graphs are the final parameters kept for the best weight at 394 epoch. Precision is the 
ratio of true positive detections to all detections made, while recall is the ratio of true positive detections 
to all actual objects present. The curves illustrate the trade-off between precision and recall at various 
confidence thresholds. The mean average precision (mAP) at an Intersection over Union (IoU) threshold of 0.5 
(mAP@0.5) and the mean average precision averaged over IoU thresholds from 0.5 to 0.95 (mAP@0.5:0.95) are 
shown, which measure the model’s overall detection performance across different classes and IoU thresholds.

 

Scientific Reports |         (2025) 15:4468 6| https://doi.org/10.1038/s41598-025-88289-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


discrepancy merely appears to be due to the way the contours of cyst have been drawn in ImageJ, which slightly 
overestimates the actual area, whereas Nemacounter tends to not completely extract cyst head and tails (Fig. 6c). 
We then grouped all cysts extracted by both methods and performed a linear regression which showed a R²= 
0.9978, demonstrating a high correlation between manual size measurements and the Nemacounter (Fig. 6g). 
Overall, these results demonstrate that Nemacounter precisely extracts the size of each cyst in a repeatable 
manner essential for comparing two conditions in an experimental set-up designed to assess SCN infectivity 
and development.

Discussion
In this study, we developed Nemacounter to help nematologists to accurately count and extract the size of cysts 
in infection experiments without any labor-intensive work or required skills in bioinformatics. Nemacounter 
is an easy-to-use software, offering a user-friendly interface that processes multiple images simultaneously 

Fig. 5.  Evaluation of the Nemacounter’s ability to correctly detect cysts on unseen pictures. (a) Four different 
pictures containing cyst without debris (upper row) and four pictures containing cysts with debris (lower 
row). Visual comparison of manual annotation versus automatic annotation using Nemacounter. Below, the 
legend shows the signs used to designate the cysts that were counted by both methods (cyan asterisks and 
box), by only Nemacounter (yellow asterisks), or by manual annotation alone (magenta box). (b) Histogram 
showing for each picture the percentage of cyst counted by both methods (cyan) as well as the corresponding 
percentage, by Nemacounter (yellow), or by manual annotation (magenta). Counts for the three categories 
were pooled for the four clean pictures or pictures containing debris to calculate Precision Score, Recall Score 
and F1-Score, which are shown for each pool above the corresponding histogram.
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Fig. 6.  Evaluation of Nemacounter’s ability to extract cyst size. (a) Cysts were physically sorted by size into 
three categories: small, medium and large. One representative original picture for each category is displayed 
with a red mask (upper row) or the random multicolored mask displayed on black background (lower row). 
(b) Whisker-plot of each cyst’s size measured by Nemacounter in each picture are shown. Three pictures per 
size category were analyzed. (c) Representative illustration of a cyst size measurement performed by hand 
using ImageJ (left) or automatically extracted using Nemacounter (middle), and the merge of the two methods 
(right). (d-f) Histograms showing cyst size in each picture measured using ImageJ or Nemacounter. For each 
category, one picture is displayed (d = small cysts; e = medium cysts and f = large cysts). (g) Linear regression of 
all the cyst size (pixel size) from the nine pictures showing the correlation between ImageJ and Nemacounter 
cyst size measurements.
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and in various formats. We initially compared the latest YOLO models (YOLOv5, YOLOv8 and YOLO-NAS). 
Unfortunately, the YOLOv8 and YOLO-NAS neural networks are too big and therefore cannot be trained 
using a 1040 × 1040 pixel size input picture on a A100 GPU. The need for resizing the picture to a smaller scale 
(640 × 640 on a A100 GPU) renders the detection less efficient than using the YOLOv5-xl Object Detection 
model which reaches high performance (mAP50 = 0.98) and therefore does not require improvement or the use 
of a larger neural network. We combined the detection of the YOLOv5-xl Object Detection model and SAM to 
accurately count and subsequently extract cyst size with precision. We compared this method with the YOLOv5-
xl Instance Segmentation model and found that our method outperforms the instance segmentation model 
when both are trained using the best parameters on a A100 GPU (Fig. 2). The poorer quality results observed 
using the YOLOv5-xl Instance Segmentation is certainly due to the need of resizing the pictures to 640 × 640. 
Upon comparison, the masks extracted have much better resolution using YOLOv5-xl Object Detection + SAM 
(Fig. 2). Indeed, the SAM model can segment any object thanks to a training performed using over 1 billion 
masks from 11 million pictures, making it extremely precise to segment any area.

