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 A B S T R A C T

Early detection of invasive alien plant species is crucial for addressing their environmental impact. Recent 
advancements in vehicle-mounted equipment enable automatic analysis of high-resolution images to detect 
invasive plants along roadsides, a primary vector for their spread. Deep learning technologies show promise 
for processing this data efficiently, but the choice of approach significantly affects both computational and 
human resource costs. Object detection and segmentation methods require costly annotations, making them 
impractical for scaling to the thousands of invasive species worldwide. In contrast, multi-label classification, 
i.e. to predict all species present in the image, is less demanding but still challenging to implement without 
many annotated images for numerous species. However, large datasets from citizen science platforms such 
as Pl@ntNet or iNaturalist offer rich visual data for classifying individual plant species. In this article, we 
assess whether large plant identification models trained on such data can be leveraged for species detection 
in high-resolution images. Specifically, we explore two approaches: a multi-label classification model and a 
tiling-based model, using a vision transformer from the Pl@ntNet platform. We evaluate these models on high-
resolution roadside images, both using a pre-trained model without fine-tuning and after applying fine-tuning. 
Our findings indicate that the tiling approach significantly outperforms other methods without fine-tuning 
and shows a slight advantage when fine-tuning is applied, demonstrating significant potential for detecting 
thousands of species without task-specific adaptation.
1. Introduction

Invasive species have been identified as major drivers of biodiversity 
loss and ecosystem disruption (Roy et al., 2023; Díaz et al., 2019), with 
their economic impact measured in billions globally (Haubrock et al., 
2020). While early detection is crucial to managing their spread, cur-
rent monitoring methods often struggle to cover broad areas effectively. 
Remote sensing and citizen science provide valuable monitoring data, 
but both approaches come with limitations. Remote sensing requires 
expensive, high-resolution imagery and may not allow for accurate 
identification of individual species, while citizen science data can suf-
fer from geographic and taxonomic biases (Isaac and Pocock, 2015; 
Johnson et al., 2020).

Vehicle-mounted cameras offer a promising alternative for monitor-
ing invasive alien plant species along transport networks, which are key 
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pathways for species dispersal (Dyrmann et al., 2021; Kotowska et al., 
2021). Such cameras, combined with deep learning-based image analy-
sis, have great potential for large-scale plant monitoring. Deep learning 
methods like object detection (Hussain, 2023; Zong et al., 2022) and 
instance segmentation (Wang et al., 2022) can localize and identify 
plants in complex images, although they require considerable effort for 
manual annotation and updates to handle new species. However, these 
methods often struggle to generalize across diverse environments and 
species, particularly when faced with variation in plant growth stages 
and plant appearances.

Powerful species identification tools, such as those available
through citizen science platforms like Pl@ntNet and iNaturalist, lever-
age extensive visual datasets. Using these tools, rather than traditional 
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object detection and instance segmentation methods, could enable 
broader deployment with the potential to detect a larger diversity of 
species. In this article, we explore an alternative approach that builds 
on these identification frameworks, aiming to improve scalability and 
efficiency in analyzing complex landscapes. Specially, we examine the 
Pl@ntNet model, trained on over six million images to identify more 
than forty thousand species, and evaluate its capacity to detect invasive 
plants from roadside images. However, it should be noted that there can 
be a significant gap, known as domain shift, between the training data 
used by Pl@ntNet model and the high-resolution images that need to 
be processed. Pl@ntNet primarily relies on zoomed-in, detailed images 
of individual plants, often focused on specific organs, such as on leave 
or a flower. In contrast, the target images are much larger, containing 
numerous species captured from a different angle and using different 
equipment, such as high-throughput professional cameras rather than 
the smartphones typically used by Pl@ntNet contributors. Our study 
assesses the model’s performance without fine-tuning alongside a fine-
tuned version with multi-species annotations to evaluate its suitability 
for large-scale, real-world applications.

2. Related work

A wide range of data sources and methods can be used to monitor 
invasive plants, including aerial imagery from airplanes or drones, 
satellite data (Müllerová et al., 2013; James and Bradshaw, 2020), 
roadside images captured with professional cameras (Dyrmann et al., 
2021), smartphones photos (Pinzani and Ceschin, 2023), Google Street 
Views images (Kotowska et al., 2021, 2024), and even data derived 
from social media (Daume, 2016). In this paper, we focus on detecting 
invasive species in high-resolution plant survey images, with an initial 
evaluation based on roadside imagery from the dataset used in Dyr-
mann et al. (2021). Recording images from cars, trains and boats rep-
resents a cost-effective alternative to aerial or satellite campaigns, while 
still offering high spatial resolution necessary for fine-scale species 
identification. A key challenge with this type of data lies in the discrep-
ancy between the large size of the images to be processed and the input 
size required by state-of-the-art deep learning models for image anal-
ysis. The images are often high-resolution and depict complex scenes 
containing numerous objects of interest, including potentially a large 
variety of plants and species in our case. Many deep learning archi-
tectures for image classification were originally developed and trained 
using datasets such as ImageNet, where input images are typically 
resized to resolutions typically between 224 × 224 and 518 × 518 pixels 
during pre-processing. Therefore, it is essential to develop technical 
solutions to process high-resolution images effectively while optimizing 
identification performance using these advanced models. For more than 
a decade, Convolutional Neural Networks (CNNs) (Krizhevsky et al., 
2012; He et al., 2015; Szegedy et al., 2015; Woo et al., 2023) have been 
widely used for computer vision tasks, consistently achieving ground-
breaking results across various image analysis problems. Since then, 
Vision Transformers (ViTs) have now become the standard in computer 
vision, especially with the advent of Self Supervised Learning (SSL) pre-
training techniques (Bao et al., 2021; He et al., 2021; Oquab et al., 
2023). In computer vision, SSL techniques train a network to predict 
missing or transformed parts of an image, allowing it to learn meaning-
ful patterns and distinctions between visual elements without explicit 
labels. These techniques have demonstrated strong compatibility with 
the vision transformer architecture, enabling efficient pre-training on 
large datasets before fine-tuning for specific downstream tasks. The 
hidden part can depend on zooming and cropping like in DINO (Caron 
et al., 2021), or depend on partial masking of image patches like in 
MAE (He et al., 2021) or the Bidirectional Encoder representation from 
Image Transformer (BEiT) self-supervised learning method (Bao et al., 
2021). By initially training on numerous unlabeled images through a 
self-supervised approach and subsequently fine-tuning the model with 
2 
labeled data via supervised training, a more robust model can be gen-
erated compared to training it directly from scratch with supervision. 
However, while CNN models can be scaled up with image resolution 
by using relatively simple adaptive pooling operations, at the cost of 
increased memory usage, ViTs are more constrained by a fixed input 
resolution (Bao et al., 2021) requires 384 × 384 pixels images. Resizing 
high-resolution images to smaller resolutions creates an informational 
bottleneck that significantly compromises classification performance, 
particularly when the target plant species is small, as meaningful details 
may be lost, making detection increasingly challenging.

Moreover, for most invasive species, there is a lack of training data 
consisting of high-resolution (HR) images labeled with presence and 
absence information. The available datasets generally focus on a limited 
number of species and specific contexts. While training a deep learning 
model on these datasets can yield relatively good performance for the 
targeted species, it often comes at the cost of poor generalization to 
other contexts. In this study, one of our focal points is the scenario 
where the model is used without fine-tuning, meaning that it has not 
been specifically trained on any images of the final downstream task 
(i.e the HR images acquired by the vehicle-mounted camera). This sce-
nario preserves the model’s generalization capabilities across various 
species. For this study, we utilize the Pl@ntNet model that has been 
trained to identify more than 43,000 species using a dataset comprising 
over six million individual plant images from various countries and 
continents, independent to any specific downstream task. Leveraging 
a ViT architecture, we anticipate enhanced performance in detecting 
the presence of invasive species compared to previous CNNs.

3. Materials and methods

3.1. Dataset

In this paper, the methods were tested on a dataset used in a 
previous study (Dyrmann et al., 2021) to evaluate and compare high-
throughput detection and classification of invasive plants. The dataset 
contains 15,529 high-resolution images showing roadside views taken 
in Denmark from a high-speed camera mounted on the roof of a car 
and oriented perpendicular to the direction of travel.

3.1.1. Description and cleaning
The dataset focuses on 11 invasive species that can be observed 

along a significant portion of Denmark’s roads. Due to the striking 
visual similarity between sibling invasive species belonging to the same 
genus, Dyrmann et al. (2021) consolidated some species into a single 
class or meta-species (referred to as ‘‘spp’’. in the rest of this article), 
resulting in a total of seven distinct taxa: Cytisus scoparius (L.) Link, Her-
acleum spp. (Heracleum mantegazzianum Sommier & Levier, Heracleum 
persicum Desf. ex Fisch., C.A.Mey. & Avé-Lall., Heracleum sosnowskyi
Manden.), Lupinus polyphyllus Lindl., Pastinaca sativa L., Reynoutria spp.
(Reynoutria japonica Houtt., Reynoutria sachalinensis (F.Schmidt) Nakai),
Rosa rugosa Thunb. and Solidago spp. (Solidago canadensis L., Solidago 
gigantea Aiton). The species related to the genus Heracleum and the 
associated images were removed from the detection analysis, due to 
too few images to obtain statistically significant results for this taxa 
(see Table  1). For the sake of clarity, we will colloquially term these 
selected categories as ‘‘invasive species’’ for the remainder of this 
paper. Dyrmann et al. (2021) insured that all the images underwent 
meticulous expert review to determine the presence/absence, as well 
as the identification, of the six considered invasive species.

