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Breeding disease-resistant cultivars that meet commercial criteria is essential to sustain banana production threatened by major dis
eases. Edible bananas are seedless triploid hybrids that represent end-breeding products. Hence, the crucial step in banana breeding 
is to improve and combine the parents. Currently, little information is available on parental combining abilities and on the inheritance of 
major traits to effectively guide banana breeding strategies. In this study, a breeding population of 2,723 triploid individuals resulting 
from multiparental diploid-tetraploid crosses was characterized during three crop cycles for 23 traits relating to plant and fruit architec
ture and bunch yield components. The phenotypic variance was partitioned between non-genetic and genetic effects, the latter includ
ing the general combining ability of diploid and tetraploid parents, their specific combining ability, and additional variance due to the 
within-cross genetic variability. Heritability was moderate to high depending on the trait and revealed the predominance of the tetra
ploid parent’s contribution to hybrid performance for most traits. The use of parental genomic information enabled cross-mean perform
ance prediction through genomic relationship matrices of general and specific combining abilities, the latter being partitioned into 
dominance and across-population epistasis contributions. Predictive abilities often greater than 0.5 were obtained, particularly when 
the tetraploid parent was observed in other crosses and, for some traits, when neither parent was observed. Information on trait inher
itance and genomic prediction of cross-mean performance will help in selecting and combining parents, facilitating the identification of 
promising hybrids.
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Introduction
Bananas (Musa spp.) are a major staple and cash crop in develop

ing countries and the most-eaten fruit in Europe and Northern 

America (Basic 2015). World production of bananas (both dessert 

and cooking) was estimated at 135 million tons for a cultivated 

area of 5.9 million hectares in 135 countries in 2021 (FAO 2024). 

Over 400 million people rely on bananas to ensure their food 

and nutritional security in producing countries (Voora et al. 

2023). Although nearly a thousand different banana varieties are 

cultivated in the world, 95% of the global production relies on a 

very limited number of cultivars (Bakry et al. 2021). Among 

them, bananas from the “Cavendish” group, which is represented 

by a few natural phenotypic somaclonal variants, account for 

around 57% of global production (Simmonds 1954; Lescot 2023). 

The reliance on such an extremely narrow genetic base associated 

with the monocropping system makes the whole banana production 

vulnerable. These clones propagated through vegetative methods 
are particularly susceptible to diseases, pests, and current climate 
change causing reduced production that leads to food insecurity 
and income loss (Ploetz and Evans 2015). Varietal improvement is 
therefore a potential lever to sustain world banana production by 
developing varieties that are resistant to biotic and abiotic stresses 
and meet production and commercial criteria. These new varieties 
may also support the transition to less intensive production models 
(Brown et al. 2020).

Cultivated bananas are natural hybrids between species and 
subspecies of the Musa genus originally selected in South East 
Asia (Simmonds 1962; Perrier et al. 2011; Sardos et al. 2022; 
Martin et al. 2023). One of the most important selected traits in cul
tivated bananas has been their ability to produce edible seedless 
fleshy fruit (Dodds and Simmonds 1948; Brown et al. 2020). 
Cultivated bananas are thus sterile or with a very low level of fer
tility. One way to achieve complete or almost complete sterility is 
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through the production of triploid individuals (3x), a ploidy level 
also thought to provide more vigorous plants with larger bunches 
than diploids (Bakry et al. 2021). A common breeding strategy for 
obtaining progenies of triploid individuals involves crossing a dip
loid parent (2x) with a tetraploid parent (4x) (Tomekpe et al. 2004; 
Bakry et al. 2021).

The breeding strategy developed at CIRAD to obtain triploid hy
brids is (i) to select two diploid varieties as parents, (ii) double the 
number of chromosomes of one of the parents by colchicine treat
ment to make it tetraploid (2n = 4x), and (iii) cross them. Until 
now, parents have been selected according to their own phenotyp
ic characteristics (per se value). For traits with complex genetic 
architecture involving non-additive effects, parents can be se
lected on the basis of the performance of their progeny when 
crossed with other parents. In the latter case, the statistical meth
odology developed for hybrid breeding, especially in maize 
(Sprague and Tatum 1942), helps partition the hybrid value into 
general and specific combining abilities (GCA and SCA) of the 
parents.

Banana breeding faces several biological and experimental 
challenges, including low natural fertility levels of breeding germ
plasm, low seed germination rates, large space requirements for 
field evaluation, and a long selection crop cycle period. In the 
CIRAD breeding program, the first phase of field experiments con
sists of a series of small trials, planted at different times, in which 
each candidate is not replicated and families are partially aggre
gated within blocks. Other crops, particularly perennial crops, 
like intermediate wheatgrass or sugarcane face the same issues 
of large designs of unreplicated plants along with spatial hetero
geneity at an early evaluation stage. Breeders may use various 
trial layouts (augmented, row–column, incomplete blocks, or 
p-rep), possibly using repeated controls to estimate error, which 
enables adjustment for environmental heterogeneity (Hoarau 
et al. 2022). Crain et al. (2021) demonstrated that a model account
ing for maternal and paternal effects along with the genomic rela
tionship matrix and an autoregressive row–column model of the 
residual variance was overall the most robust model for their 
intermediate wheatgrass unreplicated early breeding trials.

Only a limited number of studies have investigated the herit
ability of banana breeding traits (Tenkouano et al. 2012a; Nyine 
et al. 2019; Biabiany et al. 2022). In the context of triploid breeding 
involving a cross between a diploid (2x) and tetraploid obtained by 
colchicine doubling (4x), no study has been carried out to assess 
the contribution of each level of parental ploidy to hybrid variance 
and to quantify within-cross variability. Knowledge of the herit
ability and genetic variance partitioning for the main banana 
breeding traits could help increase breeding efficiency by prioritiz
ing phenotyping in the first breeding stages and optimizing the 
crossing scheme.

Genomic prediction has become a central tool in many animal 
and plant breeding programs. Before the seminal paper by 
Meuwissen et al. (2001) and Bernardo (1994) proposed the use of 
markers to infer kinship relationships between parents of the hy
brids to be predicted within the framework of GCA and SCA mod
eling. In the presence of hybrid genotyping, the genetic effects of 
the marker alleles (additivity, dominance, and epistasis) can be 
directly modeled to predict the hybrid performance (Vitezica 
et al. 2013, 2017). More recently, the link between the two modeling 
(GCA and SCA on the one hand, and genetic effects at markers on 
the other) has been established (González-Diéguez et al. 2021), 
which highlighted the need to account separately for the contri
bution of dominance and across-population epistasis to the SCA 

component. In polyploid species, important steps have been 
made toward taking non-additive effects into account in predic
tion models (Endelman et al. 2018; Endelman 2023) and using 
those effects to predict cross-mean performance (Endelman 
2025). Hybrid genomic prediction has been successfully applied 
in various crops including maize, sorghum, wheat, rice, barley, 
sunflower, oilseed rape or sugar beet (see Seye et al. 2020 for a re
cent review). Regarding bananas, the first empirical evidence of 
genomic prediction in a multi-ploidy population showed promis
ing accuracies for several breeding traits (Nyine et al. 2018).

In this study, we evaluated a large triploid multiparental hybrid 
population for several agro-morphological traits. The first object
ive was to estimate trait heritability and assess the relative contri
bution of 2x and 4x GCA effects, SCA effects, and within-cross 
genetic effects. The second objective was to evaluate the 
cross-performances over all traits in terms of mean, variance, 
and progeny size to be generated, in order to maximize the 
chances of obtaining a progeny with all the desired characteris
tics, i.e. reaching an ideotype. The last objective was to evaluate 
to which extent cross-mean performance can be predicted with 
or without parental genomic information.

Materials and methods
Breeding population
Triploid hybrids have been created using parents from the open 
field Musa collection of the Guadeloupe Biological Resources 
Centre of Tropical Plants (CRB-PT) at CIRAD Neufchâteau station, 
Capesterre Belle-Eau, Guadeloupe, French West Indies. The par
ental population contained 38 wild and cultivated diploid acces
sions representative of known Musa acuminata diversity with 
distinct genomic backgrounds (Table 1; Martin et al. 2023). In order 
to obtain triploid hybrids, crosses between a diploid (2x) and a tetra
ploid (4x) genitor were made by hand pollination. Tetraploid geni
tors were derived from chromosome doubling using a colchicine 
treatment. Seeds were collected from ripe fruits and subjected to 
embryo rescue as described in Bakry (2008). The ploidy of genitors 
(2x or 4x) and progenies (3x) was checked by flow cytometry using 
a standard protocol (Bakry et al. 2007). After greenhouse acclima
tion, the two-month-old seedlings were then transplanted in the 
field at CIRAD Neufchâteau station, Capesterre Belle-Eau, 
Guadeloupe, French West Indies (16°05′N, 61°35′W, elevation of 
250 m, average rainfall of 3,500 mm, average temperature of 25°C, 
and soil classified as andosol) from 2011 to 2015. The breeding 
population consisted of 2,723 triploid hybrids resulting from crosses 
between the 38 parents and grouped into 116 full-sib families. 
Variation in fertility among different parental combinations was 
observed, leading to variation in the number of hybrids per cross 
from 1 to 188 (Supplementary Table 1).

