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 A B S T R A C T

Qualitative research, widely employed across various academic fields, explores phenomena using non-
numerical data, with a particular focus on understanding the meanings, experiences, and perspectives of 
participants. In contrast to other type of research, it seeks to answer how, where, what, when and why 
individuals behave or respond in certain ways toward specific issues or topics. Qualitative research involves 
collecting and analyzing textual data, with interviews playing a central role in gathering expert knowledge. 
An essential part of data analysis is coding, using specially developed code system hierarchy that helps to 
categorize and organize responses and facilitates the retrieval of insights. Manual data coding is labor-intensive, 
and to automate this process we developed the AgriCode tool based on machine learning and manually 
annotated data. To address data scarcity and improve the prediction quality of our offline classifiers, we 
perform data augmentation using Retrieval-Augmented Generation (RAG), a state-of-the-art method originally 
designed for online Q&A systems. Our tool automates the coding of interview responses within the Horizon 
Europe Agriloop project, which focuses on agricultural waste in the food industry. AgriCode predicts a subset 
of a predefined code system hierarchy, assisting a human coder by accelerating the process and identifying 
errors in manual coding. Although initially designed for the valorization of agricultural residues, AgriCode’s 
methodology can be adapted for any qualitative research domain characterized by data scarcity and the need 
of automated textual analysis. To achieve this, responses from the first round of interviews must be manually 
annotated using dedicated code system hierarchy. They can then be used for fine-tuning the model, while the 
RAG method can be employed to address the lack of data for certain classes.
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. Motivation and significance

Qualitative research is a widely used method across various aca-
emic fields, including social sciences, market analysis, and more [1,2]. 
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In contrast to applied and practical research, qualitative research seeks 
to answer how, where, what, when and why questions by exploring and 
explaining individuals’ behavior toward specific matters [3].
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The qualitative research methodology consists of two main compo-
nents: data collection and data analysis. Interviews play a key role in 
data collection, allowing researchers to gather unwritten knowledge 
from experts on a particular topic. An essential part of data analy-
sis in qualitative research is data coding, which not only helps to 
categorize and organize the data but also facilitates the retrieval of 
analytical insights [4]. Specifically, in the case of interviews, responses 
are coded according to specially defined categories, with similarly 
coded responses grouped together. This process simplifies subsequent 
tasks such as searching for specific information, summarizing results, 
comparing and contrasting arguments or finding a consensus [1].

Manual data coding requires significant human effort, making au-
tomation a particularly valuable solution. Several previous studies have 
explored this direction. The first steps toward automating coding were 
taken by [5], where the authors used a statistical approach to par-
tially automate the coding of large volumes of free-form textual data. 
Later, [6] investigated semi-automatic coding, comparing a simple 
machine learning classifier based on bag-of-words with a rule-based 
method, both of which showed promise. The findings of [7] further 
confirmed the potential of ML-based approaches. As a follow-up, [8] 
developed an interactive coding system that combines predefined rules, 
supervised learning using logistic regression and user feedback. In 
contrast, [9] implemented an automatic prediction system based on
transfer learning, where a classifier is pre-trained on a large corpus of 
linguistic data and fine-tuned on specific data for a particular task [10]. 
They employed the BERT (Bidirectional Encoder Representations from 
Transformers) model [11], which they fine-tuned on the manually 
coded interviews. Finally, popular qualitative data analysis software, 
such as MAXQDA [12], includes a built-in function for automatic 
coding, but it is limited to predefined patterns called search hits [13].

With the emergence of LLMs (Large Language Models), [14] ex-
plored their use to assist in deductive coding processes, demonstrating 
that models like GPT-3.5 can perform coding tasks with a level of agree-
ment comparable to human coders. [15] proposed best practices (such 
as specific prompting strategies) for adapting traditional codebooks 
(i.e., sets of classes with definitions) for use with LLMs. [16] introduced 
the QualiGPT tool for qualitative coding. However, their evaluation was 
limited to existing datasets and synthetic data, without testing on real-
world project data. The main limitation of the LLM based approach is its 
dependence on clearly defined classes, which may not lead to optimal 
performance with heterogeneous or ambiguous classes. Furthermore, 
LLMs lack transparency, reproducibility, and require API-usage fees, 
which is another constraint. In this work, we therefore implement an 
instance of [9] as a more traditional method that is not subject to 
these limitations. We adapt it to our setting with the focus on achieving 
more refined predictions at the sentence level and extend it with data 
augmentation using a state-of-the-art methodology based on an LLM.