The images show invasive plants at different stages of development 
(e.g., young plants, flowering, fruiting, or dying with a characteristic 
brownish-dry appearance), at different sizes, and at different distances 
from the camera. The plant may exhibit different shapes depending 
on the camera angle, appearing bushy (such as Reynoutria spp. and R. 
rugosa), occupying a significant portion of the image, or like P. sativa, 
with only the inflorescence emerging from the herbaceous cover.
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Table 1
Number of pictures per species: this table provides the number of positively annotated 
pictures, for each species.
 Invasive species # images 
 Cytisus scoparius (L.) Link 1228  
 Heracleum spp. 25  
 Lupinus polyphyllus Lindl. 669  
 Pastinaca sativa L. 1031  
 Reynoutria spp. 716  
 Rosa rugosa Thunb. 1725  
 Solidago spp. 3201  

Table 2
Statistics of the Danish road dataset: number of images containing zero, one, two or 
three invasive species. The 206 multi-species images, containing two or three species, 
are used to evaluate the multi-label detection capability of the models.
 # invasive species # images 
 0 6467  
 1 8135  
 2 205  
 3 1  

From the initial dataset of Dyrmann et al. (2021), we used 14,808 
high-resolution images for our study that maintained a consistent res-
olution of 4024 × 3036 pixels. 43.67% of the images do not feature 
any invasive species, whereas only a small percentage of images exhibit 
the presence of multiple invasive species (see Table  2). Note that 
while Dyrmann et al. (2021) focused on images with zero or only 
one species present, we incorporated 206 multi-species images (205 
containing two species and one containing three species) for a specific 
evaluation experiment (see below). We will call hereafter this dataset 
the Danish road dataset.

Fig.  1 illustrates, for each species in the dataset, an example that 
highlights the significant gap between the training images of the Pl@nt-
Net model and the ones of the Danish road dataset. Pl@ntNet relies 
mainly on detailed, close-up images of individual plants, often focused 
on specific organs such as leaves, flowers, fruits, or bark. In contrast, 
the target images in the Danish road dataset are not only much larger 
but also feature wide views with numerous plants and are captured 
using high-throughput professional cameras. This setup often results in 
‘‘tilted’’ image distortion, further reinforcing the domain shift.

Some of the image distortion originates from the sensor’s rolling 
shutter effect and warrants attention. For instance, plants and trees 
often appear to lean to the right, despite being perfectly vertical in 
reality.

3.1.2. Dataset split
For the main experiments, we adopted the evaluation methodology 

applied by Dyrmann et al. (2021) to the Danish road dataset, enabling a 
direct comparison with their results. Specifically, we split the data into 
three subsets – hereafter ‘train’ (70%), ‘val’ (15%), and ‘test’(15%) – as 
commonly done in machine learning, respectively for model training, 
validation and selection of the best model version, and testing the 
final method generalization on unseen data. The exact same images 
were used in each subset for this study and Dyrmann et al. (2021) 
to allow a direct comparison of the results. Note that, despite the 
benefits of a K-fold or bootstrap procedure for a more robust model 
validation, we avoided such strategies given the computational burden 
of training or fine-tuning the models (see below). In the three data 
subsets, the images contain either zero or only one invasive species. To 
prevent data leakage between train and test due to spatial proximity of 
the views, Dyrmann et al. (2021) clustered the images by acquisition 
location when less than 40 m apart, so that all images from the same 
cluster were assigned to the same set. They iteratively allocated the 
clusters based on a 𝜒2 goodness-of-fit test to maintain class distribution 
consistency. This location-aware clustering approach provides an unbi-
ased evaluation while preserving a representative species distribution 
3 
across all subsets. Further details regarding the data splitting process 
can be found in Dyrmann et al. (2021).

We set aside 206 multi-label images, each containing at least two 
invasive species (205 containing 2 species and 1 containing 3 species), 
from the total dataset of 14.8K images to serve as an additional test set 
for evaluating the efficiency of multi-species detection.

3.2. Proposed approaches

We investigate whether a high performance plant identification 
model pre-trained to predict a single label (species) per image, i.e. 
a classification model, can be efficiently adapted to a multi-species 
presence/absence detection problem without any additional fine-tuning 
on the final task, therefore without further data annotation, and what 
performance gain brings the fine-tuning of such a model.

We first consider to use a general plant classification model pre-
trained on images of individual plants (a Pl@ntNet model) without 
fine-tuning it on the Danish road images. However, state-of-the-art 
image classification models, i.e. vision transformers, typically require 
input images of relatively small size (e.g. 384 × 384 pixels for BEiT, 
used for Pl@ntNet, see below) due to memory and computational 
power limitations. The usual pre-processing step for image classifica-
tion involves resizing the image by reducing its resolution and possibly 
cropping it to the model’s square input size. In our context, this ap-
proach would significantly reduce the performance when dealing with 
high-resolution images containing many plants, because the relevant 
visual information is most often too small to be retained after re-
sizing. Furthermore, even if we adapt the Pl@ntNet model to the 
high-resolution input images, preserving all their visual information, 
we expect that the predicted probability per species for a given image 
will decrease with a larger the number of species detectable in this 
image, due to the model’s monolabel training. This makes it difficult 
to interpret the predictions in terms of presence and absence.

Therefore, we propose two approaches to adapt the Pl@ntNet model 
to high-resolution image analysis: (i) adapting the model to higher-
resolution input images (Variable Model Input Size or ‘‘VaMIS’’ ap-
proach), and (ii) decomposing the input high-resolution images into 
smaller sub-images of suited size for the model (tiles), predicting on 
each tile and aggregating the tile-level predictions (Tiling approach).

Overall, the main challenges are to compare and select the best ap-
proach for handling high-resolution images and multi-species presence 
detection, and to evaluate out-of-the-box pre-trained procedures that 
have the best generalization ability.

3.2.1. Pl@ntNet pre-trained model
Pl@ntNet is a large-scale collaborative plant species recognition 

application, available on mobile devices and online via a web interface, 
used by over 20 million people annually, with the goal of progressively 
covering all the world flora of vascular plants (Affouard et al., 2017). 
It relies on a regularly updated deep learning model trained on a large 
volume of data continuously curated by the user community (nearly 
30 million images shared and identified by end of 2024). The archi-
tecture of the model, the learning methods, and the methodological 
best practices are regularly re-evaluated and integrated in response 
to the PlantCLEF challenges organized each year (Joly et al., 2019). 
The results of the PlantCLEF2022 challenge (Goëau et al., 2022) led 
to a major update of the Pl@ntNet model. This challenge advanced 
the state-of-the-art available datasets in terms of data volume and 
species diversity by introducing a plant identification task based on 
four million images covering 80,000 species. The results showed that 
approaches based on Vision Transformers (ViTs) architectures (Dosovit-
skiy et al., 2020) have supplanted CNN-based approaches, particularly 
when pre-trained using a Self-Supervised Learning (SSL) method (Xu 
et al., 2022). The Bidirectional Encoder representation from image 
Transformer (BEiT) self-supervised learning method (Bao et al., 2021) 
demonstrated an excellent balance between performance and memory 
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Fig. 1. Domain shift between the Pl@ntNet training dataset (left) and the Danish roads dataset (right). The Pl@ntNet model was trained to identify a single species per image, with 
multiple view types (flower, fruit, leaf, stem, whole plant), whereas the Danish roads dataset requires the recognition of multiple species within each image, using high-resolution 
analysis at varying camera-to-plant distances. Each image in the right-hand column contains at least one specimen of the species shown in the left-hand column.
usage. Following PlantCLEF2022, we trained a Pl@ntNet model based 
on the BEiT architecture. We used this specific pre-trained Pl@ntNet 
model in this study and detail below its training process.

BEiT architecture processes images with an input resolution of 
384 × 384 pixels and an internal patch size of 16 × 16 pixels. We 
used a particular implementation of BEiT which underwent multi-stage 
trainings and that is publicly available.1 To briefly describe this process, 
BEiT was first pre-trained from scratch without labels on ImageNet-22k, 
then fine-tuned on ImageNet-22k with supervision this time by adding 
a classification layer related to 22k classes. Finally, it was fine-tuned 
again on ImageNet-1k through transfer learning on 1k classes. For the 
remainder of the paper, we will refer to it as the off-the-shelf model.

This off-the-shelf BEiT model was downloaded and further fine-
tuned on the Pl@ntNet training dataset. The Pl@ntNet training and 

1 https://huggingface.co/timm/beit_base_patch16_384.in22k_ft_in22k_in1k.
4 
validation data contained 6,585,369 images related to a total of 43,683 
species. These images comprised the most validated Pl@ntNet obser-
vations, supplemented with public images from the GBIF (Wheeler, 
2004) and private images of rare species or common species rarely 
imaged shared by collaborators and Pl@ntNet users. A relatively small 
subset of  45,000 images, covering  15,000 species, was reserved for 
validation, with the remaining images used for training. To prevent bias 
in species representation, no species-level balancing was enforced, and 
training was conducted with the natural class distribution observed in 
the dataset. However, to limit over-representation of common species, 
the number of images per species was capped at 800, while some rare 
species may be represented by a single image.

