
O

A
t
M
a

b

c

A

D

K
T
N
D
R
A
Q
B

C

1

d

h
R

SoftwareX 31 (2025) 102258

A
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

griCode: Automated coding for qualitative research and its application to

he valorization of agricultural residues
aksim Koptelov a ,∗, Jan Linck b, Pierre Bisquert a, Patrice Buche a, Mathieu Roche c

UMR IATE, Univ. Montpellier, INRAE, Institut Agro, 34060, France
ECOZEPT, Freising, 85354, Germany
CIRAD, UMR TETIS, F-34398 Montpellier, France

 R T I C L E I N F O

ataset link: https://doi.org/10.57745/91BXIY
eywords:
ext classification
atural language processing
ata augmentation
etrieval-augmented generation
utomatic coding
ualitative research
ioeconomy

 A B S T R A C T

Qualitative research, widely employed across various academic fields, explores phenomena using non-
numerical data, with a particular focus on understanding the meanings, experiences, and perspectives of
participants. In contrast to other type of research, it seeks to answer how, where, what, when and why
individuals behave or respond in certain ways toward specific issues or topics. Qualitative research involves
collecting and analyzing textual data, with interviews playing a central role in gathering expert knowledge.
An essential part of data analysis is coding, using specially developed code system hierarchy that helps to
categorize and organize responses and facilitates the retrieval of insights. Manual data coding is labor-intensive,
and to automate this process we developed the AgriCode tool based on machine learning and manually
annotated data. To address data scarcity and improve the prediction quality of our offline classifiers, we
perform data augmentation using Retrieval-Augmented Generation (RAG), a state-of-the-art method originally
designed for online Q&A systems. Our tool automates the coding of interview responses within the Horizon
Europe Agriloop project, which focuses on agricultural waste in the food industry. AgriCode predicts a subset
of a predefined code system hierarchy, assisting a human coder by accelerating the process and identifying
errors in manual coding. Although initially designed for the valorization of agricultural residues, AgriCode’s
methodology can be adapted for any qualitative research domain characterized by data scarcity and the need
of automated textual analysis. To achieve this, responses from the first round of interviews must be manually
annotated using dedicated code system hierarchy. They can then be used for fine-tuning the model, while the
RAG method can be employed to address the lack of data for certain classes.

ode metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-25-00131
Permanent link to Reproducible Capsule
Legal Code License GPL-3.0 license
Code versioning system used none
Software code languages, tools, and services used Python 3.11
Compilation requirements, operating environments & dependencies streamlit (1.38.0), transformers (4.44.2), sentencepiece (0.1.99), nltk (3.8.1), torch (2.1.2), numpy

(1.24.3)

If available Link to developer documentation/manual
Support email for questions pierre.bisquert@inrae.fr

. Motivation and significance

Qualitative research is a widely used method across various aca-
emic fields, including social sciences, market analysis, and more [1,2].

∗ Corresponding author.
E-mail address: maksim.koptelov@inrae.fr (M. Koptelov).

In contrast to applied and practical research, qualitative research seeks
to answer how, where, what, when and why questions by exploring and
explaining individuals’ behavior toward specific matters [3].
ttps://doi.org/10.1016/j.softx.2025.102258
eceived 26 February 2025; Received in revised form 26 June 2025; Accepted 2 July 2025
vailable online 31 July 2025
352-7110/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://orcid.org/0000-0001-9065-2827
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://doi.org/10.57745/91BXIY
https://github.com/ElsevierSoftwareX/SOFTX-D-25-00131
mailto:pierre.bisquert@inrae.fr
mailto:maksim.koptelov@inrae.fr
https://doi.org/10.1016/j.softx.2025.102258
https://doi.org/10.1016/j.softx.2025.102258
http://creativecommons.org/licenses/by/4.0/

M. Koptelov et al. SoftwareX 31 (2025) 102258
The qualitative research methodology consists of two main compo-
nents: data collection and data analysis. Interviews play a key role in
data collection, allowing researchers to gather unwritten knowledge
from experts on a particular topic. An essential part of data analy-
sis in qualitative research is data coding, which not only helps to
categorize and organize the data but also facilitates the retrieval of
analytical insights [4]. Specifically, in the case of interviews, responses
are coded according to specially defined categories, with similarly
coded responses grouped together. This process simplifies subsequent
tasks such as searching for specific information, summarizing results,
comparing and contrasting arguments or finding a consensus [1].