The Agriloop project aims to address the significant issue of agri-
cultural waste in the food industry, which generates a huge amount 
of agricultural waste such as harvested crops, industrial food waste, 
and processing residues like pomace and seeds. For example, tomato 
processing in Europe produces 500,000 tons of pomace annually [17], 
posing economic and environmental challenges. In the context of our 
project, we investigate the market readiness of Agriloop innovations 
for the B2B (business-to-business) sector. We follow the principles of 
qualitative research and conduct iterative, multi-stage interviews with 
experts from end-user groups and main value-chains. The interviewing 
process is designed using the Delphi method [18]. The objective of this 
methodology is to obtain a reliable consensus from the expert group 
after a certain number of rounds [19].

Once the interviews are collected, they are manually annotated, 
or coded, by our partner, Ecozept,1 using a code system specifically 
developed for the project. These annotated interviews are used for 

1 https://ecozept.com

collecting expert knowledge on the valorization of agricultural residues. 
For example, one research question explored is: ‘‘What are the main 
issues and challenges for the valorization of agricultural by-products?’’ 
The coded responses from the first round of interviews helped to iden-
tify criteria relevant to this question: transportation, limited seasonal 
availability of feedstock, legislative barriers, and others. To automate 
the interview coding process and assist our partner, we developed the 
AgriCode tool, which we present in this article.

To address the data limitations and enhance prediction quality, 
we implement data augmentation. In the literature, data augmenta-
tion is used to address lack of data [20] or improve class imbal-
ance [21]. Text augmentation can be achieved by shuffling or removing 
words [22], replacing certain parts of speech with synonyms [20], and 
back translation [9]. While these methods introduce slight variations, 
they often produce semantic errors. LLMs can generate semantically 
similar text [23], but the resulting phrases may differ too much from 
the original data and lack important linguistic features. To improve 
the quality of LLM-generated text, Retrieval-Augmented Generation 
(RAG) [24] can be employed. RAG enriches a user query by incorporat-
ing external knowledge through contextual search and is widely used 
in online Q&A systems based on LLMs [24]. In this work, we employ 
RAG for data augmentation in offline classifiers (i.e., those operating 
outside of chatbot systems). This approach enables us to exploit data 
from a relevant project and fine-tune offline classifiers, which are less 
resource-intensive than LLMs, avoid API fees, and provide reproducible 
results.

In this article, we present the AgriCode tool, which features a 
graphical interface accessible online: https://ico.iate.inrae.fr/agricode. 
While developed for our project, the tool might also be useful for 
similar projects requiring coding of interviews on the valorization of 
agricultural residues. In such cases, a mapping between the project’s 
code system and ours can be performed, allowing existing labels to be 
replaced in the tool interface. Additionally, our code can be adapted 
to develop similar systems for automating the coding of interviews 
or other textual data in any domain, which is a common practice in 
qualitative research. To achieve this, responses from the first round 
of interviews must be manually annotated according to a new code 
system. The new classifiers need to be fine-tuned using this annotated 
data, and our RAG-based method can be employed to augment under-
represented classes. The tool can then be used to annotate subsequent 
rounds of interviews.

2. Software description

This section provides details on the architectural composition and 
the different functionalities offered by AgriCode.

2.1. Software architecture

The workflow of AgriCode’s backend is divided into four main 
phases: data preparation, data augmentation, learning, and predic-
tion (Fig.  1). The following sections explain each phase, with the 
final section detailing the implementation and its interaction with the 
frontend.

2.1.1. Data preparation
Our data originates from the first round of interviews (R1) con-

ducted as part of the Agriloop project. The data was first manually 
coded using the MAXQDA software and the specially developped code 
system (Fig.  2). Given the limited amount of annotated data (Tables  B.2, 
B.3 in Appendix  B), AgriCode currently predicts the first and second 
levels of the code system hierarchy, which correspond to 7 and 15 
classes, respectively. The results of this step are the coded transcripts 
in CSV (Comma-Separated Values) format.

At the next step, the data is parsed to separate titles and paragraphs, 
and for the sentence classification method, paragraphs are further 
2 
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Fig. 1. The AgriCode workflow showing various phases and their interactions (R1, R2 and R3 refer to rounds 1, 2 and 3 of the Delphi method, respectively).

Fig. 2. An extract from the Ecozept’s code system of R1, containing 145 codes. The 
values for unfolded categories (∨) indicate the number of instances of each code without 
considering subcategories, and the values for folded categories (>) indicate the total 
number of instances for that code. The value in bold indicates the total number of 
instances.

divided into sentences. The annotated examples are then processed 
to avoid any overlap [25]. To achieve this, an example (whether a 
paragraph or sentence, depending on the setting) is removed if it is 
labeled with more than one class.

To improve prediction quality, titles (questionnaire name, block 
name, and question) are added to each paragraph or sentence, depend-
ing on the setting.