The training was carried out as distributed training on a high-
performance computing cluster. The cluster comprised eight nodes, 
each equipped with four NVIDIA V100 GPUs (32 GB). Training lever-
aged the following hyperparameters: a batch size of 52 per GPU, an 
initial learning rate of 0.1625, and the SGD optimizer with a weight 

https://huggingface.co/timm/beit_base_patch16_384.in22k_ft_in22k_in1k
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decay of 10−4. The learning rate was empirically chosen based on 
preliminary experiments on a validation subset, using a grid search. The 
selected value provided the best trade-off between convergence speed 
and generalization performance.

To make the model predictions robust to various transformations 
of the images, we employed several data augmentation techniques, 
including RandAugment (Cubuk et al., 2019), CutMix (Yun et al., 
2019), MixUp (Zhang et al., 2018) and label smoothing. See2 for the 
parameters values. These data augmentation techniques notably in-
clude shear transformations which address the rolling-shutter distortion 
present in the Danish road dataset. The training schedule utilized a 
learning rate plateau scheduler with a decay rate of 0.9 and a patience 
of one epoch, as well as 100 total epochs of training.

Training took 96 h. The final model was chosen based on the 
highest top-1 accuracy on the validation set, combined with a manual 
verification of species misclassifications for rare taxa. This training 
procedure, conducted prior to this paper, results in a generic model 
for plant identification, which we refer to as the Pl@ntNet model. 
More precisely, this is a candidate model trained in mid-2023 as part 
of the Pl@ntNet platform’s ongoing update cycle. Although it was 
briefly evaluated, it was not deployed in production. For reproducibility 
purposes, we provide access to this model along with a classification 
head specifically trained on the invasive species considered in this 
study, and refer to it as the Pl@ntNet model throughout this paper for 
clarity.

3.2.2. VaMIS approach: Adapting Pl@ntNet pre-trained model to larger 
image sizes

Our pre-trained Pl@ntNet model is designed to take input images 
of 384 × 384 pixels. To leverage both the high-resolution of Danish 
road images and the pre-training of Pl@ntNet, a first option considered 
here is to adapt the Pl@ntNet pre-trained model to larger input images 
without further training. Through interpolation, it is possible to expand 
the receptive field of a pre-trained transformer and utilize rectangular 
input images. Upon loading the model, the BEiT Relative Positional 
Encoding (RPE) parameters undergo spatial interpolation to adjust for 
the larger image resolution. RPE facilitates the model’s understanding 
of spatial relationships between different regions of the input image, 
thereby enhancing its ability to capture contextual information. Instead 
of using a uniform interpolation grid, we apply a non-uniform one 
with finer steps for nearby patches, which improves the encoding of 
short-range spatial relationships. This strategy provides more accurate 
interpolation for local details, important for visual tasks that rely on 
high-resolution, while remaining efficient for broader spatial relation-
ships. We call this interpolation method ‘‘VaMIS’’, for Variable Model 
Input Size.

The RPE corresponds to 318k parameters compared to the 87 mil-
lion of the entire BEiT transformer. During the VaMIS interpolation, the 
other parameters of the model remain the same. This is because, aside 
from the positional encoding mechanism, the computational procedure 
of a transformer model naturally scales up with the number of tokens. 
Specifically, the feed-forward block processes one token at a time, and 
the attention module operates on pairs of tokens, regardless of the total 
number of tokens. During inference, the RPE is added to the result of 
the attention matrix product to account for the spatial relative positions 
between tokens.

Even with the VaMIS approach, we did not use the full resolution 
of the original Danish road images of 4024 × 3036 pixels and resized 
them to 1024 × 768 pixels before feeding them to the Pl@ntNet 
model. This resolution was chosen for several reasons: it is one of the 
resolutions tested in Dyrmann et al. (2021), as well as one of the scales 

2 TIMM Parameters values: Randaugment: --aa rand-m9-mstd0.5-
inc1, MixUp: --mixup 0.8, CutMix: --cutmix 1.0, Label smoothing:
--smoothing 0.1.
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of the tiling method (scale two) that we experimented with and it was 
the highest resolution compatible with our GPU memory constraints. 
Further details can be found in the Appendix section titled ’VaMIS 
Interpolation’

The final output of the Pl@ntNet model, originally trained to iden-
tify single species, is a probability distribution across species. We 
removed the SoftMax layer, which transforms individual species scores 
(∈ R, called logits hereafter) into probabilities, and directly use the 
logits of the invasive species as the basis to predict their presence or 
absence.

The advantage of this training-free model is that other potential 
invasive species that have not been annotated could potentially be 
detected, even though we cannot test them here. In addition, this model 
can be used almost ‘‘out-of-the-box’’, as it does not require the technical 
AI skills or computational resources needed to customize or fine-tune a 
deep learning model to a multi-label classification dataset, such as the 
Danish road dataset used here.

3.2.3. Tiling approach: Multi-scaled sampling
While the VaMIS approach allows the Pl@ntNet model to be applied 

to larger images and reduces the need to downsize the original image 
(4024 × 3036 pixels), VaMIS still needed a drastic downsampling of the 
images to 1024 × 768 pixels due to a GPU RAM memory limit of 48 
Gb. Another important limit of the VaMIS approach is that the image 
often contains many other plant species, which should increase the 
prediction ambiguity of Pl@ntNet, and it does not address the domain-
shift problem (the Pl@ntNet pre-trained model was not exposed to 
comparable images in training). An alternative approach is to analyze 
the image ‘‘piece-by-piece’’, with a closer look, as if we were using a 
magnifying glass (Akyon et al., 2022). This is the principle of the tiling 
approach described below.

The tiling approach involves extracting square tiles at various scales 
from original high-resolution image. The tiles are resized to the Pl@nt-
Net model input size (384 × 384 pixels for BEiT) and a prediction 
is computed for each tile. We have defined eight tile scales, where 
the finest scale (scale eight) just extracts tiles from the original image 
resolution without any downsampling, and the coarsest scale resolution 
(scale one) extracts only two ‘‘big’’ tiles jointly covering the whole 
rectangular image, i.e. one square on the left and one on the right with 
an overlap area in the center of the image (see Fig.  2).

More precisely, scale one means to resize both tiles of size
3036 × 3036 to a 384 × 384 image. The last scale, number eight, 
uses the original resolution of the image as 8 * 384 = 3072, above 
3036, which is the pixel-wise size of the smaller side of the images. For 
scales two to eight, we decided to keep an overlap of about 50 percent 
between two consecutive tiles, both on the 𝑥-axis and on the 𝑦-axis. 
This avoids that a highly informative area (e.g. a flowering individual) 
is split between two tiles during the process for a given scale. Thus, 
most pixels appear in four tiles for a given scale (two to eight). This 
results in 926 tiles for an initial resolution of 4024 × 3036 pixels, and 
a standard model input size of 384 × 384 pixels (Fig.  3).

The different scales allow the model to see different parts of the 
original image with a more or less focused view, representing different 
distances from the camera to the plant. This is particularly important 
because the photos were taken at different distances from the roadside, 
with different camera fields of view, and with plants at different stages 
of growth. Also, the Pl@ntNet training data contains images of plants 
at different distances. Thus, we expect some scales to naturally fit 
better for each image and each plant, allowing for some flexibility and 
robustness in the final predictor.

The tile-level predictions of the Pl@ntNet model notably output one 
logit per species, seen as a vector of presence scores. We sum the logits 
associated to the Latin species associated to each of our six invasive 
species to form their tile-level score. For each invasive species, we then 
took the maximum of the tile-level scores across all tiles of all scales 
to obtain the image-level score of that invasive species. This can be 
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Fig. 2. Our tiling architecture. Example of Rosa rugosa Thunb. presence detection in a roadside image. Tiles are extracted from the high-resolution image, at eight different scales, 
and with 50% overlap. The BEiT Pl@ntNet model is used for inference and computes logits for each species. A max-pooling layer is then applied over all tiles to obtain the 
image-level logit. This method is a generic extension of a mono-label Standard Definition (SD) resolution input model to multi-label presence detection, High Resolution (HR) 
resolution image analysis.
interpreted as a common max pooling layer, as used in CNNs (see, for 
example, Simonyan and Zisserman, 2014).

We tested internally several other ways of aggregating the tile-level 
predictions to obtain image-level presence scores, for a given high-
resolution image. The 926 tile sorted scores of a given meta-species 
can be viewed as an empirical distribution, and we can use a statistical 
parameter as an image-level presence score, such as the average, the 
maximum, or a quantile of this distribution. To avoid one high tile 
score to be mixed with the random noise of the other 925 tiles, we 
used the maximum tile score for each species at the image level. The 
quantile statistic is an alternative aggregation score, which could add 
robustness to the prediction relative to the maximum, but according 
to our internal tests, it did not perform better (50 percent, 90 percent 
and 99 percent quantile levels were tested). Another solution would be 
to use an additional linear layer covering all six species altogether, but 
this solution requires fine-tuning, and our experiments led to overfitting 
during the training, indicating too many aggregation parameters.