We developed a custom method to compare the efficiency of detection of the Nemacounter versus manual 
annotation (Fig. 5a; Fig. S6). The output metrics obtained after training gives us a good idea of the performance 
of the model but only vaguely informs us on the nature of false positives and false negatives created during 
inference. Therefore, to visually assess the nature of false positive and false negative errors that are created by the 
Nemacounter, we calculated the centroids of each cyst from the mask generated by the software and compared 
them to manually annotated bounding boxes. If a centroid falls into a bounding box, it is assigned to it and 
therefore cannot be assigned to another box. If two centroids or more fall into a bounding box, the centroid 
that is closest to the center of the bounding box is assigned to it. This process allows us to generate pictures and 
assess visually the nature of the error as well as the rates of false positives and false negatives produced by the 
Nemacounter (Fig. 5b; Fig. S6). In our case, an average of 5% error rate total is observed, which is in accordance 
with the recall score (0.95) and is mostly due to overlapping cysts (Fig. 5). Although these errors can be manually 
corrected using the manual correction option in Nemacounter, we advise users to shake plates containing the cysts 
gently before taking pictures to minimize such overlapping cases and obtain the best automated performance. 
To assess the accuracy limits of Nemacounter, we tested various cyst densities and found that Nemacounter 
performs well between 0 and 300 cysts per well (more than 95% accuracy) whereas wells containing more than 
300 cysts leads to a decrease in accuracy (between 90 and 95%) (Fig S7). Shaking the plate to obtain an even 
distribution of cysts or diluting the cyst preparations is therefore advised when a high cyst density is obtained. 
Moreover, we tested extreme cases where high density cyst preparations also contain round shape debris, which 
could be confused with cysts (Fig S8). We observed that accuracy ranged from 84.35 to 93.67%. This shows that 
under such circumstances (for example Fig S8, picture n°4) preparations should be diluted or cleaned through 
the use of a sucrose gradient (see Materials and Methods) before processing through Nemacounter.

We next assessed if the Nemacounter could extract cyst size in an accurate and repeatable manner. To do 
so, we have manually sorted cysts into three size categories and plotted the results directly from the output 
excel table generated by the Nemacounter. We observed a clear repartition of the three groups, confirming the 
robustness of the approach (Fig. 6b). To go further, we used ImageJ to manually extract the size of each cyst and 
compared these values with the results provided by the Nemacounter (Fig. 6c). We observed that the manual 
annotation (using polygons) overestimates the actual cyst area whereas the Nemacounter tends to not fully 
extract the area corresponding to the head and the tail of the cyst (Fig. 6c). Despite this discrepancy, we observed 
a correlation of 99.78% between the two methods demonstrating that the Nemacounter can be used to accurately 
measure cyst size (Fig. 6g).

In the current iteration of Nemacounter, we have integrated a YOLOv5-xl Object Detection model followed 
by SAM, which allows us to integrate an intermediate step of manual correction. After initial inference, any 
necessary adjustments to bounding box coordinates can be easily made by overwriting the .globinfo file, 
streamlining the process before proceeding to segmentation with SAM. This flexibility in correction is a significant 
advantage over a standalone instance segmentation model such as the YOLO-xl Instance Segmentation in which 
it would have been much more difficult to implement this option. Moreover, Nemacounter creates an excel file 
summarizing the whole analysis as well as the pictures containing the masks (red masks on original picture, 
or masks in a random multicolor pattern on black background) (Fig. 3). The GUI developed on customtkinter 
provided a simple interface where the user chooses the input folder containing the pictures to analyze and select 
an empty folder on his computer where the result will be saved.