Finally, to evaluate our models, we use stratified sampling, imple-
mented as follows: the data are split into two parts, with 80% of the 
segments used for learning and the remaining 20% used for validation. 
The split is performed in such a way that the proportion of training and 
testing examples for each class remains consistent.

This phase is implemented in the data_loader_paragraphs.py and
data_loader_sentences.py files for paragraphs and sentences respec-
tively.

2.1.2. Data augmentation
In this phase, we augment selected classes by generating artificial 

examples. Therefore, we improve performance of our approach by 
reducing the problem of imbalance between classes.  Classes for aug-
mentation are chosen experimentally based on low performance in the 
original (non-augmented) data. The selection process follows a specific 
methodology. We begin by augmenting classes whose performance 
needs improvement. We then evaluate whether this augmentation leads 
to performance gains for the targeted class without negatively affecting 
overall performance. Otherwise, we try different combinations and 
select the one that provides the highest overall performance (refer to 
Appendix  C for examples). It is important to note that we augment only 
the training data, leaving the test data unchanged.

Regarding the choice of augmentation method, our preliminary 
experiments show that traditional methods such as replacing certain 
POS-tagged words with synonyms derived using BERT [26] do not 
provide sufficient improvement.2 We refer to this approach as the
BERT-like method. One limitation is its dependence on the vocabulary, 
and replacing certain parts of speech with synonyms does not give 
the expected performance. Therefore, a more intelligent method is 

2 For detailed results, please refer to annex/survey_classification.xlsx in our 
supplementary materials: https://forgemia.inrae.fr/maksim.koptelov/agricode.
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Fig. 3. The RAG workflow detailing various steps (indicated by circled numbers) of the data augmentation phase.

necessary. An LLM-based approach, specifically using ChatGPT in a 
few-shot learning setting (generating a new example based on 2–3 
examples), also failed to deliver the expected results.2 We believe that 
the new vocabulary introduced by ChatGPT is often unrelated to the 
context of our interviews, leading to more noise than improvement. 
More recent models, such as Llama [27], Mistral [28] and Qwen [29], 
most probably have the same issue, as the context of our project is very 
specific.

However, our data is well-structured and contains clearly formu-
lated questions, allowing us to exploit external knowledge sources to 
improve generated data. Therefore, we employ RAG [24], a paradigm 
widely used in online Q&A systems based on LLMs. In the RAG method, 
external data are split into smaller documents (Step 1), which are 
then indexed and stored in a vector database (Step 2). Next, a user 
prompt, consisting of the interview question and the desired response 
class,3 both taken from an original training example, is converted into 
an embedding (Step 3) and used in a semantic search to retrieve the 
most relevant document sections from an external knowledge source 
(Step 4). These retrieved documents are appended to the query and 
provided to an LLM as additional context (Step 5), allowing the model 
to generate a response4 based on this enriched input (Step 6). In our 
workflow, Steps 1–2 are performed once to preprocess the data, while 
Steps 3–6 are repeated for each example in the training set (Fig.  3).

As an external source of knowledge, we use data from NoAW (No 
Agricultural Waste),5 a relevant project in the agricultural domain. 
This data set contains transcripts of interview responses from different 
respondents and on different questions, but within the same context. 
The interviews are focused on the topic of Plastics in agriculture, 
specifically targeting producers, distributors, and end users of mulch 
films and biodegradable horticultural pots made from PHBV. There are 
slight variations in questions depending on these two applications, with 
an average of 14 questions for each application. There are responses 
from a total of 25 stakeholders, organized into 25 text files, with 
each file containing the role of the respondent and the application 
type, along with the questions and answers. The total word count 
for these files is 51044 words. This data is unannotated and comes 
in plain text format. In addition to the NoAW data, we also use the 
Agro Q&A data set [30], which contains 4153 question-response pairs, 
as another external knowledge base. We combine these two sources 
in our augmentation process, and according to our experiments, this 
approach provides the best performance in most settings.2 The entire 

3 An example of a prompt composed of an interview question and market 
opportunities as the desired label: ‘‘For which agricultural applications is PHA 
not suitable and why? Discuss market opportunities’’.

4 An example of a response to the aforementioned prompt: ‘‘PHA is not 
suitable for agricultural applications where longer-lasting synthetic plastics would be 
necessary as PHA breaks down relatively quickly in natural environments. Despite 
its limitations, there are market opportunities for PHA in agricultural applications 
where biodegradability and minimal environmental impact are the key criteria’’.

5 https://noaw2020.eu

RAG process is applied only once to augment the training data, after 
which a classifier trained on this augmented data set is used offline.