In summary, the tiling pipeline (see Fig.  4) consists of the following 
steps: (1) extract 926 tiles from the high-resolution image and resize 
them to the model input resolution, (2) compute deep features for each 
tile via inference with the BEiT Pl@ntNet model, (3) compute the six 
invasive species scores from the linear classifier of the Pl@ntNet model, 
and (4) aggregate tile-level predictions up to the image level by taking 
the maximum score over the tile per invasive species.

This tiling approach has several interesting properties, such as 
invariance through spatial translation in the image plane (a R. rugosa
appearing in a tile in the upper left or the center of the image will be 
detected with identical statistics). There is also an approximate invari-
ance by translation in the third dimension (plant-to-camera distance), 
because the multiscale tiling system ensures that at least one tile cap-
tures an entire individual at its best resolution. Finally, this approach is 
multi-species by design: after the shared model deep features inference, 
each species has a unique and dedicated presence/absence detection 
pipeline.

3.2.4. Fine-tuning the models on the Danish road dataset (optional)
Although the main focus of this paper is to capitalize on a pre-

trained plant identification model, we also evaluate the scenario of 
fine-tuning our models on the train set of the Danish road images, for 
the purpose of comparison and discussion.

We aim to address a presence/absence detection problem, which is 
very similar to a multi-label classification problem. Therefore, we train 
our models using the recommended methodology in such case, i.e. a 
combination of a sigmoid layer and the binary cross-entropy loss.

The procedure is the following for the two approaches:
6 
Table 3
Tiling of a 4024 × 3036 high-resolution image: distribution of the tiles across the eight 
scales. For scale one, two large 3036 × 3036 square tiles are extracted (left and right) 
and resized to 384 × 384 pixels. Scale eight uses 300 tiles (with layout 20 × 15), 
retrieved with native resolution of 384 × 384 pixels (no resizing) and about 50% 
overlap on both axes.
 Scale Resized image n tiles X n tiles Y n tiles scale 
 1 384 2 1 2  
 2 768 4 3 12  
 3 1152 7 5 35  
 4 1536 10 7 70  
 5 1920 12 9 108  
 6 2304 15 11 165  
 7 2688 18 13 234  
 8 3036 20 15 300  
 All – – – 926  

Fine-tuning using the VaMIS approach. We aim to evaluate the per-
formance improvement of the additional training on the Danish road 
by fine-tuning the previously introduced VaMIS model. The Pl@ntNet 
model, with VaMIS adaptation, uses higher resolution input images 
(1024 × 768 pixels input resolution). The performance of this out-
of-the-box pre-trained model can be improved by fine-tuning on the 
Danish road dataset.

About the related training parameters, see Table  4.
Fine-tuning using the tiling approach. To evaluate the possible perfor-
mance gain by fine-tuning, we optimize the presence/absence linear 
classification for each species, which takes 768 inputs (the deep fea-
tures) and outputs a single logit per species, i.e. we optimize 4614 
parameters in total. This layer is applied uniformly to all of the 926 
tiles, thereby preserving the spatial translation invariance property.

The computation of the transformer deep features represents a 
bottleneck for both inference and training due to the large number of 
tiles for each image. Therefore, this computation is done once, as a 
pre-processing of the dataset, to efficiently fine-tune the model head.

The detection pipeline is unique for each species. Thus, during the 
training, these species-specific pipelines were optimized separately and 
then concatenated to obtain a model adapted to the Danish road dataset 
presented above, confirming the multi-species detection capabilities of 
the model by design.

3.3. Experimental plan

3.3.1. VaMIS approach
The VaMIS approach was tested both with and without fine-tuning 

on the Danish road dataset. These two experiments enabled us to 
measure the performance increase resulting from fine-tuning, compared 
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Fig. 3. Layout per scale: the receptive fields are plotted for each of the eight scales. Darker gray indicates overlapping tiles. This is directly related to Table  3, with the number 
of tiles per scale. Scale one uses two square tiles (left and right). For scale two, 12 tiles are extracted, with layout 4 × 3. Scale eight uses 300 tiles with layout 20 × 15.
Fig. 4. Data flow processing for the tiling approach for an image: first, we extract 926 tiles from the original high-resolution image, at eight different scales (2 to 300 tiles 
per scale). On each resized tile, we apply Pl@ntNet’s backbone and linear classifier. We get a presence score for each species in each tile. Spatial aggregation is done with a 
max-pooling layer that takes the best score over the tiles up to the image level. During fine-tuning, we add a sigmoid layer and use Binary Cross Entropy loss, and only optimize 
the linear classifier weights of the six invasive species. Thus, the computationally intensive deep feature extraction is performed only once, prior to training.
Table 4
Summary of the optimization parameters for the fine-tuning of the two models (VaMIS 
and tiling) on the Danish road dataset. The fine-tuning of VaMIS optimizes a full 
vision transformer with 87 million parameters and requires a server dedicated to deep 
learning. However, the fine-tuning of the tiling approach only requires optimizing the 
linear classifier of the head and could be performed on a standard laptop. Both models 
optimize the binary cross-entropy loss, which is added on top of a sigmoid layer, as 
commonly recommended for multi-label classification. Standard data augmentations 
were used (including rotate, sheer, and colorjitter). We did not apply any data 
augmentation to the tiling approach, since the model takes the deep features directly 
as input. ReduceLROnPlateau refers to the usual Reduce Learning Rate On Plateau 
strategy. We provide the epoch duration as additional information.
 VaMIS Tiling  
 Optimized parameters 87 M 4614  
 # train image 10,302 10,302  
 # validation image 2160 2160  
 Computer GPU RAM 48 Gb 8 Gb  
 Batch size 8 256  
 Data augmentations Standard None  
 Learning rate 0.00001 0.02  
 LR decay Cosine ReduceLROnPlateau  
 Optimizer ADAM ADAM  
 Loss Binary cross entropy Binary cross entropy 
 Epoch duration 48 min 11 s  

to the Task-independent VaMIS method. These models are labeled XP2 
and XP3 in Table  5, respectively.

Furthermore, to specifically assess the effect of the pre-training of 
BEiT on Pl@ntNet images (yielding the Pl@ntNet pre-trained model), 
we tested VaMIS directly on the off-the-shelf BEiT transformer model, 
that had only been pre-trained on ImageNet but not on Pl@ntNet 
images. The linear classification head was initialized with random 
weights and outputs six logits, corresponding to the six invasive species. 
7 
This model was fine-tuned using the same set of parameters. This model 
is labeled XP1 in Table  5.

3.3.2. Tiling approach
We also evaluated the tiling approach with and without fine-tuning 

on the Danish road dataset. In the experiment without fine-tuning on 
the training data, we performed inference on each tile using the pre-
trained BEiT Pl@ntNet model, followed by a simple max function over 
the tiles. This out-of-the-box pre-trained method does not need any fine-
tuning on the final dataset.It retains its ability to generalize, making 
it well-suited for detecting a wide range of invasive species. In the 
experiment with fine-tuning, we use the same BEiT Pl@ntNet tiling 
model presented above, and fine-tuned the model head on the Danish 
road dataset. The tiling models are labeled XP4 and XP5 in Table  5, 
corresponding to the models without and with fine-tuning, respectively.

3.3.3. Former ResNet and Yolo approaches
Dyrmann et al. (2021) investigated two approaches for detecting 

invasive species: image classification and object detection. Since our 
study builds upon the same dataset, we replicated these experiments to 
ensure a direct and meaningful comparison with our proposed methods. 
This replication allows us to assess how well our approaches – VaMIS 
and tiling – perform relative to existing CNN-based classification and 
object detection techniques.

In the image classification approach, the objective is to assign 
a category (i.e., select one species among the six or none) to each 
image in the test set. This was achieved using two well-established 
Convolutional Neural Network (CNN) architectures: ResNet50-v2 (He 
et al., 2016), known for its deep residual learning framework, and 
MobileNet-v2 (Sandler et al., 2019), optimized for efficiency on mobile 
and low-power devices. These models were trained and evaluated with 
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Table 5
Summary of the main experiments. The VaMIS model is an adaptation of BEiT to take 1024 × 768 images as input. The tiling 
approach consists of 926 square tiles on eight scales, extracted from the high-resolution input image, thus exploiting its true 
resolution. The models were pre-trained on either ImageNet only (IN), or ImageNet and then Pl@ntNet (PN). We tested both 
with and without fine-tuning. In the former one, 87 million of parameters are optimized in the VaMIS case, and 4614 for 
tiling (corresponding to the classification head). The multi-label experiment is not reported here.
 XP1 XP2 XP3 XP4 XP5  
 Type VaMIS VaMIS VaMIS Tiling Tiling  
 Input (px) 1024 × 768 1024 × 768 1024 × 768 4024 × 3036 4024 × 3036 
 # Tiles 1 1 1 926 926  
 # Tiling scales 1 1 1 8 8  
 Pre-training IN IN + PN IN + PN IN + PN IN + PN  
 Fine-tuning Yes Yes No No Yes  
 Optimized parameters 87 M 87 M – – 4614  
varying input resolutions, ranging from 128 × 96 to 2048 × 1536 pixels, 
to assess their performance across different scales.