Manual data coding requires significant human effort, making au-
tomation a particularly valuable solution. Several previous studies have
explored this direction. The first steps toward automating coding were
taken by [5], where the authors used a statistical approach to par-
tially automate the coding of large volumes of free-form textual data.
Later, [6] investigated semi-automatic coding, comparing a simple
machine learning classifier based on bag-of-words with a rule-based
method, both of which showed promise. The findings of [7] further
confirmed the potential of ML-based approaches. As a follow-up, [8]
developed an interactive coding system that combines predefined rules,
supervised learning using logistic regression and user feedback. In
contrast, [9] implemented an automatic prediction system based on
transfer learning, where a classifier is pre-trained on a large corpus of
linguistic data and fine-tuned on specific data for a particular task [10].
They employed the BERT (Bidirectional Encoder Representations from
Transformers) model [11], which they fine-tuned on the manually
coded interviews. Finally, popular qualitative data analysis software,
such as MAXQDA [12], includes a built-in function for automatic
coding, but it is limited to predefined patterns called search hits [13].

With the emergence of LLMs (Large Language Models), [14] ex-
plored their use to assist in deductive coding processes, demonstrating
that models like GPT-3.5 can perform coding tasks with a level of agree-
ment comparable to human coders. [15] proposed best practices (such
as specific prompting strategies) for adapting traditional codebooks
(i.e., sets of classes with definitions) for use with LLMs. [16] introduced
the QualiGPT tool for qualitative coding. However, their evaluation was
limited to existing datasets and synthetic data, without testing on real-
world project data. The main limitation of the LLM based approach is its
dependence on clearly defined classes, which may not lead to optimal
performance with heterogeneous or ambiguous classes. Furthermore,
LLMs lack transparency, reproducibility, and require API-usage fees,
which is another constraint. In this work, we therefore implement an
instance of [9] as a more traditional method that is not subject to
these limitations. We adapt it to our setting with the focus on achieving
more refined predictions at the sentence level and extend it with data
augmentation using a state-of-the-art methodology based on an LLM.

The Agriloop project aims to address the significant issue of agri-
cultural waste in the food industry, which generates a huge amount
of agricultural waste such as harvested crops, industrial food waste,
and processing residues like pomace and seeds. For example, tomato
processing in Europe produces 500,000 tons of pomace annually [17],
posing economic and environmental challenges. In the context of our
project, we investigate the market readiness of Agriloop innovations
for the B2B (business-to-business) sector. We follow the principles of
qualitative research and conduct iterative, multi-stage interviews with
experts from end-user groups and main value-chains. The interviewing
process is designed using the Delphi method [18]. The objective of this
methodology is to obtain a reliable consensus from the expert group
after a certain number of rounds [19].

Once the interviews are collected, they are manually annotated,
or coded, by our partner, Ecozept,1 using a code system specifically
developed for the project. These annotated interviews are used for

1 https://ecozept.com

collecting expert knowledge on the valorization of agricultural residues.
For example, one research question explored is: ‘‘What are the main
issues and challenges for the valorization of agricultural by-products?’’
The coded responses from the first round of interviews helped to iden-
tify criteria relevant to this question: transportation, limited seasonal
availability of feedstock, legislative barriers, and others. To automate
the interview coding process and assist our partner, we developed the
AgriCode tool, which we present in this article.

To address the data limitations and enhance prediction quality,
we implement data augmentation. In the literature, data augmenta-
tion is used to address lack of data [20] or improve class imbal-
ance [21]. Text augmentation can be achieved by shuffling or removing
words [22], replacing certain parts of speech with synonyms [20], and
back translation [9]. While these methods introduce slight variations,
they often produce semantic errors. LLMs can generate semantically
similar text [23], but the resulting phrases may differ too much from
the original data and lack important linguistic features. To improve
the quality of LLM-generated text, Retrieval-Augmented Generation
(RAG) [24] can be employed. RAG enriches a user query by incorporat-
ing external knowledge through contextual search and is widely used
in online Q&A systems based on LLMs [24]. In this work, we employ
RAG for data augmentation in offline classifiers (i.e., those operating
outside of chatbot systems). This approach enables us to exploit data
from a relevant project and fine-tune offline classifiers, which are less
resource-intensive than LLMs, avoid API fees, and provide reproducible
results.