Finally, we set the temperature parameter to 0 to minimize hallu-
cinations during data generation. While minor hallucinations may still 
occur, their impact on performance is expected to be minimal. This is 
because the synthetic data is used mostly to enrich the vocabulary of 
specific classes and improve model fine-tuning, rather than for direct 
inference.

The data augmentation phase is implemented in the
data_augmentation notebook files. Separate notebooks are provided 
for the BERT-like method, the LLM-based approach, and the RAG 
method (which includes versions for both paragraphs and sentences, 
each available for the 7-class and 15-class settings).

2.1.3. Learning
Given the limited amount of data available to train our classi-

fiers, we choose to fine-tune a BERT model, which has demonstrated 
strong performance on text classification tasks [31,32]. BERT is a pre-
trained language model that learns contextual relationships between 
words in a text by analyzing sequences of input tokens (words or 
their parts) and generating fixed-size representations for each token. 
These representations capture the token’s meaning within the context 
of the entire sequence. They are produced using a transformer-based 
architecture that employs self-attention mechanisms [11]. Once these 
contextual embeddings are obtained, a classification layer is used to 
predict a class label for the input sequence. BERT can be fine-tuned on 
labeled data to assign texts (such as interview responses) to predefined 
categories based on their semantic content. Its prediction quality can be 
further enhanced when fine-tuned on the augmented data, such as that 
generated using RAG [33], which provides additional relevant context. 
In our workflow, before fine-tuning BERT on the labeled data, external 
knowledge (e.g., similar interview responses or documents) is retrieved 
using RAG and the existing labeled examples. These retrieved texts are 
appended to the original input, enriching it with supplementary infor-
mation and reducing potential ambiguity. This allows BERT to produce 
more accurate and contextually relevant representations for the input 
tokens, leading to improved classification performance, especially in 
cases where training data is limited.

As for the choice of BERT parameters, we follow the recommen-
dations provided in [11]: a learning rate of 2 ⋅ 10−5 and 𝜖 = 1 ⋅ 10−8, 
the epsilon constant of Adam optimizer’s update rule [34]. The learning 
rate was fine-tuned empirically among 5⋅10−5, 4⋅10−5, 3⋅10−5 and 2⋅10−5
through hyperparameter optimization. For epsilon, the default value 
from [34] was adopted, as no additional tuning was necessary. We also 
set the number of epochs to 10 and the batch size to 16. The batch size 
of 16 has been selected empirically. It affects the stability of the model 
and its training speed. The common values are 16 and 32; however, 
16 was preferred due to its lower memory requirements, which is 
important given the constraints of the Google Colab environment we 
are using. The number of epochs was fixed at 10, selected empirically 
from between 5 and 10. This choice gives better results and decreases 
4 
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Algorithm 1 Different steps in the prediction() function for predicting 
the class index of a text segment.
Require: segment_text ← string
Ensure: Predicted class label
1: test_ids = ∅
2: test_attention_mask = ∅

# Apply the tokenizer 
3: encoding ← Tokenize segment_text

# Extract IDs and Attention Mask 
4: test_ids += encoding[’input_ids’] 
5: test_attention_mask += encoding[’attention_mask’] 
6: Concatenate test_ids along dimension 0
7: Concatenate test_attention_mask along dimension 0

# Forward pass, calculate logit predictions 
8: Disable gradient computation 
9: output ← Forward pass through model with:

• input_ids = test_ids
• token_type_ids = None
• attention_mask = test_attention_mask

10: logits ← Extract logits from output 
11: prediction ← Apply argmax() to logits and flatten the result 
12: return  prediction

the chance of underfitting. We repeat each experiment 5 times to 
address the model instability problem [35] and report the best and 
average results, which we compute using the mean function.

The main goal in this work is to correctly classify relevant content 
(true positives), even if this results in some false positives. Therefore, 
we have prioritized the use of precision and recall, which are more 
standard in text classification tasks, especially in the context of infor-
mation retrieval. More precisely, to perform the evaluation, we use 
precision, recall, F1 score and weighted version of accuracy, as defined 
in [36]. The precision, recall, F1 score is used to assess the prediction 
quality of each class, while the weighted accuracy is employed to select 
the best-performing classifier across multiple experiments. To ensure 
conciseness, we report only the F1 scores and weighted accuracy.2

The model fine-tuning is implemented in the segment_classifica-
tion notebooks, which are available for both the 7-class and 15-class 
settings.

2.1.4. Prediction
In our pipeline, new uncoded data from upcoming rounds of in-

terviews are labeled by a fine-tuned classifier. In practice, we use 
four separate classifiers: one for paragraphs and one for sentences, 
each fine-tuned for both 7-class and 15-class settings. In addition, we 
have separate classifiers for original and augmented data. By default, 
the tool employs classifiers that are fine-tuned on augmented data. 
Alternatively, this can be adjusted if such an option is available.