To facilitate a comparison with Dyrmann’s results, we reproduced 
the experiment using the ResNet50-v2 model at a resolution of 1024 ×
768. This resolution was chosen as it offers a balance between computa-
tional efficiency and accuracy while aligning with the VaMIS configu-
ration used in our study. Additionally, ResNet50-v2 was preferred over 
MobileNet-v2 due to its higher performance, making it a more relevant 
benchmark for evaluating Vision Transformers.

In the object detection approach, the goal is to localize and classify 
individual instances of species within images. To accomplish this, Dyr-
mann et al. (2021) employed YOLOv3 (You Only Look Once, version 
3), a widely used object detection framework that balances speed 
and accuracy (Redmon and Farhadi, 2018). The model was trained 
on images with a resolution of 832 × 832 pixels and tested at 608 ×
608 pixels, reflecting a trade-off between computational efficiency and 
spatial detail.

Since our objective is to compare the effectiveness of different 
presence/absence detection methods, we focused on reproducing the 
classification-based approach rather than the object detection
approach. Object detection methods typically require extensive annota-
tion efforts and are not directly comparable to our proposed tiling and 
VaMIS approaches, which operate at the image level rather than at the 
object instance level.

3.3.4. Summary of the experiments
We conducted a total of five experiments, summarized in Table  5, 

to compare the VaMIS and the tiling approaches. In addition, both 
approaches are tested with and without additional fine-tuning and we 
evaluated the multi-label approach. To facilitate comparison, we also 
reported the results from Dyrmann’s image classification experiment, 
which employed ResNet50-v2 at a resolution of 768×1024. This allows 
us to assess how the VaMIS and tiling strategies compare to standard 
CNN-based classification and object detection approaches. Finally, we 
assess the effectiveness of presence/absence species detection when 
multiple species are simultaneously present for the five experimental 
models on the 206 multi-label images.

3.3.5. Evaluation metrics
Threshold selection. For all experiments, we used the logits as indi-
vidual species presence scores (i.e., the output values of the neurons 
before applying SoftMax or Sigmoid layers). The threshold is chosen by 
optimization over the validation set and aims to maximize the balanced 
accuracy. The balanced accuracy is the average between the presence 
class and the absence class recalls, i.e. 12 (

𝑇𝑃
𝑃 + 𝑇𝑁

𝑁 ). This statistic is more 
relevant than the standard accuracy statistic for unbalanced datasets. 
This can be interpreted graphically as selecting the threshold of the 
point on the ROC curve that is closest to the upper left corner of the 
graph, with coordinates (0,1), using Manhattan distance. This is the 
same as optimizing the Youden statistic (Youden, 1950), which is also 
calculated from the True Positive Rate and the False Positive Rate. 
Finally, once the threshold is chosen using the validation set, the model 
can decide, for each image, whether the species is present or not. We 
then evaluate the respective models on the test dataset.
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Table 6
Result statistics on the test set (for 2140 images) for the five experiments. Fine-
tuned models outperform the others (AUC). The non-fine-tuned methods, XP3 and XP4, 
benefit from Pl@ntNet pre-training. Tiling without fine-tuning has remarkably high 
performance (and generalization capabilities). Tiling and VaMIS approaches perform 
equally well.
 XP1 XP2 XP3 XP4 XP5  
 Type VaMIS VaMIS VaMIS Tiling Tiling  
 Pretraining IN IN + PN IN + PN IN + PN IN + PN 
 Fine-tuning Yes Yes No No Yes  
 Bal. acc. (%) 89.91 91.82 66.76 84.87 92.13  
 AUC (%) 96.07 96.38 75.52 91.58 97.29  

Metrics. In this article, we provide two metrics evaluated on the test 
set to assess the classification performance of the main experiments: 
the Area Under Curve (AUC) which is a global quality evaluation of 
a classifier and which does not rely on a threshold, and the balanced 
accuracy, seen above.

For the multi-label efficiency evaluation, we computed two statis-
tics: the F1 score (calculated over the species for each image and 
then averaged over the dataset), and the Jaccard index, i.e. the so-
called ‘‘intersection over union’’ (also calculated per plot and then 
averaged over the images): for each image, we divide the number of 
correctly detected species (presence) by the total number of species 
either detected or in the ground truth. We opted for multilabel metrics, 
such as F1 and Jaccard, over monolabel ones like AUC and balanced 
accuracy, to evaluate the models specifically for multilabel tasks using 
standard approaches tailored to such scenarios.

4. Results

Fig.  5 and Table  6 sum up the statistics of the experiments we 
previously introduced. The statistics per species for the tiling without 
fine-tuning are provided in Table  7. A closer look at the detection of R. 
rugosa are presented in Table  8. All but the VaMIS experiment without 
fine-tuning show exceptional performance, nearly or above 99%. We 
provide the ROC curve for R. rugosa detection, using the tiling without 
fine-tuning method (XP4) (see Fig.  6), confirming the efficient detection 
of this species. We evaluated the statistics over the multi-label dataset, 
composed of 206 pictures (each image contains at least two species 
within an image) in Table  9. The fine-tuned tiling method provides the 
best statistics.

The two approaches differ in both the inference and fine-tuning 
performance. On a standard laptop with 8 Gb GPU RAM and Nvidia 
RTX A2000, a single inference takes 0.36 s with the VaMIS approach 
and 12.4 s with the tiling method, for a time ratio of 34.5 in favor of 
the VaMIS method (See Table  10).

Fine-tuning a vision transformer, especially with VaMIS interpola-
tion, requires a computer with enough GPU RAM to store the model, 
tokens, and gradients during optimization. On the other hand, the tiling 
model leverages Pl@ntNet pretraining and its resulting efficient deep 
feature extractor. Only the linear classifier head is optimized, which 
explains why it can be trained much faster. (See Table  11).
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Fig. 5. Balanced accuracy and Area Under Curve (AUC) metrics, on the test set (for 2140 images). IN refers to ImageNet pre-training, and PN refers to Pl@ntNet pre-training 
(on top of ImageNet pre-training). On the left, we find the task-independent pre-trained models, that were not fine-tuned on the Danish road dataset. On the right, we compare 
the fine-tuned models. VaMIS stands for Variable Model Input Size (1024 × 768). Tiling takes the original 4024 × 3036 pixels image as input. ResNet and YOLO refer to the 
performance of models in Dyrmann et al. (2021), calculated from the confusion tables (which do not contain AUC information). ResNet is the standard ResNet50-v2 convolutional 
neural network model, with extended input size (1024 × 768), and YOLO refers to YOLOv3, the object detection model, with 608 × 608 pixels input size. The three fine-tuned 
vision transformers show comparatively strong performance, with an advantage for the tiling method.
Fig. 6. XP4 — Tiling without fine-tuning, on the test set (for 2140 images): ROC curve for Rosa rugosa Thunb.. With 99.20% AUC (Area Under Curve), the non fine-tuned tiling 
is almost a perfect detector.
Table 7
Statistics for XP4 — Tiling without fine-tuning, on the test set (for 2140 images): P: 
Positive, N: Negative, TP: True Positive, FP: False Positive, TN: True Negative, FN: False 
Negative, bal.acc.: balanced accuracy, AUC : Area Under Curve. Weighted statistics use 
the number of positives P. Full invasive species names are Solidago spp., Cytisus scoparius
(L.) Link, Rosa rugosa Thunb., Lupinus polyphyllus Lindl., Pastinaca sativa L., Reynoutria 
spp.. The average AUC is above 91%, and the average balanced accuracy is nearly 85%.
Rosa rugosa Thunb.’s AUC is 99.20%, the best among all the experiments.
 Soli. Cyti. Rosa Lupi. Past. Reyn. Weighted 
 P 451 161 225 66 124 118  
 N 1689 1979 1915 2074 2016 2022  
 TP 357 145 211 44 66 103  
 FP 262 239 32 25 358 196  
 TN 1427 1740 1883 2049 1658 1826  
 FN 94 16 14 22 58 15  
 Bal.acc. (%) 81.82 88.99 96.05 82.73 67.73 88.80 84.87  
 AUC (%) 89.84 95.33 99.20 95.99 75.31 93.24 91.58  

5. Discussion
This study demonstrates the effectiveness of the two proposed ap-
proaches, tiling-based and VAMIS, in adapting a global plant image 
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Table 8
Rosa rugosa Thunb. presence detection statistics, on the test set (for 2140 images): 
Balanced Accuracy and Area Under Curve; All experiments (except for the VaMIS 
without fine-tuning) show exceptional detection for the Rosa rugosa Thunb. close to 
or above 99%.
 XP1 XP2 XP3 XP4 XP5  
 Type VaMIS VaMIS VaMIS Tiling Tiling  
 Pretraining IN IN + PN IN + PN IN + PN IN + PN 
 Fine-tuning Yes Yes No No Yes  
 Bal. Acc. (%) 95.70 95.35 84.04 96.05 96.07  
 AUC (%) 99.16 99.09 91.26 99.20 98.99  

classification model, like Pl@ntNet’s, for detecting species in high-
resolution images. However, both approaches have their advantages 
and disadvantages in terms of data requirements and computational 
costs. Consequently, the choice of the best method depends on the 
context of use.
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Table 9
Multi-label results (for 206 images): F1 is the F1 Score per image, averaged over the 
dataset. Jaccard index is the usual intersection over union statistic between predicted 
and ground truth present species. FT stands for fine-tuning. Scores are calculated on 
a separate dataset consisting of 206 images, each containing at least two species. The 
fine-tuned tiling provides the best statistics.
 Experiment XP F1 Jaccard index 
 VaMIS ImageNet with FT XP1 0.8414 0.7638  
 VaMIS Pl@ntNet with FT XP2 0.7966 0.6958  
 VaMIS Pl@ntNet w/o FT XP3 0.4815 0.3725  
 Tiling w/o FT XP4 0.7301 0.6283  
 Tiling with FT XP5 0.8464 0.7642  