The experimental setup was divided into 48 blocks nested with
in 12 trials, and hybrids were evaluated only once in the entire ex
periment. The 12 trials were conducted at the CIRAD Neufchâteau 
station. Among these, three trials were established in 2011, three 
in 2012, two in 2013, three in 2014, and one in 2015. Each block 
contained 56 hybrids and eight control plants: five Cavendish 
cv 902, one Pisang Ceylan (PT-BA-00286), one Pisang Madu 
(PT-BA-00304), and one Calcutta 4 (PT-BA-00051). The control 
plants were selected to represent the diversity of banana varieties, 
ranging from M. accuminata wild types like Calcutta 4 to interspe
cific hybrids AAB (Pisang Ceylan), and including M. accuminata var
ieties like Cavendish and Pisang Madu. This diversity among the 
control plants is reflected in their phenotypic characteristics 
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and helps to better adjust for block effects. They were also chosen 
for their varying resistance to black Sigatoka, ranging from resist
ant (Calcutta 4) to susceptible (Cavendish), with Pisang Madu and 
Pisang Ceylan being partially resistant. Among these controls, 
only Cavendish represents the ideotype of the export dessert ba
nana. Blocks were grouped within trials and each trial contained 
two to nine blocks, separated from one another by a Cavendish 
border (Supplementary Fig. 1).

Genotyping of the parents
Sequencing information for 36 of the 38 parents was gathered 
from public databases as well as from unpublished data 
(Supplementary Table 2). Sequencing information was filtered 
using cutadapt v3.5 (Martin 2011) to remove adapters and quality 
trim reads. A variant calling was performed by aligning reads 
against Musa acuminata DH-Pahang V4 reference sequence 
(Belser et al. 2021) using the vcfhunter toolbox (Garsmeur et al. 
2018). The genotyping file was then filtered in order to remove 
INDEL variants and keep only bi-allelic single nucleotide 
polymorphisms (SNPs) with no missing data using the 
vcfFilter.1.0.py tool from the vcfhunter toolbox. The SNPs corre
sponding to repeated regions of the reference sequence were 

discarded as in Martin et al. (2023), which resulted in a total of 
125,245 polymorphic SNPs.

Phenotyping
The 2,723 hybrids were phenotyped over a period from 2012 to 
2017. The constraint of synchronicity between pollen donors 
and recipient plants, low fertility, and large space requirements 
for field evaluation meant that production of crosses and hybrid 
evaluation were staggered over time.

For each plant, 23 quantitative traits related to yield compo
nents as well as plant, bunch, and fruit architecture, were mea
sured over three cycles from 2012 to 2017. Crop cycles in the 
perennial cultivation practice of bananas correspond to succes
sive pseudostems growing from a large underground rhizome, 
which successively bear a single bunch. Measurements acquired 
on the same hybrid across successive crop cycles were considered 
repeated measurements (longitudinal data). Ten traits were mea
sured at flowering, when the last female flower appeared, and 13 
traits at harvest, when the first fruit turned yellow (Table 2). 
Fruit-related traits such as Fruit Pedicel Length, Fruit Pedicel 
Diameter, Fruit Weight, Fruit Length, and Fruit Grade were averaged 
between the internal and external middle fingers of the third 
hand of the bunch.

Table 1. Description of genitors used in crosses as diploid, tetraploid, or both.

Parents Accession number Classification

Number of crosses

Diploid Tetraploid

Akondro maintya PT-BA-00010 AA cultivar/Mchare subgroup 0 9
Calcutta 4 PT-BA-00051 AA wild/ssp. burmannicoïdes 2 0
Chicamea PT-BA-00056 AA cultivar/Mchare subgroup 3 16
Cici (Brésil) PT-BA-00059 AA wild/ssp. malaccensis 1 0
Gu Nin Chiaoc PT-BA-00108 AA cultivar 1 0
Gwanhour PT-BA-00443 AA cultivar 0 1
Hom PT-BA-00120 AA cultivar 1 0
IDN 077 PT-BA-00127 AA cultivar 1 2
IDN 110c PT-BA-00131 AA cultivar 5 12
IRFA 903c IRFA 903 AA cultivar 4 9
Khai Nai On PT-BA-00148 AA cultivar 2 1
Khi Maeob PT-BA-00150 AA cultivar 8 0
Malaccensis ITC0250 PT-BA-00187 AA wild/ssp. malaccensis 1 0
Malaccensis ITC0399 PT-BA-00463 AA wild/ssp. malaccensis 1 0
Malaccensis nain PT-BA-00454 AA wild/ssp. malaccensis 9 0
Manang PT-BA-00190 AA cultivar 8 8
Mlali Mshia Wa Komba (Mayo 11)a MAYO-11 AA cultivar/Mchare subgroup 0 1
Mlali Mshia Wa Komba (Mayo 18)a MAYO-18 AA cultivar/Mchare subgroup 0 6
Microcarpa PT-BA-00204 AA wild/ssp. microcarpa 1 0
Monyet PT-BA-00209 AA wild/ssp. zebrina 1 0
Ney Poovan PT-BA-00238 AB cultivar 0 1
Nzumoheli IIa PT-BA-00251 AA cultivar/Mchare subgroup 1 6
Pa (Musore) N°2 PT-BA-00259 AA wild/ssp. malaccensis 1 0
Pa (Patthalong)b PT-BA-00261 AA cultivar 9 0
Pahang PT-BA-00267 AA wild/ssp. malaccensis 2 0
Paka PT-BA-00270 AA cultivar 7 14
Pisang Bangkahulu PT-BA-00281 AA cultivar 2 0
Pisang Jaran PT-BA-00292 AA cultivar 7 0
Pisang Lilin PT-BA-00303 AA cultivar 5 11
Pisang Madu PT-BA-00304 AA cultivar 11 8
Pisang Pipit PT-BA-00310 AA cultivar 4 10
Pisang Segun PT-BA-00319 AA wild/ssp. malaccensis 3 0
Sinwobogi PT-BA-00371 AA cultivar 3 0
THA 052b PT-BA-00233 AA cultivar 3 0
Thong Det PT-BA-00391 AA cultivar 5 0
Tjau Lagada PT-BA-00393 AA cultivar 1 1
Tuu Gia PT-BA-00400 AA cultivar 1 0
Zebrina PT-BA-00433 AA wild/ssp. zebrina 2 0

In the manuscript, tetraploid individuals (obtained from chromosome colchicine doubling) are indicated by a concatenation of the diploid name and the letter “T.”
a,b,c Groups of somaclones.
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General 2x–4x genetic model
Several 2x–4x hybrid genetic models were applied in this study 
that could all be written as follows:

Ybcuvthr = μ + αb + βc + Du + Tv + (D × T)uv + Hth + Ebcuvthr (1)

where Ybcuvthr is the phenotypic measurement r of hybrid h of type t 
in block b for crop cycle c, μ is the intercept, αb is the fixed effect of 
block b ∈ {1, . . . , B}, B being the number of combinations of trials 
and blocks, βc is the fixed effect of crop cycle c ∈ {1, 2, 3}, Du is the 
random GCA effect of the 2x parent u, Tv is the random GCA effect 
of the 4x parent v, (D × T)uv is the random SCA effect between the 

2x parent u and the 4x parent v, Hth is the genetic effect of hybrid h 
of type t ∈ {control, breed}, and Ebcuvthr is the error associated with 
each phenotypic measurement.

Note that the “r” index is used only for Cavendish controls, 
which are the only hybrids repeated within the same block. 
Also, GCA and SCA terms are only defined for hybrids with type 
“breed”. For these same hybrids, the genetic effect (Hth) represents 
the residual clonal value of the hybrid and is expressed as a gen
etic deviation from the mean of its cross.

Using matrix notation, the model from Eq. (1) can be written as 
follows:

y = Xθ + ZDgD + ZTgT + ZD×TgD×T + ZHgH + e (2)

where y is the vector of phenotypes across all three cycles, X is the 
incidence matrix for fixed effects, θ is the vector of fixed effects, 
gD, gT, gD×T, and gH are the vectors of random 2x GCA, 4x GCA, 

2x–4x SCA and hybrid effects, respectively, ZD, ZT, ZD×T, and ZH 

are incidence matrices linking phenotypic observations to their 
corresponding random genetic effect levels, and e is the vector 
of errors. All random terms are assumed independent.

For the error term e, the following distribution was assumed: 
e ∼ N(0, R ⊗ I) where R is the covariance matrix between errors 
of a same plant across different cycles and I is the identity matrix 
with a size corresponding to the number of individual plants in the 

experiment. No constraint was assumed on R other than being 
positive definite, which is commonly referred to as “unstructured” 
in the linear mixed model literature. This modeling of correlation 
between errors is induced by the perennial nature of banana ex
periments in which phenotypic measurements acquired on the 
same plant across successive crop cycles represent repeated mea
surements over time (longitudinal data). Model parameters were 
estimated using ASReml-R v4 (Butler et al. 2009).

Phenotypic 2x–4x genetic model
This model was first applied considering only phenotypic observa
tions and pedigree information, which was used to partition the 
genetic variance into GCA, SCA, and within-cross hybrid compo
nents and allowed to estimate the genotypic values of hybrids. 
In a previous study (Toniutti et al. 2023), we evaluated three poten
tial statistical models to best assess genetic banana trait perform
ance along with spatial heterogeneity. The model used here was 
the one evaluated as the most performant that allowed disentan
gling pedigree effects from block effects.