Previously, a few studies employed neural networks to detect SCN cysts. The first study developed a custom 
neural network using MATLAB and WEKA with specified parameters such as texture to recognize which 
species of cyst was present, including Globodera pallida, Globodera rostochiensis, and H. schachtii16, however this 
approach does not provide cyst number or area for users. Chen et al. 201917 introduced a method for nematode 
cyst instance segmentation that relies on instance proposals followed by instance classification with a support 
vector machine (SVM). This approach is particularly well-suited for small datasets, addressing limitations of 
deep learning networks that may underperform with limited training data. Building on this foundation, Chen 
et al. 202218 implemented U-Net, ResNet50, and ResNet101 instance segmentation models to detect cysts in 
soil samples prepared on large paper sheets. This setup requires a high-quality camera and the use of a stitching 
method to combine multiple image tiles, enabling large-area cyst detection. Nemacounter does not require a 
high-resolution camera. Indeed, any camera able to take pictures at 1040 × 1040 pixel size can be used with 
our software. Furthermore, we have developed a GUI interface, added a manual correction step, all on a user-
friendly interface. Other neural networks have been used to recognize different genera of nematodes such as 
EfficientNetV2M that allows recognition of 11 genera of nematodes19 or the DenseNet121, which was used 
for the development of NemaNet, that recognizes larvae stages of Helicotylenchus dihystera, H. glycines (J2), 
Meloidogyne incognita (J2), Pratylenchus brachyurus, Rotylenchulus reniformis20. To enhance the utility of 
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nematology research tools, nematologist could extend the capabilities of existing software to include the detection 
and classification of various stages of phytoparasitic nematode development, such as eggs, and juvenile stages 
J2 through J4, as well as males. Finally, Akintayo et al. 201821 developed a deep learning framework to detect 
and count SCN eggs in microscopic images. Their approach utilizes a convolutional neural network (CNN) 
architecture to identify and count nematode eggs, facilitating high-throughput egg detection and contributing 
to efficient nematode management strategies. Advanced models like YOLOv8 or YOLO-NAS could be used to 
categorize these numerous stages with high precision. However, such sophisticated operations would necessitate 
the use of multiple, powerful GPUs concurrently for the training phase. Researchers have also developed an 
approach to track sugar-beet cyst nematode (BCN, H. schachtii) development when inoculated in vitro for high-
throughput screening of infected Arabidopsis thaliana plants22. This study provided a low-cost and open-source 
method for nematode phenotyping that included nematode size as a scorable parameter and a method to account 
for phenotypic variation of the host. This methodology was based on threshold-mediated object isolation and 
contrast coloration to detect female nematodes and also provided a 3D printable model to set-up the system in 
the lab22. Implementation of neural networks could further improve that method in the future.

The application of YOLO models to video analysis presents exciting opportunities for future development, 
particularly in tracking J2 nematodes during migration assays. Typically, these assays involve placing J2s in a 
square box filled with pluronic gel where chemo-attractants are placed at opposite ends23,24. While scientists 
traditionally count the number of nematodes at each end post-experiment to compare chemoattractant 
effectiveness, a YOLO-based video tracking system could revolutionize this process. Such a system would allow 
for continuous tracking and counting of J2s as they reach either pole, offering a dynamic timeline and more 
nuanced insights into migration patterns.

Now that the Nemacounter script is publicly available, it can be adapted to help analysis of a wide array of 
objects beyond nematology. Users can utilize the script’s functionality by simply updating the path to the best 
weight file coming from another training. The GUI and output features, such as inference, manual correction, 
segmentation, and Excel table creation, will therefore remain applicable to any other objects. Indeed, annotating 
pictures or training a model using YOLOv5-xl on Google Colab does not require any coding skills. This flexibility 
paves the way for diverse applications for biologists with no bioinformatic skills such as bacterial colony-forming 
unit counting, fungal spore counting or fungal lesion disease quantification on leaves, and more. In summary, 
Nemacounter allows accurate counting of cysts as well as cyst size extraction, and reports results. Nemacounter 
will help nematologists to analyze their infection assays involving SCN more rapidly and in a repeatable manner.