Prediction of the class of an unlabeled text, for both fine-tuning 
the classifier and annotating input data in the tool’s interface, is im-
plemented in the prediction() function (Algorithm 1).

2.1.5. Implementation
AgriCode is fully written in Python 3. In the tool’s workflow, 

we used the NLTK library [37] to manipulate textual data. We used
LangChain [38] as an API for LLM implementation and RAG, and
ChatGPT 3.5-turbo as the specific instance of the LLM. We used the
BertForSequenceClassification model from the HuggingFace library [10] 
as the implementation of BERT. Finally, we used the scikit-learn li-
brary [39] to implement quality measures used for evaluation.

The tool’s frontend is implemented using Streamlit [40] to provide 
an interface to the backend:

• Home.py – homepage of the web application, implementing the 
selection between the Paragraph classification and Sentence clas-
sification methods

• pages/Paragraphs.py – implementation of Paragraph classifica-
tion

• pages/Sentences.py – implementation of Sentence classification

In the next section, we present its functionalities.

2.2. Software functionalities

AgriCode is designed to accurately detect and code information 
related to the valorization of agricultural residues. The tool features 
a user-friendly interface, demonstrated in the video showing how users 
interact with the tool, provided with the electronic version of the article 
(also available by the link: https://youtu.be/Vid89wLL7Cg).

The interface allows users to construct input segments by selecting 
the questionnaire, block name and question from a predefined list, with 
an additional option for plain text input. Depending on the setting, the 
tool classifies these segments at the paragraph or sentence level. In the 
following sections, we detail its functionalities.

2.2.1. Segment construction
In our tool, it is possible to predict a class for each paragraph 

or sentence within a given textual segment. This segment can be 
either structured or unstructured. In the first option, the segment must 
include titles (questionnaire name, block name, and question) and 
paragraphs with respondent answers, with each title and paragraph 
separated by empty lines. This approach generally enhances prediction 
accuracy [26], especially in the sentence setting, where the textual 
examples have very limited vocabulary.2 In the second option, the text 
is analyzed as a whole, and titles, if present, are treated as independent 
paragraphs.

For text input, there are two modes: ‘‘Segment constructor’’ and 
‘‘Plain text’’. To simplify text input, the questionnaire name, block 
name, and question can be selected from predefined lists in the ‘‘Seg-
ment constructor’’ mode (Fig.  4). Once selected, these names and the 
question can be modified in the ‘‘Plain text’’ mode. The predefined lists 
are used in the context of the Agriloop project, but they can be modified 
in the code if necessary.

2.2.2. Paragraph classification
AgriCode performs text annotation using two principal methods: by 

paragraphs and by sentences. In the paragraph classification method, 
AgriCode highlights each paragraph with a color code corresponding 
to 7 or 15 classes, depending on the setting, with an automatically 
generated legend provided. The legend is defined in the code and can 
be modified if necessary. The legend and highlighted paragraphs appear 
after the ‘Predict’ button is clicked. By default, the tool utilizes an 
improved classifier based on an augmented corpus (see Section 2). This 
option can be deactivated via a designated checkbox (Fig.  4). This 
feature is particularly useful for comparing prediction results between 
the improved classifier and the standard classifier.

2.2.3. Sentence classification
In the sentence classification method, AgriCode highlights each 

sentence with a color code corresponding to 7 or 15 classes, depending 
on the setting. Similarly to the paragraph classification method, the 
legend and highlighted sentences appear after the ‘Predict’ button is 
clicked (Fig.  4).
5 
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Fig. 4. The AgriCode interface in the ‘‘Segment constructor’’ mode for the sentence classification method, and the result of sentence annotation in the 7-class setting.

Fig. 5. Annotation of an abstract from the NoAW project report in sentence mode for unstructured text and the 7-class setting.

3. Illustrative examples

AgriCode has the capability to accurately detect and code infor-
mation related to the valorization of agricultural residues in both 
structured and unstructured textual data. To illustrate its capabilities 
with structured data, consider the example in Fig.  4. In the pro-
vided paragraphs, the tool successfully identified information related 

to company descriptions and experts working within the companies 
by highlighting corresponding sentences with the company+experts
class. This functionality is particularly useful for analyzing interview 
responses.