In this article, we present the AgriCode tool, which features a
graphical interface accessible online: https://ico.iate.inrae.fr/agricode.
While developed for our project, the tool might also be useful for
similar projects requiring coding of interviews on the valorization of
agricultural residues. In such cases, a mapping between the project’s
code system and ours can be performed, allowing existing labels to be
replaced in the tool interface. Additionally, our code can be adapted
to develop similar systems for automating the coding of interviews
or other textual data in any domain, which is a common practice in
qualitative research. To achieve this, responses from the first round
of interviews must be manually annotated according to a new code
system. The new classifiers need to be fine-tuned using this annotated
data, and our RAG-based method can be employed to augment under-
represented classes. The tool can then be used to annotate subsequent
rounds of interviews.

2. Software description

This section provides details on the architectural composition and
the different functionalities offered by AgriCode.

2.1. Software architecture

The workflow of AgriCode’s backend is divided into four main
phases: data preparation, data augmentation, learning, and predic-
tion (Fig. 1). The following sections explain each phase, with the
final section detailing the implementation and its interaction with the
frontend.

2.1.1. Data preparation
Our data originates from the first round of interviews (R1) con-

ducted as part of the Agriloop project. The data was first manually
coded using the MAXQDA software and the specially developped code
system (Fig. 2). Given the limited amount of annotated data (Tables B.2,
B.3 in Appendix B), AgriCode currently predicts the first and second
levels of the code system hierarchy, which correspond to 7 and 15
classes, respectively. The results of this step are the coded transcripts
in CSV (Comma-Separated Values) format.

At the next step, the data is parsed to separate titles and paragraphs,
and for the sentence classification method, paragraphs are further
2

https://ecozept.com
https://ico.iate.inrae.fr/agricode

M. Koptelov et al. SoftwareX 31 (2025) 102258
Fig. 1. The AgriCode workflow showing various phases and their interactions (R1, R2 and R3 refer to rounds 1, 2 and 3 of the Delphi method, respectively).

Fig. 2. An extract from the Ecozept’s code system of R1, containing 145 codes. The
values for unfolded categories (∨) indicate the number of instances of each code without
considering subcategories, and the values for folded categories (>) indicate the total
number of instances for that code. The value in bold indicates the total number of
instances.

divided into sentences. The annotated examples are then processed
to avoid any overlap [25]. To achieve this, an example (whether a
paragraph or sentence, depending on the setting) is removed if it is
labeled with more than one class.

To improve prediction quality, titles (questionnaire name, block
name, and question) are added to each paragraph or sentence, depend-
ing on the setting.

Finally, to evaluate our models, we use stratified sampling, imple-
mented as follows: the data are split into two parts, with 80% of the
segments used for learning and the remaining 20% used for validation.
The split is performed in such a way that the proportion of training and
testing examples for each class remains consistent.

This phase is implemented in the data_loader_paragraphs.py and
data_loader_sentences.py files for paragraphs and sentences respec-
tively.

2.1.2. Data augmentation
In this phase, we augment selected classes by generating artificial

examples. Therefore, we improve performance of our approach by
reducing the problem of imbalance between classes. Classes for aug-
mentation are chosen experimentally based on low performance in the
original (non-augmented) data. The selection process follows a specific
methodology. We begin by augmenting classes whose performance
needs improvement. We then evaluate whether this augmentation leads
to performance gains for the targeted class without negatively affecting
overall performance. Otherwise, we try different combinations and
select the one that provides the highest overall performance (refer to
Appendix C for examples). It is important to note that we augment only
the training data, leaving the test data unchanged.