The distribution of the vectors of random genetic terms from 
Eq. (2) was the following: gD ∼ N(0, σ2

DID), gT ∼ N(0, σ2
TIT), 

gD×T ∼ N(0, σ2
D×TID×T), and gH ∼ N(0, σ2

HIH) where σ2
D, σ2

T, σ2
D×T, and 

σ2
H correspond to 2x GCA, 4x GCA, 2x–4x SCA and within-cross hy

brid variances, respectively, and ID, IT, ID×T, and IH are identity 
matrices with a size corresponding to the number of 2x parents, 
4x parents, 2x–4x parent combinations and hybrids, respectively.

Estimates of clonal values (Ŷuvth) were obtained using BLUEs of 
fixed effects and BLUPs of random effects:

Ŷuvth = m̂ + D̂u + T̂v + ( 􏽤D × T)uv + Ĥth (3)

where m̂ is the general mean estimated as m̂ = μ̂ + 1
B

􏽐B
b=1 

α̂b + 1
3

􏽐3
c=1 β̂c.

Unlike breeding hybrids, controls were highly replicated over 
the design as they were observed in each block. Therefore, the 
shrinkage effect induced by calculating the BLUPs of the genetic 

Table 2. Description of the 23 agronomic traits studied.

Category Abbreviation Description Unit Measurement period

Plant architecture PH Pseudostem Height at flowering cm Flowering
Plant architecture PG Pseudostem Girth at 1 m above soil level at flowering cm Flowering
Plant architecture RI Pseudostem Robustness Index (PH/PG) — Flowering
Plant architecture LL Rank 3 Leaf blade Length cm Flowering
Plant architecture LW Rank 3 Leaf blade Width cm Flowering
Plant architecture LI Leaf Index (LL/LW) — Flowering
Plant architecture NLF Number of standing Leaves at Flowering — Flowering
Plant architecture NLH Number of standing Leaves at Harvesting — Harvest
Bunch architecture PL Peduncle Length cm Harvest
Bunch architecture PD Peduncle Diameter cm Harvest
Bunch architecture PI Peduncle Index (PL/PD) — Harvest
Bunch architecture BL Bunch Length at full maturity cm Harvest
Bunch architecture BCI Bunch Compactness Index (BL/NH) — Harvest
Fruit architecture FPL Fruit Pedicel Length mm Harvest
Fruit architecture FPD Fruit Pedicel Diameter mm Harvest
Fruit architecture FL Fruit Length mm Harvest
Fruit architecture FG Fruit Grade mm Harvest
Yield component NH Number of Hands on a bunch — Flowering
Yield component NF Number of Fruits on a bunch — Flowering
Yield component NFH Number of Fruits per Hand (NF/NH) — Flowering
Yield component BW Bunch Weight at full maturity kg Harvest
Yield component FW Fruit Weight g Harvest
Yield component DFM Days to Fruit Maturity i.e. Days between flowering and harvesting Days Harvest

Text formatted in italic indicates the names used in the manuscript.
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random terms was very different between breeding hybrids and 
controls. For analyses that required the comparison of cross- 
means to the performance of controls, alternative clonal value es
timates (Ỹuvth) were calculated for each hybrid as the average of 
phenotypic values corrected for block and cycle effects:

Ỹuvth =
1

Nuvth

􏽘

b≡(uvth)

􏽘

c≡(uvth)

􏽘

r

(Ybcuvthr − α̂b − β̂c) (4)

where b ≡ (uvth) and c ≡ (uvth) indicate that block b and cycle c are 
compatible with hybrid uvth, meaning that hybrid uvth has pheno
typic observations for cycle c in block b, and Nuvth is the total num
ber of observations for the hybrid uvth (i.e. three observations 
corresponding to the three cycles for all hybrids of type “breed” 
and more for controls).

Similarly, the estimation of cross variances may be underesti
mated by using hybrid BLUPs that have been shrunk toward the 
mean. For analyses involving such estimates, we adapted the 
model by estimating within-cross hybrid variance specifically to 
each cross with a sufficient number of progenies (i.e. more than 
15), and the other crosses were aggregated into a composite cross 
with a common variance.

Genomic 2x–4x genetic model
In addition to the phenotypic model, in which all levels of genetic 
terms are assumed to be independent, different models were ap
plied that use genomic information (i.e. 125,245 bi-allelic SNPs) to 
define the covariance structure of GCA and SCA genetic terms.

The GCA terms had the following distribution: gD ∼ N(0, σ2
DAD) 

and gT ∼ N(0, σ2
TAT) where AD and AT are the 2x and 4x additive 

genomic relationship matrices, respectively. The additive genom
ic relationship (AP)ij between parent i and j of ploidy P was calcu
lated following Endelman (2023, 2025):

(AP)ij =
􏽐M

m=1 (Xim − Pfm)(Xjm − Pfm)

P
􏽐M

m=1 fm(1 − fm)
(5)

where M is the number of SNPs, Xim is the allele dosage of the al
ternative allele of parent i at SNP m, and fm is the frequency of the 
alternative allele at SNP m. Note that the application of Eq. (5) re
sults in the following relationship: AT = 2 AD.

The SCA term results from non-additive effects that include 
dominance and across-population epistasis (González-Dieguez 
et al. 2021). In this study, we focused on dominance and 
additive-by-additive across-population epistasis, which gave the 
following expression for the SCA vector: gD×T = dD×T + iD×T where 
dD×T and iD×T are the vectors of contributions of dominance and 
across-population epistasis to the SCA effect, respectively, with 
dD×T and iD×T assumed independent.

Recently, Endelman (2023, 2025) presented a general expres
sion for the dominant regressor Qim of an individual i at a marker 
m for any ploidy level: Qim = τP − (Xim − ξP)2 where τP = 
(P − 1)fm(1 − fm) + 1

4 and ξP = (P − 1)fm + 1
2. This result was used by 

Endelman (2025) to propose an estimator of polyploid cross-mean 
performance that accounts for dominance effects through the ex
pected dominance regressor value of hybrids obtained from a gi
ven cross. We adapted these results to the context of 2x–4x 
crosses and proposed the following distribution: dD×T ∼ 
N − Fb, σ2

D×Tdom
D

􏼐 􏼑
where F is the vector of expected genomic 

inbreeding coefficients of crosses, b is a regression coefficient, 
D is an approximation of the expected dominance genomic 

relationship matrix between crosses, and σ2
D×Tdom 

corresponds to 
the variance of dominance contribution to the SCA effect. Both F 
and D require the calculation of the expected dominant regressor 
Quvm = E(Quvhm|Xum, Xvm) of hybrid h between 2x parent u and 4x 
parent v at marker m conditional on parental genotypes, which not
ably involves the non-observed allele dosage Xuvhm of hybrid h 
(Endelman 2025):

Quvm = τ3 − ξ2
3 − E(X2

uvhm|Xum, Xvm) + E(Xuvhm|Xum, Xvm)(4fm + 1) 

with:

E(Xuvhm|Xum, Xvm) =
1
2

(Xum + Xvm) 

E(X2
uvhm|Xum, Xvm) =

1
2

Xum +
1
6

(2Xvm + X2
vm) +

1
2

XumXvm 

where Xum and Xvm are the observed parental 2x and 4x allele do
sages at marker m, respectively. Note the expression of 

E(X2
uvhm|Xum, Xvm) implicitly assumes a polysomic inheritance in 

the 4x parent (i.e. random bivalent pairing at meiosis).
The expected genomic inbreeding coefficient (F)uv of cross uv 

can be calculated as (Endelman 2023):

(F)uv =
−
􏽐M

m=1 Quvm

P
2

􏼒 􏼓

2
􏽐M

m=1 fm(1 − fm) 

and an approximation of the expected dominance genomic rela
tionship (D)uv, u′v′ between cross uv and u′v′ can be calculated by 

adapting the formula presented in Endelman (2023):

(D)uv, u′v′ =
􏽐M

m=1 QuvmQu′v′m

P
2

􏼒 􏼓

4
􏽐M

m=1 f2
m(1 − fm)2 

The distribution of the additive-by-additive across-population 

epistasis contribution to the SCA effect was the following: iD×T ∼ 

N(0, σ2
D×Tepi

AD ⊗ AT) where the covariance structure was calcu

lated as the Kronecker product between 2x and 4x parental addi
tive genomic relationship matrices (Technow et al. 2014; 

González-Dieguez et al. 2021), and σ2
D×Tepi 

corresponds to the 

additive-by-additive across-population epistasis contribution to 
the SCA variance.

Heritability
For each of the 23 studied traits and each of the two statistical 
models, i.e., with genomic information or without genomic infor
mation, the heritability (H2) was adapted from Legarra (2016) and 
Endelman (2023):

H2 =
E(VG)

E(VG) + E(VE̅) 

where VG = 1
N−1

􏽐
k ‖CZkgk‖

2 corresponds to the sum over all genet

ic components k of the empirical variances applied to each vector 
(Zkgk), where Zk is an incidence matrix linking the N evaluated hy
brids to the elements of the random vector gk (different from inci
dence matrices in Eq. (2) which have as many rows as 

observations), C = IN − 1
N JN is a projection matrix used to center 

(Zkgk), IN is the identity matrix of size N, and JN is a square matrix 
of 1s of size N.
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The expected value of VG can be computed using the following 
general formula for quadratic forms (Searle et al. 1992):

E(VG) =
1

N − 1

􏽘

k

[Tr(ZT
kCTCZkGk) + μT

kZT
kCTCZkμk] 

where Tr stands for the trace of the matrix (i.e. sum of diagonal 
elements), E(gk) = μk and Var(gk) = Gk. In practice, ReML estimates 
from μk and Gk were used.