Materials and methods
Collection and photography of soybean cyst nematode samples
Soybean William 82 (W82) seeds was originally gifted by Greg Gebhart (Iowa State University, Ames, Iowa, 
USA). Soybeans (W82) were grown in a controlled chamber at 24 °C at 45–65% relative humidity and a 16 h/8 h 
light/dark cycle. After about 2–3 weeks, soybean plants were transferred into 8-inch containers filled with a 
mixture of two-parts sand to one-part field soil that had previously been steam sterilized. Two days later, each 
plant was infected with 1000 J2 SCNs (TN10). Thirty days after infection, the soybean root systems containing 
cysts were carefully submerged in water in a beaker and agitated by hand to release loosely attached cysts. Next, 
the roots were subjected to a high-pressure water blast to dislodge firmly attached cysts on an 850 μm mesh 
to remove large debris, stacked over a 250 μm mesh to retain cysts. The material was collected on the 250 μm 
sieve using a gentle stream of water and was transferred into centrifuge tubes containing a 35% sucrose solution 
for gradient separation. After centrifugation, the top cyst layer was carefully filtered again through a 250 μm 
sieve to remove any residual sucrose and fine debris. Purified cysts were then transferred to clean Petri dishes 
or 12-well plates for further observation and analysis. To obtain “clean samples” or “samples containing root 
debris”, we used successive sucrose gradient cleanups. Pictures were taken using a Zeiss Stemi SV11 microscope 
with AxioCam HRc and Axiovision SE64 V4.9.1 software to snap pictures of 1040 × 1040 resolution on white 
background. To obtain pictures with varying contrasts, we additionally took pictures using the upper LEDs to 
light the cyst from above.

Dataset compilation and artificial augmentation
Our dataset encompassed a diverse range of high-contrast images falling into three groups for comprehensive 
analysis: (1) SCN cysts in glass Petri dishes, (2) SCN cysts in 12-well plates, (3) SCN cysts displayed in varied 
colorations in 12-well plates (Fig. S3). This assortment of images enhanced the model’s ability to recognize cysts 
under varying conditions. The training set included 77 images, as well as a validation dataset comprising 31 
images, totaling 19,521 manually annotated cysts (Fig. S4). The complete dataset is accessible on the Roboflow 
website at: ​h​t​t​p​s​:​​/​/​u​n​i​v​​e​r​s​e​.​r​​o​b​o​f​l​o​​w​.​c​o​m​​/​i​o​w​a​-​​s​t​a​t​e​-​​u​n​i​v​e​r​​s​i​t​y​-​​c​w​v​q​a​/​​c​y​s​t​n​e​​w​b​o​u​n​d​​i​n​g​b​o​x​v​2. To artificially 
augment the dataset, we applied various picture transformations to the original training dataset: vertical/
horizontal flipping, 90° rotation, 20% cropping, 25% gray-scaling, and ± 25% brightness adjustment, effectively 
tripling the number of training images to 231 (Fig. S4).

Training details for the YOLO models
We trained the three YOLO models on an NVIDIA A100 GPU (40 GB RAM) using Google Colab’s Roboflow 
notebook, tailoring parameters to optimize performance for object detection and instance segmentation tasks.

YOLOv8-m object detection
The YOLOv8-m model, with 218 layers and ~ 2.58  million parameters, was trained using the following 
configuration:
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!yolo task = detect mode = train model = yolov8m.pt data={dataset.location}/data.yaml epochs = 3000 
imgsz = 640 plots = True project=’/content/drive/My Drive/bestmodel’ name=’YoloV8run’.

We used a 640 × 640 image size and a batch size of 16, the maximum supported for this setup. Training 
stopped at epoch 153 to prevent overfitting, as no significant improvements were observed thereafter. Inference 
was performed with an IoU threshold of 0.3 and 640 × 640 images.

YOLOv5-xl models
Two YOLOv5-xl models, the largest YOLOv5 variants, were trained for instance segmentation and object 
detection:

Instance segmentation
With 330 layers and ~ 8.8  million parameters, the model was trained on polygon-annotated data using the 
following parameters:

python train.py --img 640 --batch 20 --epochs 3000 --data [dataset.location]/data.yaml --cfg ./models/
custom_yolov5x.yaml --weights ‘’ --project “/content/drive/MyDrive/bestmodel” --name yolov5xseg_results –
cache.

A batch size of 20 and 640 × 640 images were used, with training concluding at epoch 741 to prevent 
overfitting. Inference employed an IoU of 0.3 and 640 × 640 images.

Object detection
This model, with 233 layers and ~ 7.25 million parameters, was trained on unresized 1040 × 1040 images to retain 
detailed features. Training parameters included:

python train.py --img 1040 --batch 80 --epochs 3000 --data [dataset.location]/data.yaml --cfg ./models/
custom_yolov5x.yaml --weights ‘’ --project “/content/drive/MyDrive/bestmodel” --name yolov5xobj_results 
--cache.