For unstructured data, a broader purpose of our tool is to provide 
a comprehensive understanding of agricultural contexts within textual 
information. To evaluate this capability, consider an extract from a 
6 
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Table 1
Summary of the evaluation results using different settings.
 Method Data Accuracy (weighted)
 7 classes 15 classes  
 Paragraphs original 0.87 0.79  
 augmented 0.88 0.82  
 Sentences original 0.79 0.75  
 augmented 0.82 0.78  

report from the NoAW project (Fig.  5). In this example, the tool 
identified:

• market opportunities: various market opportunities in the agri-
cultural and bioeconomy sectors, particularly in sustainable prac-
tices, organic farming, and alternative energy production (only 
extract).

• limitations and barriers: challenges such as decreasing feed-in 
tariffs, complex regulatory requirements, including building codes 
and permitting procedures (first extract), as well as potential 
regulatory and geographic obstacles (another extract).

• stakeholders’ expectations: mentions of goals and commitments 
outlined by directives (first extract) and the expectations and re-
sponsibilities placed on stakeholders to achieve objectives related 
to water management (another extract).

These examples demonstrate AgriCode’s effectiveness in processing 
both structured and unstructured data to derive valuable insights.

4. Impact

Automatic coding of interviews in qualitative research is a highly 
desired functionality among researchers in this field. We developed 
the AgriCode tool to address this need in our project. To demonstrate 
its effectiveness, the next paragraph presents the results of the tool’s 
experimental evaluation.

The results demonstrate strong performance achieving up to 87% 
accuracy for paragraphs and up to 79% for sentences (Table  1). Fine-
tuning the classifier on augmented data using RAG improved overall 
performance by up to 3% (for detailed results per class please refer to 
Appendix  C). We also evaluated the model on the second round data, 
which shows promising potential for the tool (for the results please refer 
to Appendix  D).

AgriCode can be particularly useful for annotation support and error 
verification, not only in the next rounds of Delphi for the Agriloop 
project but also in other projects with a similar context. Further-
more, the tool’s workflow can be adapted for any other domain where 
automated coding of textual data is needed.

5. Conclusions

We presented the AgriCode tool for coding interviews used to 
collect expert knowledge on valorization of agricultural residues. The 
tool’s workflow includes data augmentation using RAG to address 
data scarcity, followed by the application of an offline classifier. This 
approach improved prediction quality for specific classes where en-
hancement was needed and resulted in a slight overall performance 
improvement.

Compared to an LLM, AgriCode’s workflow is less demanding in 
terms of infrastructure as it only requires a single GPU or access to a 
Google Colab for fine-tuning BERT classifiers. Additionally, AgriCode 
does not require permanent API usage fees, only during the data 
augmentation phase. This makes AgriCode a more accessible option in a 
limited resource setting. The results provided by AgriCode’s fine-tuned 
classifiers are also reproducible, which may be important for certain 

applications. However, the tool’s scalability remains a limitation. To 
add more classes or use another code system, the whole process needs 
to be repeated from data augmentation to classifier fine-tuning, and 
updating the legend in the interface. This can make it less efficient for 
larger-scale projects that require frequent updates to the code system.

Currently, the tool supports predictions up to two levels of the 
category system, and performance for fine-grained settings could still 
be improved. We plan to continue this work by incorporating the data 
from the upcoming rounds of interviews within the Agriloop project. 
After completing all rounds and collecting more data, it will be possible 
to increase the number of classes to include up to three levels of the 
code system hierarchy. Finally, we aim to explore the development of 
a system, based on an LLM and few-shot learning, capable of coding 
interviews and other texts in this context using any given hierarchy of 
classes with only a few examples per class.
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Appendix A. Code definitions

This appendix contains the list of codes for the 7-class and 15-class 
settings implemented in AgriCode.

A.1. The 7-class setting codes

C0 other (not pertinent)
C1 market opportunities
C2 limitations and barriers
C3 stakeholders’ expectations
C4 valorization
C5 company+experts
C6 type of stream
7 
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Table B.2
Corpus size of the first (R1) and second (R2) rounds for the 7-class setting (C0-C6) for paragraphs and sentences, for the original (orig) and 
augmented (augm) data.
 Entries Data C0 C1 C2 C3 C4 C5 C6 Total 
 Paragraphs R1 (orig) 126 102 98 96 54 30 25 531  
 R1 (augm) 157 102 115 96 54 30 25 579  
 R2 (cleaned) 39 55 17 23 1 17 11 163  
 Sentences R1 (orig) 784 296 247 314 124 112 58 1935 
 R1 (augm) 784 367 247 314 160 112 62 2046 
 R2 (cleaned) 146 192 49 55 8 86 61 597  