The following result was obtained for the variance of average 
errors over cycles VE̅ regardless of the model: E(VE̅) = 1

32

􏽐3
c=1 􏽐3

c′=1 Rcc′ .

Evaluation of cross-mean predictive ability
We investigated the ability to predict cross-mean performances 
using different models. As a base model, we used the one consid
ering phenotypic and pedigree information only. Different genom
ic prediction models were applied, in which genomic information 
was used to define the expectation and covariance structures: a 
model with genomic information in GCA terms only, models 
with genomic information in the GCA and SCA terms involving 
only the contribution of dominance, across-population epistasis, 
or both, to the SCA effect.

We performed four different types of leave-one-out cross- 
validation adapted from approaches developed for genomic pre
diction of maize hybrid performance (Technow et al. 2014; 
Kadam et al. 2016; Seye et al. 2020), as summarized in 
Supplementary Fig. 2. The first cross-validation (2x–4x) consisted 
in discarding each cross one by one provided that both parents 
were observed in other crosses over the design. The second cross- 
validation (0–4x) consisted of discarding each cross one by one 
along with all crosses in which the 2x parent was involved and 
provided that the 4x parent was observed in other crosses over 
the design. The third cross-validation (2x–0) was similar to the se
cond one but rather aimed at excluding crosses associated with the 
4x parent. Finally, the last cross-validation (0–0) consisted of dis
carding each cross one by one along with all crosses in which the 
2x and 4x parents were involved. Phenotypic prediction without 
genomic information was not possible in cross-validation scenario 
0–0. Note that the number of observations varied slightly between 
crosses and cross-validation scenarios (Supplementary Fig. 3).

The predictive ability of genomic prediction was evaluated by 
correlating predicted cross-means to observed cross-means based 
on clonal values estimates (Eq. 2).

Descriptive phenotypic analyses
Genotypic correlation between all pairs of traits was calculated as 
Pearson correlation coefficients using estimated clonal values ob
tained from Eq. (3). All pairwise correlations were tested and se
quential Bonferroni correction was applied at a significant level 
of 5% to correct for multiple testing (Rice 1990).

To assess cross-mean performance, we considered data from 
the 54 crosses with more than 15 progenies to allow for accurate 
cross-mean estimates. These 54 families represented 2,434 hy
brids or 89% of the initial hybrids. A principal component analysis 
(PCA) was carried out on the cross-mean performance of each of 
the 54 biparental families (and the four controls) for all 23 traits 
obtained from Eq. (3), using the FactomineR R-package.

Progeny size per cross
In addition to investigating cross-mean performance using PCA, 
we investigated the variability generated by each cross for the 

20 traits for which it was possible to determine an ideotype. The 
remaining three traits: Leaf Length, Leaf width, and Leaf Index can 
be considered as descriptive traits and are not directly selected 
in the breeding program. From the mean μuv and variance σ2

uv of 
each cross uv, we calculated the minimum progeny size (Nmin) 
that must be generated to get at least one offspring, with probabil
ity p = 0.9, whose performance is above (or below) a threshold (yref ) 
if the ideotype is a high (or low) value for the trait. The threshold 
considered was the clonal value estimate of the Cavendish control 
included in the experiment (Eq. 2). Assuming a normal distribu
tion for hybrid values Yuvh ∼ N(μuv, σ2

uv), Nmin can be calculated 
from the probability p of getting at least one offspring above the 
threshold, which can be more conveniently expressed as:

p = 1 − P(Yuv1 < yref ∩ Yuv2 < yref ∩ . . . ∩ YuvNmin
< yref ) 

Assuming independence between all hybrids from the cross, one 
obtains:

p = 1 − P(Yuvh < yref )
Nmin 

which can be rearranged to isolate Nmin:

Nmin =
log(1 − p)

log P(Yuvh < yref ) 

where P(Yuvh < yref ) is the value of the cumulative distribution 
function of the normal distribution for yref . In practice, cross- 
means μ̂uv were estimated from clonal value estimates (Eq. 4) 

and cross variances σ̂2
uv were estimated directly from the model 

specifying a hybrid variance specifically to each cross. Like 
for the PCA, only the 54 biparental families with more than 
15 progenies were considered to allow for accurate variance 
estimates.

Results
Partitioning of heritability in GCA and SCA effects
The 23 studied traits showed substantial phenotypic variation with 
moderate to high estimated heritability ranging from 0.419 for Bunch 
Weight to 0.852 for Fruit Length (Fig. 1a; Supplementary Table 3). The 
cycle effect and block effect were significant for all traits. The model 
applied, referred to as the phenotypic 2x–4x model, partitions the her
itability into the following components: GCA of the 2x and 4x parents, 
SCA of the parental combination, and a within-cross hybrid variability 
(Supplementary Table 3). The significance of each random term was 
evaluated using the likelihood ratio test applied to nested models 
(Supplementary Table 4). For all traits, except Days to Fruit Maturity 
and Leaf Index, the contribution of the 4x GCA to the heritability 
was larger than the contribution of the 2x GCA (Fig. 1a; 
Supplementary Table 3; Supplementary Table 4). This superiority 
of the first variance component over the second one even exceeded 
a ratio of 3 to 1 for six traits (Bunch Compactness Index, Number of 
Fruits, Number of Fruits per Hand, Number of Hands, Peduncle Length, 
and Pseudostem Girth). The only trait showing inverse superiority be
tween parental contributions was Days to Fruit Maturity, with a con
tribution of 0.26 and 0.03 to the heritability for the 2x and 4x GCAs, 
respectively. Leaf Index showed an equal contribution between 2x 
GCA and 4x GCA. When comparing a model with a common vari
ance for 2x and 4x GCA terms to a model with specific variances, 
the likelihood ratio test was significant for only five traits: Days to 
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Fruit Maturity, Number of Fruits, Number of Fruits per Hand, Number of 
Hands, and Pseudostem Girth.

The SCA contribution to overall genetic variance was low but 
proved to be significant for all traits, except for Number of Fruits 

per Hand (Supplementary Table 3; Supplementary Table 4). The 

within-cross hybrid variability contribution to the heritability 

was highly dependent on the trait, ranging from 0.057 to 0.57 

and was the main component for nine traits, namely Robustness 

Index, Leaf Index, Number of leaves at Harvesting, Peduncle Length, 

Peduncle Index, Bunch Compactness Index, Fruit Pedicel diameter, Fruit 

Grade, and Days to Fruit Maturity.

Genotypic correlations among agronomic traits
The genotypic correlations between traits were estimated based on 
the hybrid value estimates obtained from Eq. 2 (Supplementary 
Table 5). Over the 253 comparisons, 222 pairs showed a correlation 
coefficient significantly different from zero. Among them, 57 coeffi
cients were higher than 0.4 in absolute value (Fig. 1b). Significant 
correlations were observed within trait categories. Among traits re
lated to plant architecture, a group of traits (i.e. Pseudostem Height, 
Plant Girth, Leaf Length, Leaf Width, and Leaf Index) were positively 
correlated with each other with correlations higher than 0.50. 
Regarding bunch architecture traits, the most noticeable 

Fig. 1. Broad-sense heritability estimates without genomic information (a) and genotypic correlations between 23 traits (b). a) Barplot displaying the 
partitioning of the heritability into the following components: general combining ability of the diploid (GCA 2x) and tetraploid (GCA 4x) parents, specific 
combining ability of the parents (SCA 2x–4x), and the within-cross hybrid variability (Hybrid). b) Genotypic correlations between phenotypic traits. Only 
significant correlations (P < 0.05) after Bonferroni correction are shown.
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correlations were obtained between Peduncle Length, Peduncle 
Diameter, and Bunch Length with values ranging from 0.21 to 0.55. 
Regarding fruit architecture traits, Fruit Pedicel Diameter, Fruit 
Length and Fruit Grade had significant positive correlations ranging 
from 0.39 to 0.62 whereas Fruit Pedicel Length was negatively corre
lated to Fruit Pedicel Diameter and Fruit Grade with a correlation of 
−0.47 and −0.17, respectively. High positive correlations were ob
served among yield traits: Number of Hands, Number of Fruit, and 
Bunch Weight, with values superior to 0.48. However, Fruit Weight 
was positively correlated to Bunch Weight (r = 0.56) but negatively 
correlated to Number of Fruits (r = −0.31) and Number of Hands 
(r = −0.24). Significant correlations were also observed between trait 
categories. Plant architecture traits were positively correlated with 
Peduncle Diameter related to bunch architecture (r > 0.54) and with 
yield component traits such as Bunch Weight (r > 0.53). Bunch archi
tecture traits, especially Peduncle Diameter and Bunch Length, had a 
strong positive correlation with yield component traits such as 
Number of Hands, Number of Fruits, and Bunch Weight (r > 0.6). Fruit 
architecture traits especially Fruit Pedicel Diameter, Fruit Length, and 
Fruit Grade were strongly correlated to yield components such as 
Fruit Weight and Bunch Weight with correlations ranging from 0.30 
to 0.88. Number of Leaves at Harvesting was positively correlated to 
yield component traits (r > 0.25).