Table 10
Summary of the inference performance parameters for the two approaches (VaMIS and 
tiling) on the Danish road test set (2140 images). The VaMIS approach is, as expected, 
much faster (ratio × 34.5), since it requires only one ‘‘big’’ inference using a model 
input size of 1024 × 768 pixels with an internal representation of 3077 tokens. On 
the other hand, for a given high-resolution image, tiling relies on inference over 926 
individual tiles, with a standard BEiT model input size of 384 × 384 pixels.
 VaMIS Tiling  
 Test set inference time 12 m 50 s 7 h 22 m 20 s 
 # ViT tokens 3073 577  
 Batch size 4 128  
 Single image inference time 0.36 s 12.40 s  
 inference time ratio × 34.5  

Table 11
Summary of the fine-tuning performance parameters for the two approaches (VaMIS 
and tiling) on the Danish road dataset (10,302 images). As expected, fine-tuning the 
tiling model is much faster than fine-tuning the VaMIS model. For the VaMIS approach, 
a computer with 48 GB GPU RAM was utilized, with 44 GB being used continuously 
during training.
 VaMIS Tiling  
 Optimized parameters 87 M 4614  
 Epoch duration 48 min 11 s  
 # epochs 31 112  
 Fine-tuning time 24 h 50 min 20 min 32 s 
 Batch size 8 256  
 Training time ratio × 62  

5.1. Context 1: Known target species and availability of labeled images

When the set of species to be detected is known in advance and 
not too big, it may be possible to produce manually annotated data 
in the target domain at a reasonable cost. We then find ourselves in 
a classic context of supervised domain adaptation (Farahani et al., 
2021), with annotated data in both the source and target domains. 
In this context, transfer learning is known to be an effective solution, 
especially when using large, pre-trained transformer models (Khan 
et al., 2022). Indeed, this makes it possible to fine-tune the model 
weights in a supervised way in order to improve performance. In our 
case, the balanced accuracy of the tiling approach can be increased 
from 84.87% to 92.13% thanks to fine-tuning. The performance gain 
is even stronger for the VAMIS approach, whose accuracy rises from 
66.76% to 91.82% when fine-tuning the whole model.

Overall, the three fine-tuned models show comparatively strong per-
formance, with an advantage for the tiling method on average (+0.31% 
on the accuracy and +0.91% on the AUC, compared to the Pl@ntNet 
pre-trained VaMIS). The tiling approach analyzes the image at its true 
resolution (4024 × 3036), while the VaMIS method requires a resizing 
preprocessing to 1024 × 768 pixels, thus losing some information. 
This may explain the difference in performance. Looking more closely 
at the VaMIS models, pre-training on a large plant dataset such as 
Pl@ntNet increases the accuracy by 1.91% and the AUC by 0.31%. In 
the particular case of multi-species detection (i.e. multi-label images), 
the fine-tuned methods provided the best detection performance. The 
ImageNet pre-trained VaMIS seems to be better than the Pl@ntNet pre-
trained one. This may be attributed to the relatively small size of this 
10 
dataset (206 images), which provides insights and general trends but 
does not allow for precise comparisons, as the limited number of images 
inherently impacts the statistical precision of the results calculated 
from it. As in the mono-label experiments, VaMIS Pl@ntNet without 
fine-tuning does not provide any good performance. Tiling without 
fine-tuning provides reasonably good performance (see the Jaccard 
index). The tiling model is a multi-label classifier by design, which may 
explain this result.

Regarding computational costs, it is worth noting that fine-tuning 
the tiling model involves optimizing only 4614 parameters (the linear 
classifier), which does not require powerful GPUs. In contrast, VaMIS 
has 87 million parameters to optimize, resulting in a learning time 
of nearly 20 min for the tiling model compared to 25 h for VaMIS 
(see Table  11). On the other side, the inference time and associated 
computational cost is much higher for the tiling model since it requires 
processing 926 tiles for a single high-resolution image. In a context 
of large-scale model deployment over a long period, it is therefore 
probably preferable to use the VAMIS approach, which offers a better 
tradeoff between quality and inference efficiency.

5.2. Context 2: Unknown target species and/or unavailability of labeled 
images

When the set of species to be detected is unknown in advance or 
when it is not possible to produce manually annotated data in the 
target domain at a reasonable cost, we find ourselves in a context of 
unsupervised domain adaptation (Liu et al., 2022), with annotated data 
in the source domain but not in the target domain. In this context, 
we note that the tiling approach provides the best performance, while 
maintaining very high generalization capabilities, with 84.87% bal-
anced accuracy and 91.58% AUC. VaMIS without fine-tuning provides 
reduced performance, indicating that increasing the model input size of 
a vision transformer by relying solely on the interpolation of the spatial 
parameters (relative positional encoding) may not be sufficient.

The good performance of the out-of-the-box pre-trained tiling is due 
to the Pl@ntNet pre-training of the BEiT backbone model. In fact, tiling 
without fine-tuning can be seen as a direct extension of the Pl@ntNet 
model to high-resolution input images and multi-label classification. 
This adapted modeling approach, based on tiling and max-pooling 
aggregation, is quite generic and could be used in different contexts. 
It also requires only limited deep learning expertise to execute. Still, 
its drawback remains the computational inference time, since 926 
inferences are required to analyze a single high-resolution image. In 
future work, we plan to experiment the design of a hybrid model 
between the tiling approach and the VAMIS approach. Such a hybrid 
model could provide a backbone that processes the image entirely like 
VAMIS, but with a classification head that enables tiling, similarly to 
object detection models (Shetty et al., 2021).

The growing development of automated species identification
(Truong and Van der Wal, 2024), combined with citizen science plat-
forms such as Pl@ntNet (Bonnet et al., 2020), iNaturalist (Di Cecco 
et al., 2021), Flora Incognita (Mäder et al., 2021) will undoubtedly 
make it possible to expand in the future the volume and diversity of 
visual data available for training deep learning models. This additional 
data could thus enable better coverage of the different growing and 
phenological stages of species, facilitating their detection by embedded 
sensors over longer periods (plant species are generally in flower or 
fruit only for short periods). In addition, the performances obtained 
within this work make it possible to consider the transfer of this 
methodology to analyze data produced from other types of device al-
ready used for monitoring invasive species, such as drones (Singh et al., 
2024; Dash et al., 2019). This represents a tremendous opportunity for 
monitoring large areas and the early detection of invasive species in 
areas that are difficult to access by land.
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6. Conclusion

In this work, we have presented a new methodology for analyzing 
high-resolution images with deep learning models. We have shown 
that tiling the image is a simple yet effective approach to take ad-
vantage of the entire area of the image. Moreover, this method is 
highly generic and enables transforming a medium resolution single-
label classification model (one class per image) into a high-resolution 
multi-label classification model (multiple classes per image) without 
any additional training. The tiling model inherits the efficiency of the 
initial model and may even outperform other models that have been 
fine-tuned (e.g., Pl@ntNet tiling without fine-tuning on R. rugosa).

The VaMIS (Variable Model Input Size) model provides a natural 
extension of a transformer’s receptive field, allowing the entire image 
to be analyzed at a higher resolution in a single inference. However, 
VaMIS requires a large amount of GPU RAM due to the quadratic 
complexity of the attention layer in the number of patches, which limits 
its effective resolution. Moreover, this method requires fine-tuning to 
achieve optimal classification performance. Since this is not possible 
in most contexts where additional labeled high-resolution images are 
unavailable, we recommend the tiling modeling approach based on the 
results presented in this study. This type of method could encourage 
the emergence of new protocols for monitoring species (Porcher et al., 
2024).

Future work should focus on optimizing the tiling approach to 
minimize the computational resources required while maintaining good 
classification performance and generalization ability. In addition, we 
recommend to further analyze the presence of the detected species 
on the image surface. For instance, it may be possible to normalize 
the final score distribution using, for example, a layer norm. Due to 
its versatility, this approach could be easily integrated into a func-
tional product without prior knowledge of the different usage contexts 
(e.g. different countries, acquisition protocols, target species, etc.). 
The approaches presented and evaluated in this paper contribute to 
scalable monitoring of plant populations using cost-effective recording 
and analysis methods.