Table B.3
Corpus size of the first (R1) and second (R2) rounds for the 15-class setting (C0-C14) for paragraphs (P) and sentences (S), for the original (orig) and augmented (augm) data.
 Entries Data C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 Total 
 P R1 (orig) 126 65 59 45 35 32 30 26 25 22 17 16 11 10 9 528  
 R1 (augm) 126 65 59 45 35 32 30 26 25 22 42 16 25 10 9 567  
 R2 (cleaned) 39 1 4 4 4 1 17 30 11 8 13 15 8 0 0 155  
 S R1 (orig) 784 117 102 151 82 81 112 120 58 74 74 81 56 29 14 1935 
 R1 (augm) 784 117 102 237 123 81 112 169 58 74 74 81 71 29 32 2144 
 R2 (cleaned) 146 1 5 7 6 8 86 99 61 43 55 42 5 0 0 564  

Table C.4
Evaluation results for the 7-class setting (C0-C6) for paragraphs (P) and sentences (S) on the original (orig) and augmented (augm) corpus. Acc corresponds to weighted accuracy, 
and F1 to the run with the highest Acc.
 Method Data C0 C1 C2 C3 C4 C5 C6 Acc Acc  
 F1 F1 F1 F1 F1 F1 F1 max mean 
 P orig 0.68 0.88 0.85 0.90 0.95 0.92 1.00 0.87 0.83  
 augm 0.74 0.86 0.86 0.90 0.95 0.92 1.00 0.88 0.85  
 S orig 0.78 0.84 0.88 0.86 0.42 0.93 0.78 0.79 0.78  
 augm 0.78 0.88 0.85 0.80 0.70 0.95 0.72 0.82 0.78  

A.2. The 15-class setting codes

C0 other (not pertinent)
C1 stakeholders’ expectations > valorization/PHA-applications
C2 limitations and barriers > valorization /PHA-applications
C3 market opportunities > PHA MO
C4 market opportunities > PHA-Applications MO
C5 valorization > current structures
C6 company+experts
C7 limitations and barriers > Main issues and challenges for 

extracted/microbial protein
C8 type of stream
C9 stakeholders’ expectations > PHA expectation
C10 limitations and barriers > Main issues and challenges for PHA
C11 market opportunities > MP MO
C12 stakeholders’ expectations > MP
C13 valorization > satisfaction
C14 valorization > advantages

Appendix B. Data set properties

This appendix presents data set properties used in the AgriCode’s 
workflow (Tables  B.2, B.3). It includes corpus sizes from the first (R1) 
and second (R2) rounds of data for both paragraphs and sentences, 
for the 7-class and 15-class settings. The tables show the differences 
between the original and augmented R1 corpora, which were used 
for both training and validation, as well as their comparison with the 
cleaned R2 data, used for validation only (see Appendix  D for more 
details).

Appendix C. Experimental evaluation

This appendix presents evaluation results of AgriCode.
To demonstrate the efficacy of the tool, we evaluated it using test 

data for both the paragraph and sentence methods. For each method, 

we evaluated both the 7-class and 15-class settings. Finally, we assessed 
both the original and augmented data using the same (non-augmented) 
test split. The data set properties are presented in Tables  B.2, B.3 
in Appendix  B, while the results are provided in Tables  C.4, C.5 in 
this appendix. For the augmented classifiers, only the best results are 
presented.2

As seen from the results, the original classifier for paragraphs 
achieves very good performance across almost all classes in the 7-
class setting (88%–100% F1 score). The least performing classes are C0 
and C2. While we experimented with other combinations,2 augmenting 
these two classes resulted in the expected performance improvement 
(raising C0 to an acceptable level of 74% and C2 to 86%, with the 
average performance improving from 83% to 85%). This was achieved 
by augmenting the training sets of the C0 and C2 classes by 30% 
and 20%, respectively (Table  B.2). On the other hand, in the 7-class 
sentence setting, the most problematic class is C4, which exhibits low 
performance. Through data augmentation, we improved the perfor-
mance of this class to an acceptable level (70% F1), while maintaining 
the same average weighted accuracy (78%). This improvement was 
achieved by augmenting the C4 training set by 30%. Second class in this 
setting which performance could be improved is C0 (78%). However, 
augmenting it did not lead to the desired results and was therefore 
replaced by other classes (C1, C4 and C6). This helped reduce class 
imbalance and led to an overall performance improvement from 79% 
to 82%. Interestingly, the performance of the sentence classifier for the 
C0 class is higher than that of the paragraph classifier. We believe this is 
because shorter fragments of the ‘‘not pertinent’’ class contain less key 
vocabulary found in specific classes, which reduces the likelihood of 
misleading the classifier. The same behavior is observed in the 15-class 
setting, further supporting our hypothesis.