Training concluded at epoch 394 when performance plateaued. The resulting model, “cystmodel.pt,” is 
available for download at: ​h​t​t​p​s​:​​/​/​i​a​s​t​​a​t​e​.​b​o​​x​.​c​o​m​/​​s​/​f​o​2​​0​8​l​a​7​a​​5​m​6​v​m​g​​8​7​4​q​a​b​​g​y​p​s​l​i​3​n​7​d​q.

Inference using YOLOv5-xl object detection model, manual correction, and segmentation 
process
Nemacounter integrates a custom Python script, offering an intuitive tkinter-based user interface. It harnesses the 
YOLOv5-xl Object Detection model and the possibility to manually correct the annotation if needed, followed 
by segmentation using the SAM developed by Meta. Inference starts with the YOLOv5-xl Object Detection 
model, using the following command:

python “C: \Users\Username\yolov5\detect.py” --weights “C: \Users\Username\yolov5\cystmodel.pt” 
--source “[input_folder]” --project “[output_folder]” --name output --iou-thres 0.3 --conf-thres [conf_thres] 
--img-size [img_size] [hide_labels_and_conf_arg] --save-txt.

For inference, an IoU threshold of 0.3 was chosen to balance detecting closely situated cysts while avoiding 
redundant counts. The input image size was maintained at 1040 × 1040 pixels, consistent with the training 
dataset. Users are recommended to use a similar white background and pixel size for optimal performance with 
Nemacounter. The GUI allows the user to modify the arguments in this command without modifying the script.

The manual correction can be applied if needed on each picture using a user-friendly interface where the user 
can draw new bounding boxes (holding left-click to draw) or remove bounding boxes (by pressing the “R” key 
when the mouse is hovering on a given bounding box). The modified manual correction is saved by pressing the 
“S” key which will close the current picture and open the next one. The manual correction window can therefore 
be quit by pressing the “Esc” key. After inference (and optionally after manual correction), the segmentation is 
performed inside each bounding box by clicking in “Run Segmentation”. The segmentation uses the SAM biggest 
model weight. The “sam_vit_h” is available at: ​h​t​t​p​s​:​​/​/​d​l​.​f​​b​ a​i​p​u​b​​l​i​c​f​i​l​​e​s​.​c​o​​m​/​s​e​g​m​​e​n​t​_​a​n​​y​t​h​i​n​g​​/​s​a​m​_​v​i​t​_​h​_​4​b​8​9​
3​9​.​p​t​h or “​h​t​t​p​s​:​​/​/​i​a​s​t​​a​t​e​.​b​o​​x​.​c​o​m​/​​s​/​a​k​p​​q​l​0​j​l​v​​b​d​5​m​m​w​​2​6​e​2​l​g​​y​a​4​u​l​9​h​1​x​u​a”.

Data availability
All training datasets are available on Roboflow website at : ​h​t​t​p​s​:​​/​/​u​n​i​v​​e​r​s​e​.​r​​o​b​o​f​l​​o​w​.​c​o​m​/​i​o​w​a​-​s​t​a​t​e​-​u​n​i​v​e​r​s​i​t​
y​-​c​w​v​q​a​/​c​y​s​t​n​e​w​b​o​u​n​d​i​n​g​b​o​x​v​2 and ​h​t​t​p​s​:​​/​/​u​n​i​v​​e​r​s​e​.​r​​o​b​o​f​l​​o​w​.​c​o​m​/​i​o​w​a​-​s​t​a​t​e​-​u​n​i​v​e​r​s​i​t​y​-​c​w​v​q​a​/​c​y​s​t​-​d​e​t​e​c​t​o​r​
s​-​a​r​e​a​. Nemacounter is available on github at: https://github.com/DjampaKozlowski/NemaCounter. The SAM 
model is available at: https://dl.fbaipublicfiles.​com​/segmen​t_anythi​n​g/​sam​_​vit_h_​4b8939.pth or ​h​t​t​p​s​:​​/​/​i​a​s​t​​a​t​e​.​
b​o​​x​.​c​o​m​​/​s​/​a​k​p​q​l​0​j​l​v​b​d​5​m​m​w​2​6​e​2​l​g​y​a​4​u​l​9​h​1​x​u​a​. The YOLOv5-xl Object Detection Model is available at: https:​​​
//iasta​te.​box​.​com/s/fo208la7a5m6vmg87​4qabgypsli3n7dq.
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