Beyond performance, incorporating the results of this study with 
traditional observations of invasive species, such as those collected 
through citizen science, could enhance overall data quality and ac-
curacy. The value of other AI methods for improving data quality 
has indeed, already been demonstrated in other contexts (Fraisl et al., 
2024). Our model’s predictions could eventually complete citizen sci-
ence reports, contributing to future feedback loops aimed at refining 
both automated detection methods and human observations, while 
carefully avoiding the risk of reinforcing existing model biases. For in-
stance, we could develop a collaborative platform where data from both 
sources are aggregated, enabling users to cross-reference automated 
predictions with verified citizen science data. Following recommen-
dations of Ceccaroni et al. (2019) to ensure clarity and consistency 
in reporting, adopting standard metrics for accuracy that align with 
established protocols in the field is crucial. Additionally, engaging with 
citizen scientists through training workshops can help them leverage 
these findings, thereby enriching their observations and contributing 
to new and more robust ecological data.
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Appendix A. VaMIS interpolation

A.1. Short introduction to transformers and vision transformers

Transformers (Vaswani et al., 2017) were introduced as an im-
provement over Convolutional Neural Network models (Hochreiter and 
Schmidhuber, 1997; Bahdanau et al., 2016) for language processing. 
The input text is projected into a sequence of tokens (for simplicity, 
assume one word corresponds to one token). A token represents the 
fundamental unit of data in transformers and is stored as a vector. 
A transformer relies on an attention mechanism, allowing the model 
to focus on specific tokens within the sequence. The attention layer 
processes intermediate representations of the token sequence (Queries, 
Keys, and Values, which are built with projections) and computes 
the so-called attention matrix, which is obtained by multiplying the 
queries and the keys. To enable the model to attend to multiple con-
cepts simultaneously within a single attention layer, tokens are divided 
into equally sized vectors beforehand and processed by independent 
attention heads in parallel.

An attention layer is followed by a feed-forward layer (consisting 
of two successive, fully connected layers applied to each token), and 
together they constitute a transformer block. Repeating such blocks 
allows the model to build an abstract representation of the input text, 
which can then be utilized for various tasks, including text classification 
and translation.
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Vision Transformers (Dosovitskiy et al., 2020) are a straightforward 
adaptation of transformers for image processing. An image is divided 
into small patches (e.g., 16 × 16 pixels), with each patch projected 
into a token. The resulting sequence of tokens is then processed using 
the transformer mechanism. Consequently, apart from the initial pro-
jection, the data processing for image analysis is fairly similar to that 
for text.

In addition to the attention mechanism described above, transform-
ers usually rely on positional encoding to establish spatial relation-
ships between tokens, thereby enabling an accurate understanding of 
their positions. In the Vision Transformer BEiT model, Relative Posi-
tional Encoding (RPE) provides this spatial awareness. This parameter 
constitutes the sole architectural limitation that prevents the model 
from handling arbitrary input sizes and is adapted through the VaMIS 
procedure.

Additionally, a special token, known as the CLS token, is inserted 
at the beginning of the token sequence and is independent of the input 
data. This token aggregates global information, serving as a cache 
memory that stores data at the image level. Unlike typical usage, 
the BEiT model does not use this token for classification. Instead, it 
computes the average of all other tokens (referred to as local tokens) 
and uses the CLS token to store intermediate global data, functioning 
as a register (Darcet et al., 2024). Therefore, the processing of the 
CLS token and its specific positional encoding is set aside, as it is not 
directly affected by the VaMIS procedure. To simplify the notation, 
further details on this aspect are omitted. Readers seeking additional 
information are encouraged to consult BEiT model (Bao et al., 2021) 
and its implementation (Wightman, 2019).

A.2. Towards BEiT’s relative position encoding

In the original transformer architecture for language modeling 
(Vaswani et al., 2017), the authors introduced an absolute positional 
encoding derived from a deterministic scheme based on trigonometric 
functions. A fixed value, determined solely by the token’s absolute posi-
tion within the input sequence of words, is added to each token before 
applying the core mechanisms of the transformer blocks. Subsequently, 
a relative positional encoding was proposed by Shaw et al. (2018) to 
generalize transformers to variable input lengths. In this approach, a 
learned term is added to the projected key and value of the attention 
mechanism, with this additive bias depending only on the difference 
between the indices of the query and key tokens—that is, their relative 
position. As relative positional encoding requires explicit computa-
tion of the attention matrix, efforts have been made to simplify its 
implementation. For example, Stochastic Positional Encoding (Liutkus 
et al., 2021) was introduced to address this challenge. Additionally, 
a deterministic scheme called RoPE (Rotary Position Embedding) was 
proposed (Su et al., 2021) for relative positional encoding in the 
context of language modeling, incorporating the additional feature of 
decaying inter-token dependency with increasing relative distances. 
This approach was subsequently adapted for use in the EVA02 Vision 
Transformer (Fang et al., 2023).

Another version of relative positional encoding, referred to as T5 
(Text-to-Text Transfer Transformer encoding), was introduced by Raffel 
et al. (2019). In this approach, a bias term is added to the attention 
matrix. Specifically, let this bias be denoted as 𝐵 = (𝑏(𝑖, 𝑗))𝑖,𝑗≤𝑁 , where 
(𝑖, 𝑗) represent the indices of the two local tokens under consideration, 
with 𝑁 representing the total number of tokens. Let 𝑋 denote the 
tokens after the preprocessing attention split, 𝑊𝑄 and 𝑊𝐾 the respec-
tive weight matrices for the Query and Key projections, and 𝑑 the 
dimensionality of the token embeddings. The formula for computing 
the attention matrix can be expressed as:

𝐴𝑡𝑡(𝑋) = Softmax(
𝑋𝑊𝑄(𝑋𝑊𝐾 )𝑇

√
+ 𝐵)
𝑑
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with 𝑏(𝑖, 𝑗) = 𝑟𝑚𝑖𝑛(𝑖−𝑗,𝐾), where 𝑟𝑖 are learnable scalars and 𝐾 is a hyper-
parameter that defines the positional shift range beyond which the 
positional encoding remains constant. The SoftMax function accepts a 
vector as input and is therefore applied to each row of the intermediate 
matrix. It is conventionally defined as follows:

Softmax(𝐳)𝑖 =
𝑒𝑧𝑖

∑𝑛
𝑗=1 𝑒

𝑧𝑗

The BEiT model (Bao et al., 2021) employs a Relative Positional 
Encoding (RPE) adapted from T5’s RPE for images. Consequently, it 
accounts for the relative positions of image patches along both the X 
and Y axes. The formula for BEiT’s RPE is as follows:
𝐵 = 𝑏(𝑖, 𝑗) = 𝑟𝑥𝑗−𝑥𝑖 ,𝑦𝑗−𝑦𝑖
where (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗 ) represent the respective spatial coordinates of 
the local tokens 𝑖 and 𝑗 under consideration. The 𝑅 = (𝑟𝑎,𝑏)−𝑁≤𝑎,𝑏≤𝑁
matrix contains the positional encoding parameters (𝑁 represents the 
maximum positional difference between two tokens and depends on the 
image size.). In the context of image processing with the BEiT model, 
this matrix is referred to as the Relative Position Bias Table.

There are several differences compared to T5’s RPE (Raffel et al., 
2019). First, there is no 𝐾 limit: all relative positions between tokens 
at the image level have a specific learned bias, without any restriction 
on maximum relative positions. Second, the bias table varies not only 
among the attention heads within a block of the Vision Transformer but 
also across blocks. In the original T5 version, all blocks share the same 
bias table, although it varies among the attention heads within each 
block. Finally, the positional encoding bias is represented as a matrix 
rather than a vector, as the data are structured in two dimensions 
(images) rather than as a linear sequence.

Dimension considerations: In this article, we use a BEiT model with 
a default input size of 384 × 384, and a patch size of 16 × 16, which 
matches a ’ViT-Base’ size transformer (see Table 1 in Dosovitskiy et al. 
(2020)). An input image dimension of 384 × 384 and patch size of 
16 × 16 result in a state space of 24 × 24 = 576 local tokens for the 
BEiT model.

The coordinates of a token (𝑥, 𝑦) are bounded by 0 ≤ 𝑥, 𝑦 ≤ 23, and 
the relative positions of a pair of tokens, (𝛿𝑥 = 𝑥𝑖 − 𝑥𝑗 , 𝛿𝑦 = 𝑦𝑖 − 𝑦𝑗 ), 
have the following boundaries: −23 ≤ 𝛿𝑥, 𝛿𝑦 ≤ 23. Therefore, the initial 
Relative Position Bias Table 𝑅 for BEiT has dimensions 47 × 47.

In this article, we analyze the performance of the BEiT model with a 
new resolution of 1024 × 768. With the same patch size of 16 × 16, this 
equates to 64×48 = 3072 local tokens. The relative position boundaries 
are −63 ≤ 𝛿𝑥 ≤ 63 along the first axis and −47 ≤ 𝛿𝑦 ≤ 47 along the 
second axis. Consequently, the new Relative Position Bias Table 𝑅 has 
dimensions 127 × 95.

A.3. VaMIS interpolation

The VaMIS interpolation aims to increase the dimensions of the 
Relative Position Bias Table, thereby enabling an increase in input 
image resolution. This process can be viewed as a regridding of the 
spatial-wise bias.

The matrix 𝑅 consists of parameters learned during the initial train-
ing phase using a gradient backpropagation algorithm (LeCun et al., 
1989). As a result, it does not necessarily exhibit any inherent regular-
ity or smoothness, making direct interpolation seemingly unsuitable. 
Nonetheless, the VaMIS procedure employs an interpolation method to 
increase the dimensions of 𝑅, allowing the Vision Transformer model 
to handle higher-resolution input images.