Comparative cross-performance
The mean performance of 54 intraspecific crosses along with the 
performance of the four controls was analyzed using a PCA over 
the 23 evaluated traits. The first two principal components ex
plained 31.3 and 20.7% of the total variance, respectively (Fig. 2). 
The 48% remaining variation was spread among components 3 
to 23. Traits related to plant architecture, bunch architecture, 
and yield component contributed to the first component, in par
ticular Number of Fruits, Number of Hands, Peduncle Diameter, Leaf 
Width, and Leaf Length with correlations to the first component 
equal to 0.91, 0.88, 0.87, 0.79, and 0.70, respectively (Fig. 2a). 
Traits related to fruit architecture and Fruit Weight contributed 
to the second component, in particular Fruit Length and Fruit 
Grade with correlations to the second component equal to 0.87, 
0.83 and 0.79, respectively (Fig. 2a). We observed that families 
were well spread out over the two components of the PCA 
(Fig. 2b). Only families with small fruits and low yield on average 
were underrepresented (bottom left of the PCA). Many crosses 
gathered around Cavendish, especially those including Mchare 
and Paka as tetraploid parents. Very few crosses narrowed 
Calcutta 4 wild accession or Pisang Ceylan AAB triploid cultivar 
on both two first axes. The absence of hybrids outperforming 
Pisang Ceylan on both PC1 and PC2 can be explained by the differ
ing breeding goals and genetic backgrounds of interspecific vs 
intraspecific hybrids. Crosses with the same tetraploid parents 
tended to cluster together while crosses with the same diploid 
parents tended to be more scattered.

The cross-performances were evaluated over 20 traits in terms 
of mean, variance, and progeny size to be generated to have an off
spring with a better performance than Cavendish (Fig. 3; 
Supplementary Table 6). Three traits (Leaf Length, Leaf Width, and 
Leaf Index) were not used because they are descriptive traits for 
which it is not clear whether a higher or lower value than 
Cavendish is expected.

Large differences in average cross performance were observed be
tween crosses for key agro-morphological traits. For instance, the 
mean Fruit Grade ranged from 22 to 44 mm and the mean Fruit 
Length ranged from 118 to 222 mm. Large differences could also be 

observed regarding the standard deviation of the cross-performance 
according to the trait. For instance, the standard deviation of Fruit 
Grade ranged from 0.001 to 7.1 mm and the standard deviation of 
Fruit Length ranged from 0.09 to 38 mm. For some cross-trait combi
nations, null estimates of variance were obtained, which likely indi
cates that the actual variance is very low but not truly null.

The mean and the standard deviation of the cross performance 
were strongly correlated for some traits (e.g. a correlation of 0.77 
for Number of Hands) but not for others (e.g. a correlation of 0.01 
for Fruit Pedicel Diameter).

For some traits, most crosses theoretically allow a hybrid with 
better performance than Cavendish with 30 seeds generated 
(Fig. 4a; Supplementary Table 6). Regarding plant architecture, 
85, 83, and 81% of crosses should produce better progeny than 
Cavendish with 30 seeds for Number of Leaves at Harvesting, 
Number of Leaves at Flowering, and Plant Girth, respectively. 
Conversely, if the breeding target is Robustness Index, no cross 
should produce a progeny more robust than Cavendish with rea
sonable progeny size. For Pseudostem Height, the situation was 
intermediate in that 6% of crosses should produce a better pro
geny than Cavendish with 30 seeds. Regarding bunch and fruit 
architecture traits, the percentage of crosses producing such a 
progeny ranged respectively from 48 to 81% and 19 to 71% accord
ing to the trait. Finally, for yield component traits, 78% of crosses 
should produce a progeny with higher Number of Fruits per Hand 
and lower Days to Fruit Maturity than Cavendish with 30 seeds, 
dropping to less than 50% of the crosses for Fruit Weight, Bunch 
Weight, Number of Fruits, or Number of Hands.

With 30 seeds produced, one cross (Pisang Madu × PakaT) has 
the potential to produce progenies that could outperform 
Cavendish for each trait taken independently, except for 
Robustness Index, Pseudostem Height and Fruit Pedicel Length 
(Fig. 4b; Supplementary Table 6). Note that this does not mean 
that 30 seeds are sufficient to obtain a progeny that could combine 
better performance than Cavendish for all these traits.

Genomic heritability
A 2x–4x hybrid genomic model was proposed, which incorporates 
genomic information through the genomic relationship of GCA and 
SCA terms. The SCA term was further split into dominance and 
across-population epistasis contributions. The significance of 
each random term was evaluated using likelihood-ratio(LR) tests 
applied to nested models taking into account genetic effects with 
gradual complexity (Supplementary Table 7). Most genetic effects 
were significant for all traits, except for the across-population epistasis 
contribution to the SCA effect that was significant for only ten traits, 
namely Bunch Weight, Days to Fruit Maturity, Leaf Length, Number of 
Fruits, Number of leaves at Flowering, Peduncle Diameter, Peduncle Length, 
Pseudostem Girth, Pseudostem Height and Robustness Index, when com
pared to a model accounting already for the contribution of domin
ance to the SCA effect. This comparison of models revealed issues 
in estimating the two SCA components with transfer effects between 
them (Supplementary Table 7 and Supplementary Fig. 4).

The contribution of dominance to the SCA effect included an ex
pectation term related to the expected inbreeding of the cross. For 
all traits, the estimated inbreeding effects contributed very little 
to the overall variance and were significant only for Leaf Width, 
Number of Hands, and Number of Fruits (Supplementary Table 8). 
Interestingly, the genomic heritability of the complete genomic 
model (Supplementary Table 8) was higher than those obtained 
from the phenotypic model (Fig. 1a and Supplementary Table 3) 
for all traits except for Pseudostem Girth, Fruit Length and Fruit Weight.
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Genomic prediction
Different genomic prediction models were applied, differing in the 
type of genetic effects incorporating genomic information: none, 
in GCA terms only “GCA(A)”, in GCA terms and in the dominance 
contribution to the SCA component “GCA(A) + SCA(D)”, in the 
across-population epistasis contribution to the SCA component 
“GCA(A) + SCA(AA),” or both in the complete model “GCA(A) +  
SCA(D + AA).” These genomic models were evaluated for their pre
dictive ability and compared to the phenotypic model (Fig. 5; 
Supplementary Table 9).

When both parents have already been observed in other 
crosses of the design (2x–4x scenario), the mean performance of 
a new cross is generally well predicted regardless of the model 
(r > 0.5). When one parent is missing, predictions tend to be 
more accurate when the 2x parent is unobserved (0–4x scenario) 
than when the 4x parent is unobserved (2x–0 scenario), except 
for Bunch Weight, Fruit Weight, and Days to Fruit Maturity. When 
none of the parents have been observed in other crosses (0–0 scen
ario), no prediction is possible without parent genotyping (Fig. 5).

The use of genomic relationship matrices in GCA and SCA 
terms to predict cross-mean performance has generally improved 

Fig. 2. Principal component analysis of cross-mean performance for agro-morphological traits. Trait correlation plots are presented for axes 1 and 2 (a). 
Cross-mean performance is plotted in the phenotypic space for axes 1 and 2 (b). In panel (a), traits are colored by trait category. In panel (b), dots are 
numbered according to the diploid parent (2x) and colored according to the tetraploid parent (4x). Cross-mean performance was estimated using Eq. 3 for 
crosses with a progeny size of at least 15. Controls (grey dots) include Cavendish, Pisang Madu, Pisang Ceylan, and Calcutta 4. Total variance explained by 
each PC is listed in the axes.
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predictive abilities compared to the model using only phenotypic 
and pedigree information, especially in scenarios where at least 
one of the parents was not observed in another cross. The im
provement in predictive ability was often more pronounced 
when the unobserved parent was the 4x parent (i.e. 2x–0 scen
ario). In the most difficult scenario where none of the parents 
have been observed in other crosses (i.e. 0–0 scenario), predictive 
abilities were null for some traits regardless of the model like 
Peduncle Diameter, but could exceed 0.5 for others like Fruit 
Weight.

The relative performance of genomic prediction models was 
variable according to the trait. For fruit traits like Fruit Length, 
Fruit Grade, and Fruit Weight, the modeling of dominance in SCA 
terms allowed to improve the predictive ability, e.g. r = 0.425 
for “GCA(A)” and r = 0.581 for “GCA(A) + SCA(D)” for Fruit Grade in 
the 0–0 scenario. For other traits like Pseudostem Height, the pre
dictive ability dropped from r = 0.562 for “GCA(A)” to r = 0.363 
“GCA(A)+SCA(D)” in the 0–0 scenario. The modeling of across- 
population epistasis in SCA terms had a very limited 
impact with similar predictive abilities obtained between models 

Fig. 3. Minimum progeny size required to outperform Cavendish for 20 agronomic traits. For each trait, the cross-mean is plotted against the 
cross-standard deviation (SD). The purple dashed line shows the Cavendish value. Trait names are colored according to their category. Each point is 
colored according to the progeny size necessary to obtain at least one offspring with better performance than Cavendish, with a probability of 0.9. For 
most traits, the selection objective is to have a higher performance than Cavendish, except for Pseudostem Height, Robustness Index, Peduncle Index, Peduncle 
Index, and Days to Fruit Maturity for which the objective is a lower performance than Cavendish.
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differing only by this term, e.g. when comparing model “GCA(A)” 
vs model “GCA(A) + SCA(AA).”