The 15-class setting is more challenging. We achieved acceptable 
performance for most classes (F1 scores ranging from 67% to 96% 
for both paragraphs and sentences), except for C0 and C10. While we 
managed to improve the performance of class C10 in both settings, we 
were unable to significantly enhance the performance of class C0 with-
out compromising overall performance. Moreover, class C0 consistently 
8 
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Table C.5
Evaluation results for the 15-class setting (C0-C14) for paragraphs (P) and sentences (S) on the original (orig) and augmented (augm) corpus. Acc corresponds to weighted accuracy, 
and F1 to the run with the highest Acc.
 Method Data C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 Acc Acc  
 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 max mean 
 P orig 0.56 0.84 0.96 0.84 0.93 0.86 0.83 0.77 1.00 0.73 0.50 0.86 0.80 1.00 0.67 0.79 0.73  
 augm 0.58 0.84 0.96 0.94 0.93 0.93 0.92 0.83 1.00 0.73 0.80 0.86 0.67 1.00 0.67 0.82 0.79  
 S orig 0.63 0.71 0.67 0.77 0.76 0.90 0.93 0.84 0.92 0.73 0.23 0.96 0.82 0.73 0.80 0.75 0.74  
 augm 0.63 0.60 0.73 0.68 0.86 0.95 0.97 0.84 0.96 0.71 0.48 0.92 0.85 0.92 1.00 0.78 0.76  

Table D.6
Summary of the validation results on the R2 data.
 Method Data Accuracy (weighted)
 7 classes 15 classes  
 Paragraphs Original 0.80 0.64  
 Augmented 0.74 0.78  
 Sentences Original 0.61 0.51  
 Augmented 0.67 0.63  

shows low performance in both paragraph and sentence settings, and 
class C10 performs very poorly in the sentence setting. This can be 
explained by the fact that we did not augment these classes, simply 
because effective augmentation was not feasible. There are two main 
reasons for this. First, we found that a BERT-type classifier struggles to 
effectively distinguish non-pertinent instances (class C0) in multi-class 
setting, as these instances lack class-specific vocabulary and contain a 
significant amount of general vocabulary common to other classes. As 
the number of classes increases, the vocabulary differences between 
them become more blurred. As a result, augmenting these instances 
do not provide the expected improvements. Second, augmenting C10 
actually led to a complete drop in performance for this class.2 This 
may be because C10 is very similar to C2 as both address limitations 
and barriers of PHA, but with slightly different focuses (C10 targets 
producers of PHA, while C2 focuses on PHA end-products). The BERT 
classifier can be misled due to the minimal vocabulary difference 
between these two classes. Therefore, we focused on augmenting other 
classes where performance could still be improved (C3, C4, C7, C12 and 
C14). This helped reduce class imbalance and led to performance gains 
for most of these classes, contributing to a slight overall improvement.

Appendix D. Validation on R2 data

The tool was also evaluated on data from the second round of 
interviews (Table  D.6). To perform this evaluation, we cleaned the data 
by retaining only responses to questions similar to those in R1. We 
applied the Levenshtein distance [41], setting it to 20 for paragraphs 
and 15 for sentences, with the exact values determined experimentally.

The peak performance in this setting reached 80% for paragraphs 
and 61% for sentences. The drop in performance for R2 data, particu-
larly for sentence-level classification, is likely due to changes in both 
the questions and the code system in the second round. This had a 
significant impact on sentence-level classification since the questions 
contribute a substantial portion of the vocabulary used for classifi-
cation. The augmented classifier improved performance by 6%–14% 
except in the paragraph-level 7-class setting. We believe this is due to 
the evolved code system and difficulties in mapping certain classes. This 
issue could be avoided if the code system remains consistent across all 
rounds of interviews.

Finally, the drop in performance could be explained by a poten-
tial bias in the annotated training data. To minimize this risk, it is 
important to ensure both high data quality and a sufficient number 
of labeled examples. One way to improve annotation quality is by 
developing clear annotation guidelines and involving multiple anno-
tators to label the same data. This helps to make the labels more 
consistent and less subjective. To deal with the limited amount of data, 

we already employ a RAG-based approach, which enhances the dataset 
by retrieving relevant external content. This has improved the accuracy 
of predictions, especially for challenging categories such as ‘‘other (not 
pertinent)’’ and some underrepresented specific classes. We believe that 
continuing to improve this method could lead to even better results. An 
alternative solution we are considering is a sequential training, where 
models trained on R1 and R2 data are used to predict labels for R3, 
and so on through subsequent rounds. Since this approach is highly 
data-dependent, increasing the amount of annotated data across rounds 
would be beneficial for both performance and robustness.

Data availability

The manually annotated data, as well as the synthetically generated 
data used for fine-tuning the models, are publicly available at the 
following link: https://doi.org/10.57745/91BXIY.
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