Central-wise Regridding: the goal is to select a regridding approach 
that prioritizes interpolation accuracy for nearby tokens, i.e., those 
with small relative positions, rather than for tokens with larger shifts. 
Nearby tokens are more likely to belong to the same object and char-
acterize its structure, making it essential to preserve accurate rela-
tionships for short-range relative positions compared to long-range 
ones. This focus corresponds to the central terms of the bias table 
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Fig. A.7. Example of Central-wise Regridding: increasing the number of points while ensuring that the central points remain aligned. In this example, the number of points 
increases from 21 to 33, with an initial stretched grid. For the purpose of clarity, we did not use the actual numbers.
𝑅. Moreover, during inference, these central terms are used far more 
frequently than the side-positioned ones, as there are significantly 
more token pairs with small relative positions than with large relative 
positions. For example, 552 pairs of tokens share the relative position 
(𝛿𝑥 = 1, 𝛿𝑦 = 0), whereas only a single pair of tokens shares the relative 
position (𝛿𝑥 = 23, 𝛿𝑦 = 23). Therefore, maintaining the accuracy of these 
central terms is critical for the model’s positional awareness and overall 
efficiency.

The BEiT implementation was made publicly available in 2021 (Bao 
et al., 2021), providing a solution to the previously mentioned is-
sue. Subsequently, support for adaptation to arbitrary image sizes and 
aspect ratios was integrated into TIMM’s BEiT implementation.3 To 
increase the number of points in the 𝑅 matrix while maintaining 
accuracy for short-range shifts, an unevenly spaced rectilinear grid is 
employed. This approach ensures that the points of the initial and 
final grids are aligned for −1 ≤ 𝛿𝑥, 𝛿𝑦 ≤ 1 and approximately aligned 
near their center, thereby preserving an almost identical positional bias 
structure for short-range token pairs.

The VaMIS interpolation is based on a 2D regridding of the Relative 
Position Bias Table 𝑅 and employs standard bilinear interpolation (Ge-
treuer, 2011) to adapt the 𝑅 matrix from the initial grid to the final 
one (see Fig.  A.7).

The regridding of each dimension of the 𝑅 matrix involves increas-
ing the number of points from 2𝐶 + 1 to 2𝐷 + 1, with 𝐶 = 23 and 
𝐷 = 63 or 𝐷 = 47, depending on the dimension (Each dimension of 
the 𝑅 matrix is an odd integer, reflecting the cardinality of relative 
positions along a single dimension: a symmetrical set that includes the 
zero value).

The initial grid is defined as rectilinear and unevenly spaced
(𝑥𝑖𝑛)−𝐶≤𝑛≤𝐶 :

𝑥𝑖𝑛 =

⎧

⎪

⎨

⎪

⎩

∑

0≤𝑗<−𝑛 −𝑟𝑗  if − 𝐶 ≤ 𝑛 ≤ −1
0 if 𝑛 = 0,
∑

0≤𝑗<𝑛 𝑟
𝑗 if 1 ≤ 𝑛 ≤ 𝐶,

The final grid is rectilinear with fixed intervals of 1: 
𝑥𝑓𝑛 = 𝑛 for −𝐷 ≤ 𝑛 ≤ 𝐷 (1)

The central terms of both grids are {−1, 0, 1}, ensuring identical 
relative positional bias for neighboring tokens. The common ratio 𝑟 of 
the geometric progression used to construct the initial grid is selected 
such that the extreme points of the two grids are aligned:

𝐷 = 𝑥𝑓𝐷 = 𝑥𝑖𝐶 =
∑

0≤𝑗<𝐶
𝑟𝑗 = 1 − 𝑟𝐶

1 − 𝑟
, i.e. 1 − 𝑟𝐶

1 − 𝑟
= 𝐷,

This formula is inverted through a dichotomy procedure in the BEiT 
implementation.

Appendix B. Tiling: Additional results

3 https://github.com/huggingface/pytorch-image-models/blob/
47811bc05a2fdff2dedbbb8b8b3a4b9e8dba4bb3/timm/layers/pos_embed_
rel.py#L193-L265.
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Table B.12
Result statistics on the test set (for 2140 images) for the five experiments. fine-tuned 
models outperform the others (AUC). The non-fine-tuned methods, XP3 and XP4, 
benefit from Pl@ntNet pre-training. Tiling without fine-tuning has remarkably high 
performance (and generalization capabilities). Tiling and VaMIS approaches perform 
equally well.
 XP1 XP2 XP3 XP4 XP5  
 Name IN-VaMIS-

FT
PN-
VaMIS-FT

PN-
VaMIS-
noFT

PN-tiling-
noFT

PN-tiling-
FT

 

 Fine-tuning Yes Yes No No Yes  
 # params 87 M 87 M – – 4614  
 # epochs 36 31 – – 137  
 Epoch 50 min 50 min – – 11 s  
 Bal. acc. 89.91 91.82 66.76 84.87 92.13  
 AUC 96.07 96.38 75.52 91.58 97.29  

Table B.13
Statistics for XP5 - Fine-tuned tiling method, on the test set (for 2140 images): P: 
Positive, N: Negative, TP: True Positive, FP: False Positive, TN: True Negative, FN: False 
Negative, AUC: Area Under Curve, Bal. Acc.: Balanced Accuracy. Weighted statistics use 
the number of positives. The average AUC is above 97%, and the average accuracy is 
above 92%. Rosa rugosa Thunb.’s AUC is almost 99%.
 Soli. Cyti. Rosa Lupi. Past. Reyn. Weighted 
 P 451 161 225 66 124 118  
 N 1689 1979 1915 2074 2016 2022  
 TP 417 149 216 54 107 106  
 FP 161 97 74 33 216 176  
 TN 1528 1882 1841 2041 1800 1846  
 FN 34 12 9 12 17 12  
 Bal. acc. (%) 91.46 93.82 96.07 90.11 87.79 90.56 92.13  
 AUC (%) 97.14 98.17 98.99 98.34 93.60 96.67 97.29  

Table B.14
Statistics for XP2 - fine-tuned VaMIS method, on the test set (for 2140 images): P: 
Positive, N: Negative, TP: True Positive, FP: False Positive, TN: True Negative, FN: False 
Negative, AUC: Area Under Curve, Bal. Acc.: Balanced Accuracy. Weighted statistics use 
the number of positives. The average AUC is above 96%, and the average accuracy is 
near 92%. Rosa rugosa Thunb.’s AUC is above 99%.
 Soli. Cyti. Rosa Lupi. Past. Reyn. Weighted 
 P 451 161 225 66 124 118  
 N 1689 1979 1915 2074 2016 2022  
 TP 390 148 213 58 92 118  
 FP 87 29 76 73 210 198  
 TN 1602 1950 1839 2001 1806 1824  
 FN 61 13 12 8 32 0  
 Bal. acc. (%) 90.66 95.23 95.35 92.18 81.89 95.10 91.82  
 AUC (%) 97.29 98.48 99.09 95.70 83.56 98.73 96.38  

For a better understanding of the tiling approach without fine-
tuning, we provide additional experimental results here. Table  B.12 
provides the main statistics for the five experiments, including ad-
ditional quantitative information related to the fine-tuning process. 
Tables  B.13 and B.14 show the statistics per species for the two best 
methods (see Fig.  B.8).

https://github.com/huggingface/pytorch-image-models/blob/47811bc05a2fdff2dedbbb8b8b3a4b9e8dba4bb3/timm/layers/pos_embed_rel.py##L193-L265
https://github.com/huggingface/pytorch-image-models/blob/47811bc05a2fdff2dedbbb8b8b3a4b9e8dba4bb3/timm/layers/pos_embed_rel.py##L193-L265
https://github.com/huggingface/pytorch-image-models/blob/47811bc05a2fdff2dedbbb8b8b3a4b9e8dba4bb3/timm/layers/pos_embed_rel.py##L193-L265
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Fig. B.8. Presence and absence logit distributions, for Rosa rugosa Thunb. and Pastinaca sativa L., for the two tiling experiments (fine-tuned and not fine-tuned): Presence scores 
(also known as logits) were computed for all images in the test set, for these two species. Positive and negative image scores were separated (according to ground truth). The 
curves were smoothed by interpolation. The detection threshold, calculated by maximizing balanced accuracy over the validation set, is shown. We see the effect of the fine-tuning 
for the Pastinaca sativa L.: as expected, the fine-tuned tiling discriminates this species more efficiently than the non fine-tuned version. It is less clear for the Rosa rugosa Thunb., 
as the tiling model without fine-tuning is already an effective presence detector for this species.
Data availability

The images and the metadata used for the experiments are available 
in a package on Zenodo at https://zenodo.org/record/14013930 (DOI 
10.5281/ zenodo.14013930 accessed in October 2024).

Pre-trained models used for the experiments are available in a pack-
ageon Zenodo at https://zenodo.org/record/13891416 (DOI 10.5281/
zen-odo.13891416 accessed in October 2024).

The code used for the experiments are available in a repository on 
github at https://github.com/plantnet/roadside-invasive-plant-identifi
cation.
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