Discussion
Evaluation of agro-morphological traits
The 23 traits related to yield components, as well as plant, bunch, 
and fruit architecture, used to evaluate hybrids in the first unre
plicated experimental phase of CIRAD’s breeding program 
showed moderate to high heritabilities, confirming the good 
evaluation of plant genotypic values.

Several groups of traits appeared as highly correlated and could 
be related to: plant biomass (Pseudostem Height, Pseudostem Girth, 
Leaf Length, Leaf Width, Leaf Index), bunch biomass (Peduncle 
Diameter, Bunch Length, Bunch Weight, Number of Hands, Number of 
Fruits, and Number of Fruits per Hand) and fruit biomass (Pedicel 
Diameter, Fruit Length, Fruit Width, and Fruit Weight). These observa
tions agree with those of Nyine et al. (2017) in an East African ba
nana genomic selection population.

From the perspective of yield, defined as the amount of bana
nas produced per unit of land area and time, some tradeoffs exist 
between key components. Notably, Number of Fruits per plant was 
negatively correlated with Fruit Weight. The growth rate of fruits 
depends on source-sink relationships after inflorescence emer
gence, specifically on the availability of carbon molecules (supply) 
and the number of fruit cells to be filled (sink demand) (Jullien et al. 
2001). During fruit filling, the available carbon will be distributed 
among the different sinks (bananas), leading to this tradeoff be
tween the number of fruits and their weight. This could also explain 
the positive correlation between bunch biomass components and 
Number of Leaves at Harvesting in our study. However, Rapetti and 
Dorel (2022) demonstrated that the active leaf area at floral induc
tion/fruit number ratio varied among 12 Cavendish cultivars, sug
gesting that at least clonal variability in carbon allocation exists 
in bananas. In a genomic selection population of 307 genotypes, 
Nyine et al. (2017) observed that genotypes with poor fruit filling 
were not significantly influenced by cycle and field inputs. They hy
pothesized that differences in C-source to C-sink capacity may exist 
among banana genotypes. Non-susceptibility to source decreases 

could be an interesting breeding target for agroecological cropping 
systems. Breeding for such traits could be informed by mathemat
ical models of plant growth that help design high-yield ideotypes. 
For instance, Qi et al. (2010) showed how optimizing plant growth 
model parameters could provide insights into the dynamics of 
source-sink relationships in crops like maize. The authors sug
gested breeding for optimal tradeoffs of source-sink dynamics in
stead of using the harvest index as an evaluation factor for yield 
improvement.

Unbalanced contribution of parents  
to genetic variance
The crossing design of this study implies mainly Musa acuminata 
domesticated and wild accessions, with each parent either used 
in the diploid or tetraploid (double-diploid) state.

The model used to correct the phenotypic values of banana hy
brids for spatial effects (phenotypic 2x–4x genetic model) ac
counts for GCA and SCA effects of the diploid and tetraploid 
parents, as well as within-cross effects. Similar models are com
monly used in maize genetic studies, and more generally among 
crop species for which cultivars are derived from hybrid breeding 
schemes (Technow et al. 2014; Crain et al. 2021; Fonseca et al. 2021).

The estimated proportion of variance associated with 2x and 4x 
GCA revealed that the tetraploid parent predominantly influences 
the hybrid performance over the diploid parent for 21 of the 23 
traits. It could be explained by the fact that each hybrid inherits 
two chromosome copies from the tetraploid parent and only one 
from the diploid parent. It is consistent with results on triploid ba
nana hybrids obtained from 4x to 2x crosses showing that mater
nal tetraploid GCA explains most of the variation in Plant Height 
and Leaf Number (Tenkouano et al. 2012b). In that experiment, 
the 4x parents used were natural 4x obtained from 3x to 2x 
crosses. The higher 4x GCA compared to the 2x GCA is likely amp
lified when the tetraploid parent is a doubled diploid as in the 
CIRAD breeding program. Indeed, the parent tends to transmit 
its complete genetic material to the progeny, especially when 
preferential pairing of identical copies occurs during meiosis. 
The consequence is that the variation goes more into the 4x 
GCA component (all 2x gametes tend to be similar) than in the 

Fig. 4. Number of crosses producing individuals outperforming Cavendish. A cross outperforming Cavendish for a trait was defined as a cross for which, 
with a progeny size of 30, at least one offspring with a better performance than Cavendish should be obtained with probability of 0.9. Trait names are 
colored according to their category. a) Percentage of crosses outperforming Cavendish for each trait. b) Upset plot showing the number of crosses 
outperforming Cavendish in each combination of traits. The number of crosses is written on the top of the figure.
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within-cross component. In this context, the choice of the 4x par
ent is crucial to triploid banana breeding. However, some traits 
showed a different profile: equal contribution for Leaf Index or a 
lower 4x GCA than 2x GCA for Days to Fruit Maturity. If a QTL 
with a strong effect is heterozygous in a single parent used only 

in the diploid state, only crosses involving it will show segregation 
at this QTL. The variation induced by this QTL will be distributed 
in the 2x GCA components and in the within-cross component, 
but not in the 4x GCA component. This phenomenon could com
pensate for the lower number of copies transmitted by the diploid 

Fig. 5. Cross mean predictive ability evaluated by leave-one-out cross-validation. Different models were compared, differing in the type of genetic effects 
incorporating genomic information: none “None,” in GCA terms only “GCA(A),” in GCA terms and in the dominance contribution to the SCA component 
“GCA(A) + SCA(D),” in the across-population epistasis contribution to the SCA component “GCA(A) + SCA(AA),” or both “GCA(A) + SCA(D + AA).” Traits 
related to plant stature, bunch architecture, fruit architecture, and yield components are colored in black, red, blue, and green, respectively. The y-axis is 
bounded between zero and one. Occasional negative values were observed (Supplementary Table 9), particularly under scenario 0–0 with the lowest 
training population size and for traits with low heritability due to a well-known artefact of leave-one-out cross-validation methodology (Zhou et al. 2016).
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parent. Consistently with our results, 2x GCA effects were more 
important than tetraploid effects for Days to Fruit Maturity in stud
ies involving plantain-derived tetraploid and wild diploid acces
sion (Tenkouano et al. 2012a, 2012b).

The SCA contribution to overall genetic variance was low sug
gesting that, for most traits, additive genetic effects contribute 
more to genetic variance than non-additive genetic effects. The 
limited contribution of the SCA component to the genetic variance 
is often observed in hybrid crops (Joshi et al. 2004; Muraya et al. 
2006; Khalil and Hatem 2014). As a result, the GCA of both parents 
is a good predictor of the cross-mean value.

One of the particularities of our study is that the hybrids evalu
ated were not F1 hybrids resulting from crosses between pure lines. 
They were hybrids between heterozygous parents, which produced 
non-identical gametes that vary across heterozygous loci. As a re
sult, an additional variance component that accounts for within- 
cross variability must be taken into account (Ortiz 1997). In our 
study, this component was generally large and was the main con
tributor to the heritability for nine traits namely Robustness Index, 
Leaf Index, Number of Leaves at Harvesting, Peduncle Length, Peduncle 
Index, Bunch Compactness Index, Fruit Pedicel Diameter, Fruit Grade, and 
Days to Fruit Maturity. Therefore, the cross-mean value is not the 
only parameter that should be used to decide on the interest of 
the cross, but also its variance. However, inference of variance 
must be considered with caution. As each hybrid was only evaluated 
once, hybrid effects may be partially confounded by plot error, al
though replication of the checks and repeated measurements across 
cycles should mitigate this confounding of effects.

Comparative performance of families
Families can be assessed based on their cross-mean performances 
using the two major principal components that account for yield, 
plant and bunch biomass for the first principal component and 
fruit biomass for the second principal component. Many crosses 
gathered around Cavendish are used as controls in the design, 
which makes sense as Cavendish has been the targeted ideotype 
of the breeding program for many years. Clustering of families is 
mainly driven by the 4x parent rather than the 2x parent. The 
clustering of 4x Mchare parent crosses around Cavendish was 
consistent with Mchare being the 2x donor of Cavendish (Martin 
et al. 2023). Compared to Calcutta 4, a wild cultivar, families 
showed on average better agronomic performances with bigger, 
longer, heavier fruits and a higher yield.

Families can also be assessed through the variability generated 
from each cross, which revealed large differences according to the 
cross, or by combining both the mean and the variance. Hence, 
crossbreeding selection can incorporate the genetic variance of 
descendants using various criteria known as CSCs (cross-selection 
criteria). The usefulness criterion (UC) developed by Schnell and 
Utz (1975) evaluates the expected performance of the best progen
ies from a cross. However, this criterion does not directly measure 
a cross’s ability to produce exceptional offspring. To address this 
issue, Bijma et al. (2020) and Wellmann (2019) suggested quantify
ing a cross’s utility by the probability that a descendant outper
forms a certain threshold, assuming Gaussian assumptions. We 
have adopted this approach by using this probability to estimate 
the minimum progeny size to be generated in order to obtain a 
descendant exceeding a threshold value. For each trait, 
Cavendish performance was used as the threshold value, as it is 
the most traded variety (57% of global banana production) 
(Lescot 2023) and can thus be considered as a major ideotype of 
dessert bananas.