Regarding the choice of augmentation method, our preliminary
experiments show that traditional methods such as replacing certain
POS-tagged words with synonyms derived using BERT [26] do not
provide sufficient improvement.2 We refer to this approach as the
BERT-like method. One limitation is its dependence on the vocabulary,
and replacing certain parts of speech with synonyms does not give
the expected performance. Therefore, a more intelligent method is

2 For detailed results, please refer to annex/survey_classification.xlsx in our
supplementary materials: https://forgemia.inrae.fr/maksim.koptelov/agricode.
3

https://forgemia.inrae.fr/maksim.koptelov/agricode

M. Koptelov et al. SoftwareX 31 (2025) 102258
Fig. 3. The RAG workflow detailing various steps (indicated by circled numbers) of the data augmentation phase.

necessary. An LLM-based approach, specifically using ChatGPT in a
few-shot learning setting (generating a new example based on 2–3
examples), also failed to deliver the expected results.2 We believe that
the new vocabulary introduced by ChatGPT is often unrelated to the
context of our interviews, leading to more noise than improvement.
More recent models, such as Llama [27], Mistral [28] and Qwen [29],
most probably have the same issue, as the context of our project is very
specific.

However, our data is well-structured and contains clearly formu-
lated questions, allowing us to exploit external knowledge sources to
improve generated data. Therefore, we employ RAG [24], a paradigm
widely used in online Q&A systems based on LLMs. In the RAG method,
external data are split into smaller documents (Step 1), which are
then indexed and stored in a vector database (Step 2). Next, a user
prompt, consisting of the interview question and the desired response
class,3 both taken from an original training example, is converted into
an embedding (Step 3) and used in a semantic search to retrieve the
most relevant document sections from an external knowledge source
(Step 4). These retrieved documents are appended to the query and
provided to an LLM as additional context (Step 5), allowing the model
to generate a response4 based on this enriched input (Step 6). In our
workflow, Steps 1–2 are performed once to preprocess the data, while
Steps 3–6 are repeated for each example in the training set (Fig. 3).

As an external source of knowledge, we use data from NoAW (No
Agricultural Waste),5 a relevant project in the agricultural domain.
This data set contains transcripts of interview responses from different
respondents and on different questions, but within the same context.
The interviews are focused on the topic of Plastics in agriculture,
specifically targeting producers, distributors, and end users of mulch
films and biodegradable horticultural pots made from PHBV. There are
slight variations in questions depending on these two applications, with
an average of 14 questions for each application. There are responses
from a total of 25 stakeholders, organized into 25 text files, with
each file containing the role of the respondent and the application
type, along with the questions and answers. The total word count
for these files is 51044 words. This data is unannotated and comes
in plain text format. In addition to the NoAW data, we also use the
Agro Q&A data set [30], which contains 4153 question-response pairs,
as another external knowledge base. We combine these two sources
in our augmentation process, and according to our experiments, this
approach provides the best performance in most settings.2 The entire

3 An example of a prompt composed of an interview question and market
opportunities as the desired label: ‘‘For which agricultural applications is PHA
not suitable and why? Discuss market opportunities’’.

4 An example of a response to the aforementioned prompt: ‘‘PHA is not
suitable for agricultural applications where longer-lasting synthetic plastics would be
necessary as PHA breaks down relatively quickly in natural environments. Despite
its limitations, there are market opportunities for PHA in agricultural applications
where biodegradability and minimal environmental impact are the key criteria’’.

5 https://noaw2020.eu

RAG process is applied only once to augment the training data, after
which a classifier trained on this augmented data set is used offline.

Finally, we set the temperature parameter to 0 to minimize hallu-
cinations during data generation. While minor hallucinations may still
occur, their impact on performance is expected to be minimal. This is
because the synthetic data is used mostly to enrich the vocabulary of
specific classes and improve model fine-tuning, rather than for direct
inference.

The data augmentation phase is implemented in the
data_augmentation notebook files. Separate notebooks are provided
for the BERT-like method, the LLM-based approach, and the RAG
method (which includes versions for both paragraphs and sentences,
each available for the 7-class and 15-class settings).