The calculation of minimum progeny size to be generated to 
have a descendant with better performance than Cavendish sug
gested very promising crosses except for Plant Robustness and 
Plant Height. One cross (Pisang Madu × PakaT) has the potential 
to produce, with a relatively low number of individuals, progenies 
that could outperform Cavendish for each trait taken independ
ently, except for Robustness Index, Pseudostem Height, and Fruit 
Pedicel Length. The calculation of the minimum progeny size to 
be generated to have a descendant that combines those traits is 
more complex as it should be adjusted to account for genetic cor
relations between traits.

Plant Robustness and Plant Height are key traits to prevent lodging, 
but none of the crosses seem to have the ability to generate a pro
geny with comparable performance to Cavendish. These two traits 
have high heritability and good predictive ability, suggesting that 
they are strongly influenced by genetic factors. However, the vari
ance observed for these traits is insufficient to produce a banana 
tree as modest in height (and therefore as robust) as Cavendish. 
This Cavendish cultivar, widely grown in the world, is believed to 
be a shorter somaclonal variant of an original tall Cavendish line 
(Simmonds 1954). Therefore, the exploitation of somaclonal vari
ation may serve as a valuable complementary approach to conven
tional crossbreeding for the improvement of these traits.

Accounting for parental genomic information in 
cross-mean prediction
In this study, we investigated the ability to predict the cross-mean 
performance using the genomic information of the parents, which 
was used to calculate genomic relationship matrices of GCA and 
SCA components. Based on the work of Endelman (2023, 2025), we 
split the SCA into two components: the contribution of dominance 
and across-population epistasis to the SCA effect (here populations 
correspond to 2x and 4x parental populations). The cross-validation 
scenarios 2x–4x, 0–4x, 2x–0, and 0–0 were adapted from the t0, t1, and 
t2 scenarios established within the maize hybrid prediction frame
work (Technow et al. 2014; Kadam et al. 2016; Seye et al. 2020). The dis
tinction lies in delineating cases where only one parent is observed, 
based on the parental ploidy level. The estimates obtained from 
the genomic 2x–4x genetic model were generally consistent with 
those from the phenotypic 2x–4x model, although substantial gains 
in heritability were observed for certain traits when adding the gen
omic information of the parents (e.g. Fruit Pedicel Diameter). The gen
omic model also highlighted that both SCA components 
(dominance and across-population epistasis) contributed to most 
traits. When this was not the case, it likely resulted from an estima
tion issue generating a transfer phenomenon between these two 
components (e.g. Fruit Length, Fruit Grade, Bunch Weight, and Fruit 
Weight) (Supplementary Table 7 and Supplementary Fig. 4).

Predicting new parental combinations was highly accurate 
when both parents were already observed in the design. In this 
case, the genomic information of the parents contributed little 
or no additional gain. It could be explained by the fact that the 
GCA of both parents was accurately estimated on the basis of 
phenotypic information only. A significant asymmetry was ob
served between the 0–4x and 2x–0 scenarios: predicting the 
mean performance of a cross, when the tetraploid parent is ob
served, is much easier than the opposite. This is consistent with 
the partitioning of variance between the 2x and 4x GCA compo
nents for most traits. In the 0–0 scenario where none of the par
ents have been observed in the design, only genomic prediction 
models could be used to obtain a prediction of cross-mean per
formance. The predictive abilities obtained were very variable 
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according to the trait, ranging from null for Peduncle Diameter to va
lues exceeding 0.65 for Fruit Weight, regardless of the model. The 
ability to predict cross-mean performance in the 0–0 scenario 
could be explained by the sharing of genetic information among 
crosses with related parents. The high variability in predictive 
abilities obtained according to the trait did not simply result 
from differences in heritability and needs to be examined more 
deeply to find its cause.

The benefits of taking genomic information into account 
through the two SCA components were very variable according 
to the trait, with substantial gains in predictive ability for fruit 
traits, but significant losses for other traits. These variable perfor
mances could be attributed to the difficulty in accurately estimat
ing dominance and across-group epistasis, as already highlighted 
by González-Diéguez et al. (2021). We hypothesize that non- 
additive effects would benefit from genomic information at the 
hybrid level, rather than at the parental level.

These results are very promising regarding the ability to predict 
the mean performance of new crosses using genomics. However, 
as the genomic predictive ability determines the stringency with 
which crosses can be selected, only highly predictable traits like 
Fruit Weight can be prioritized with high confidence. In the future, 
it would be interesting to attempt to predict the variance of crosses 
using genomics, which would make it possible to identify the crosses 
most likely to generate promising hybrids. This would require the 
generalization to polyploid species of the theoretical work of Wolfe 
et al. (2021) on the prediction of cross variance in outbred species.

Impact on Breeding Program Efficiency
The phenotyping and experimentation strategy used for the early 
selection phase proved effective, allowing moderate to high herit
ability to be obtained for the agro-morphological traits assessed. 
The traits associated with fruit size, such as Fruit Length, 
Diameter, and Weight, demonstrated high heritability (H² > 0.82) 
and predictive ability (ranging from 0.51 for fruit grade to 0.71 
for Fruit Weight). Interestingly, these traits are of significant im
portance for the Cavendish export ideotype, suggesting highly 
promising results in the future for the breeding program.

Significant correlations were observed within and between trait 
categories. Hence, selection could be done for traits showing the 
highest heritability and that are easily measured enabling a gain 
of cost and time in the early selection phase. For example, Bunch 
Weight is a challenging trait to measure, with moderate heritabil
ity (0.41) and variable prediction accuracy (ranging from 0.3 to 
0.7). Due to its significant positive correlation with Fruit Weight, 
the latter could replace it in early selection, as it is easier to meas
ure, has much higher heritability (0.83), and exhibits stable pre
diction accuracy (ranging from 0.7 to 0.8). Similarly, we could 
implement early selection based on the Number of Fruits rather 
than Peduncle Diameter, Leaf Length, Leaf Width, Fruit Pedicel Length, 
and Fruit Pedicel Diameter. Indeed, these latter traits are significant
ly correlated with Number of Fruits and are breeding targets with a 
broad range of acceptable values.

Our results highlighted the importance of choosing carefully 
the tetraploid (4x) parent, suggesting the need to increase the 
number of potential parents used in 4x, or even to directly im
prove a population of 4x parents to enhance genetic gain. 
Promising parental combinations have been identified, in particu
lar one likely to outperform the Cavendish ideotype, justifying in
creased efforts on this cross and on those involving similar genetic 
backgrounds. This strategy could be extended to other ideotypes 
beyond the Cavendish dessert banana and to other traits like fruit 
quality and disease susceptibility.

The banana breeding program can be seen as a reciprocal re
current selection breeding program involving two main compo
nents: (i) the improvement of parental populations and (ii) the 
identification of superior triploid hybrids to be registered as culti
vars. For the first component, genomic prediction could be applied 
through parental genotyping, a cost-effective method that re
quires genotyping a relatively small number of parents. It allows 
the identification of parents with high breeding values based on 
predicted GCA, and promising 2x–4x combinations, possibly 
based on predicted SCA. For the second component of the breed
ing program, genomic prediction could be applied through hybrid 
genotyping, a more expensive approach that requires genotyping 
a larger set of individuals, typically a few thousand hybrids in the 
early phases of the program. Here, the goal is to predict the total 
hybrid genotypic value in order to streamline phenotyping efforts 
by focusing on the most promising hybrids. While this second ap
plication remains to be evaluated, interesting predictive abilities 
(0.47–0.75) were obtained in this context by Nyine et al. (2018) for 
fruit filling and fruit bunch traits. Overall, these results along 
with those from our study show the potential of genomic predic
tion to improve banana breeding.

Data availability
All phenotypic and genotypic data underlying this study are avail
able from the following CIRAD Dataverse repository: https://doi. 
org/10.18167/DVN1/YSM8R7, including the vcf file “ParentVcf_ 
filt.vcf.gz”, the pedigree information and raw phenotypic data 
for all traits in “rawPhenotyping_2723hybrids_23traits.csv”. Raw 
GBS data are available in the SRA database (PRJNA1252056).

Supplemental material available at GENETICS online.
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Yahiaoui N, Labadie K, Hřibová E, Doležel J, et al. 2021. 
Telomere-to-telomere gapless chromosomes of banana using na
nopore sequencing. Commun Biol. 4(1):1–12. https://doi.org/10. 
1038/s42003-021-02559-3.

Bernardo R. 1994. Prediction of maize single-cross performance 

using RFLPs and information from related hybrids. Crop Sci. 
34(1):20–25. https://doi.org/10.2135/cropsci1994.0011183X0034 
00010003x.

Biabiany S, Araou E, Cormier F, Martin G, Carreel F, Hervouet C, 
Salmon F, Efile JC, Lopez-Lauri F, d’Hont A, et al. 2022. Detection 
of dynamic QTLs for traits related to organoleptic quality during 
banana ripening. Sci Hortic. 293:110690. https://doi.org/10.1016/ 
j.scienta.2021.110690.

Bijma P, Wientjes YCJ, Calus MPL. 2020. Breeding top genotypes 
and accelerating response to recurrent selection by selecting 
parents with greater gametic variance. Genetics. 214(1):91–107. 
https://doi.org/10.1534/genetics.119.302643.

Brown A, Carpentier SC, Swennen R. 2020. Breeding climate-resilient 
bananas. In: Kole C, editor. Genomic Designing of Climate-Smart 
Fruit Crops. Cham: Springer International Publishing. p. 91–115.

Butler DG, Cullis BR, Gilmour AR, Gogel BJ. 2009. ASReml-R reference 
manual. The State of Queensland, Department of primary indus
tries and fisheries, Brisbane.

Crain J, Haghighattalab A, DeHaan L, Poland J. 2021. Development of 
whole-genome prediction models to increase the rate of genetic 
gain in intermediate wheatgrass (Thinopyrum intermedium) breeding. 
Plant Genome. 14(2):e20089. https://doi.org/10.1002/tpg2.20089.

Dodds KS, Simmonds NW. 1948. Sterility and parthenocarpy in dip
loid hybrids of Musa. Heredity (Edinb). 2(1):101–117. https://doi. 
org/10.1038/hdy.1948.6.

Endelman JB. 2023. Fully efficient, two-stage analysis of multi- 
environment trials with directional dominance and multi-trait 
genomic selection. Theor Appl Genet. 136(4):65. https://doi.org/ 
10.1007/s00122-023-04298-x.

Endelman JB. 2025. Genomic prediction of heterosis, inbreeding 

control, and mate allocation in outbred diploid and tetraploid 
populations. Genetics. 229(2):iyae193. https://doi.org/10.1093/ 
genetics/iyae193.

Endelman JB, Schmitz Carley CA, Bethke PC, Coombs JJ, Clough ME, da 
Silva WL, De Jong WS, Douches DS, Frederick CM, Haynes KG, et al. 
2018. Genetic variance partitioning and genome-wide prediction 
with allele dosage information in autotetraploid potato. Genetics. 
209(1):77–87. https://doi.org/10.1534/genetics.118.300685.

Fonseca JM, Klein PE, Crossa J, Pacheco A, Perez-Rodriguez P, 
Ramasamy P, Klein R, Rooney WL. 2021. Assessing combining 
abilities, genomic data, and genotype × environment interactions 
to predict hybrid grain sorghum performance. Plant Genome. 
14(3):e20127. https://doi.org/10.1002/tpg2.20127.

Food and Agricultural Organization of the United Nations. 2024. 
FAOSTAT Database. https://www.fao.org/faostat/en/#data/QV.

Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, 
Jenkins J, Martin G, Charron C, Hervouet C, et al. 2018. A mosaic 
monoploid reference sequence for the highly complex genome 
of sugarcane. Nat Commun. 9(1):2638. https://doi.org/10.1038/ 
s41467-018-05051-5.

González-Diéguez D, Legarra A, Charcosset A, Moreau L, Lehermeier 
C, Teyssèdre S, Vitezica ZG.. 2021. Genomic prediction of hybrid 
crops allows disentangling dominance and epistasis. Genetics. 
218(1):iyab026. https://doi.org/10.1093/genetics/iyab026.

Hoarau JY, Dumont T, Wei X, Jackson P, D’hont A. 2022. Applications of 
quantitative genetics and statistical analyses in sugarcane breeding. 
Sugar Tech. 24(1):320–340. https://doi.org/10.1007/s12355-021-01012-3.

Joshi SK, Sharma SN, Singhania DL, Sain RS. 2004. Combining ability 
in the F1 and F2 generations of diallel cross in hexaploid wheat 
(Triticum aestivum L. Em. Thell). Hereditas. 141(2):115–121. 
https://doi.org/10.1111/j.1601-5223.2004.01730.x.

Jullien A, Munier-Jolain NG, Malézieux E, Chillet M, Ney B. 2001. 
Effect of pulp cell number and assimilate availability on dry mat
ter accumulation rate in a banana fruit [Musa sp. AAA group 

‘Grande naine’ (Cavendish subgroup)]. Ann Bot. 88(2):321–330. 
https://doi.org/10.1006/anbo.2001.1464.

Kadam DC, Potts SM, Bohn MO, Lipka AE, Lorenz AJ. 2016. Genomic 
prediction of single crosses in the early stages of a maize hybrid 
breeding pipeline. G3 (Bethesda). 6(11):3443–3453. https://doi. 
org/10.1534/g3.116.031286.

Khalil MR, Hatem MK. 2014. Study on combining ability and heterosis 
of yield and its components in pepper (Capsicum annum L.). Alex J 
Agric Res. 59(1):61–71. http://agr.p.alexu.edu.eg/Data/Sites/1/ 
pdffiles/2014,59,1,61-71.pdf

Legarra A. 2016. Comparing estimates of genetic variance across 
different relationship models. Theor Pop Biol. 107:26–30. 
doi:https://doi.org/10.1016/j.tpb.2015.08.005.

Lescot T. 2023. World banana production in its genetic diversity and 
uses. Fruitrop. 287:100–104. https://www.fruitrop.com/Articles- 
par-theme/Statistiques/2023/BANANEStatistiques-de-production- 
et-commerce-2021

Martin M. 2011. Cutadapt removes adapter sequences from 
high-throughput sequencing reads. EMBnet J. 17(1):10–12. 
https://doi.org/10.14806/ej.17.1.200.

Martin G, Cottin A, Baurens FC, Labadie K, Hervouet C, Salmon F, 
Paulo-de-la-Reberdiere N, Van den Houwe I, Sardos J, Aury JM, 
et al. 2023. Interspecific introgression patterns reveal the origins 
of worldwide cultivated bananas in New Guinea. Plant J. 113(4): 
802–818. https://doi.org/10.1111/tpj.16086.

Meuwissen THE, Hayes BJ, Goddard ME. 2001. Prediction of total gen
etic value using genome-wide dense marker maps. Genetics. 
157(4):1819–1829. https://doi.org/10.1093/genetics/157.4.1819.

Combining ability of banana triploid hybrid progenitors | 15
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/advance-article/doi/10.1093/genetics/iyaf119/8169710 by C
IR

AD
 - D

ISC
O

 user on 11 July 2025

https://doi.org/10.1051/fruits:2007053
https://doi.org/10.1051/fruits:2006043
https://doi.org/10.1051/fruits:2006043
https://www.bananalink.org.uk/wp-content/uploads/2019/04/banana_value_chain_research_FINAL_WEB.pdf
https://www.bananalink.org.uk/wp-content/uploads/2019/04/banana_value_chain_research_FINAL_WEB.pdf
https://doi.org/10.1038/s42003-021-02559-3
https://doi.org/10.1038/s42003-021-02559-3
https://doi.org/10.2135/cropsci1994.0011183X003400010003x
https://doi.org/10.2135/cropsci1994.0011183X003400010003x
https://doi.org/10.1016/j.scienta.2021.110690
https://doi.org/10.1016/j.scienta.2021.110690
https://doi.org/10.1534/genetics.119.302643
https://doi.org/10.1002/tpg2.20089
https://doi.org/10.1038/hdy.1948.6
https://doi.org/10.1038/hdy.1948.6
https://doi.org/10.1007/s00122-023-04298-x
https://doi.org/10.1007/s00122-023-04298-x
https://doi.org/10.1093/genetics/iyae193
https://doi.org/10.1093/genetics/iyae193
https://doi.org/10.1534/genetics.118.300685
https://doi.org/10.1002/tpg2.20127
https://www.fao.org/faostat/en/#data/QV
https://doi.org/10.1038/s41467-018-05051-5
https://doi.org/10.1038/s41467-018-05051-5
https://doi.org/10.1093/genetics/iyab026
https://doi.org/10.1007/s12355-021-01012-3
https://doi.org/10.1111/j.1601-5223.2004.01730.x
https://doi.org/10.1006/anbo.2001.1464
https://doi.org/10.1534/g3.116.031286
https://doi.org/10.1534/g3.116.031286
http://agr.p.alexu.edu.eg/Data/Sites/1/pdffiles/2014,59,1,61-71.pdf
http://agr.p.alexu.edu.eg/Data/Sites/1/pdffiles/2014,59,1,61-71.pdf
https://doi.org/10.1016/j.tpb.2015.08.005
https://www.fruitrop.com/Articles-par-theme/Statistiques/2023/BANANEStatistiques-de-production-et-commerce-2021
https://www.fruitrop.com/Articles-par-theme/Statistiques/2023/BANANEStatistiques-de-production-et-commerce-2021
https://www.fruitrop.com/Articles-par-theme/Statistiques/2023/BANANEStatistiques-de-production-et-commerce-2021
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1111/tpj.16086
https://doi.org/10.1093/genetics/157.4.1819


Muraya MM, Ndirangu CM, Omolo EO. 2006. Heterosis and combin

ing ability in diallel crosses involving maize (Zea mays) S1 lines. 
Aust J Exp Agric. 46(3):387–394. https://doi.org/10.1071/EA03278.

Nyine M, Uwimana B, Akech V, Brown A, Ortiz R, Doležel J, Lorenzen 
J, Swennen R. 2019. Association genetics of bunch weight and its 
component traits in East African highland banana (Musa spp. 
AAA group). Theor Appl Genet. 132(12):3295–3308. https://doi. 
org/10.1007/s00122-019-03425-x.
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