2.1.3. Learning
Given the limited amount of data available to train our classi-

fiers, we choose to fine-tune a BERT model, which has demonstrated
strong performance on text classification tasks [31,32]. BERT is a pre-
trained language model that learns contextual relationships between
words in a text by analyzing sequences of input tokens (words or
their parts) and generating fixed-size representations for each token.
These representations capture the token’s meaning within the context
of the entire sequence. They are produced using a transformer-based
architecture that employs self-attention mechanisms [11]. Once these
contextual embeddings are obtained, a classification layer is used to
predict a class label for the input sequence. BERT can be fine-tuned on
labeled data to assign texts (such as interview responses) to predefined
categories based on their semantic content. Its prediction quality can be
further enhanced when fine-tuned on the augmented data, such as that
generated using RAG [33], which provides additional relevant context.
In our workflow, before fine-tuning BERT on the labeled data, external
knowledge (e.g., similar interview responses or documents) is retrieved
using RAG and the existing labeled examples. These retrieved texts are
appended to the original input, enriching it with supplementary infor-
mation and reducing potential ambiguity. This allows BERT to produce
more accurate and contextually relevant representations for the input
tokens, leading to improved classification performance, especially in
cases where training data is limited.

As for the choice of BERT parameters, we follow the recommen-
dations provided in [11]: a learning rate of 2 ⋅ 10−5 and 𝜖 = 1 ⋅ 10−8,
the epsilon constant of Adam optimizer’s update rule [34]. The learning
rate was fine-tuned empirically among 5⋅10−5, 4⋅10−5, 3⋅10−5 and 2⋅10−5
through hyperparameter optimization. For epsilon, the default value
from [34] was adopted, as no additional tuning was necessary. We also
set the number of epochs to 10 and the batch size to 16. The batch size
of 16 has been selected empirically. It affects the stability of the model
and its training speed. The common values are 16 and 32; however,
16 was preferred due to its lower memory requirements, which is
important given the constraints of the Google Colab environment we
are using. The number of epochs was fixed at 10, selected empirically
from between 5 and 10. This choice gives better results and decreases
4

https://noaw2020.eu

M. Koptelov et al. SoftwareX 31 (2025) 102258
Algorithm 1 Different steps in the prediction() function for predicting
the class index of a text segment.
Require: segment_text ← string
Ensure: Predicted class label
1: test_ids = ∅
2: test_attention_mask = ∅

Apply the tokenizer
3: encoding ← Tokenize segment_text

Extract IDs and Attention Mask
4: test_ids += encoding[’input_ids’]
5: test_attention_mask += encoding[’attention_mask’]
6: Concatenate test_ids along dimension 0
7: Concatenate test_attention_mask along dimension 0

Forward pass, calculate logit predictions
8: Disable gradient computation
9: output ← Forward pass through model with:

• input_ids = test_ids
• token_type_ids = None
• attention_mask = test_attention_mask

10: logits ← Extract logits from output
11: prediction ← Apply argmax() to logits and flatten the result
12: return prediction

the chance of underfitting. We repeat each experiment 5 times to
address the model instability problem [35] and report the best and
average results, which we compute using the mean function.

The main goal in this work is to correctly classify relevant content
(true positives), even if this results in some false positives. Therefore,
we have prioritized the use of precision and recall, which are more
standard in text classification tasks, especially in the context of infor-
mation retrieval. More precisely, to perform the evaluation, we use
precision, recall, F1 score and weighted version of accuracy, as defined
in [36]. The precision, recall, F1 score is used to assess the prediction
quality of each class, while the weighted accuracy is employed to select
the best-performing classifier across multiple experiments. To ensure
conciseness, we report only the F1 scores and weighted accuracy.2

The model fine-tuning is implemented in the segment_classifica-
tion notebooks, which are available for both the 7-class and 15-class
settings.

2.1.4. Prediction
In our pipeline, new uncoded data from upcoming rounds of in-

terviews are labeled by a fine-tuned classifier. In practice, we use
four separate classifiers: one for paragraphs and one for sentences,
each fine-tuned for both 7-class and 15-class settings. In addition, we
have separate classifiers for original and augmented data. By default,
the tool employs classifiers that are fine-tuned on augmented data.
Alternatively, this can be adjusted if such an option is available.

Prediction of the class of an unlabeled text, for both fine-tuning
the classifier and annotating input data in the tool’s interface, is im-
plemented in the prediction() function (Algorithm 1).

2.1.5. Implementation
AgriCode is fully written in Python 3. In the tool’s workflow,

we used the NLTK library [37] to manipulate textual data. We used
LangChain [38] as an API for LLM implementation and RAG, and
ChatGPT 3.5-turbo as the specific instance of the LLM. We used the
BertForSequenceClassification model from the HuggingFace library [10]
as the implementation of BERT. Finally, we used the scikit-learn li-
brary [39] to implement quality measures used for evaluation.

The tool’s frontend is implemented using Streamlit [40] to provide
an interface to the backend:

• Home.py – homepage of the web application, implementing the
selection between the Paragraph classification and Sentence clas-
sification methods

• pages/Paragraphs.py – implementation of Paragraph classifica-
tion

• pages/Sentences.py – implementation of Sentence classification

In the next section, we present its functionalities.

2.2. Software functionalities

AgriCode is designed to accurately detect and code information
related to the valorization of agricultural residues. The tool features
a user-friendly interface, demonstrated in the video showing how users
interact with the tool, provided with the electronic version of the article
(also available by the link: https://youtu.be/Vid89wLL7Cg).

The interface allows users to construct input segments by selecting
the questionnaire, block name and question from a predefined list, with
an additional option for plain text input. Depending on the setting, the
tool classifies these segments at the paragraph or sentence level. In the
following sections, we detail its functionalities.

2.2.1. Segment construction
In our tool, it is possible to predict a class for each paragraph

or sentence within a given textual segment. This segment can be
either structured or unstructured. In the first option, the segment must
include titles (questionnaire name, block name, and question) and
paragraphs with respondent answers, with each title and paragraph
separated by empty lines. This approach generally enhances prediction
accuracy [26], especially in the sentence setting, where the textual
examples have very limited vocabulary.2 In the second option, the text
is analyzed as a whole, and titles, if present, are treated as independent
paragraphs.

For text input, there are two modes: ‘‘Segment constructor’’ and
‘‘Plain text’’. To simplify text input, the questionnaire name, block
name, and question can be selected from predefined lists in the ‘‘Seg-
ment constructor’’ mode (Fig. 4). Once selected, these names and the
question can be modified in the ‘‘Plain text’’ mode. The predefined lists
are used in the context of the Agriloop project, but they can be modified
in the code if necessary.

2.2.2. Paragraph classification
AgriCode performs text annotation using two principal methods: by

paragraphs and by sentences. In the paragraph classification method,
AgriCode highlights each paragraph with a color code corresponding
to 7 or 15 classes, depending on the setting, with an automatically
generated legend provided. The legend is defined in the code and can
be modified if necessary. The legend and highlighted paragraphs appear
after the ‘Predict’ button is clicked. By default, the tool utilizes an
improved classifier based on an augmented corpus (see Section 2). This
option can be deactivated via a designated checkbox (Fig. 4). This
feature is particularly useful for comparing prediction results between
the improved classifier and the standard classifier.

2.2.3. Sentence classification
In the sentence classification method, AgriCode highlights each

sentence with a color code corresponding to 7 or 15 classes, depending
on the setting. Similarly to the paragraph classification method, the
legend and highlighted sentences appear after the ‘Predict’ button is
clicked (Fig. 4).
5

https://youtu.be/Vid89wLL7Cg

M. Koptelov et al. SoftwareX 31 (2025) 102258
Fig. 4. The AgriCode interface in the ‘‘Segment constructor’’ mode for the sentence classification method, and the result of sentence annotation in the 7-class setting.

Fig. 5. Annotation of an abstract from the NoAW project report in sentence mode for unstructured text and the 7-class setting.

3. Illustrative examples

AgriCode has the capability to accurately detect and code infor-
mation related to the valorization of agricultural residues in both
structured and unstructured textual data. To illustrate its capabilities
with structured data, consider the example in Fig. 4. In the pro-
vided paragraphs, the tool successfully identified information related

to company descriptions and experts working within the companies
by highlighting corresponding sentences with the company+experts
class. This functionality is particularly useful for analyzing interview
responses.

For unstructured data, a broader purpose of our tool is to provide
a comprehensive understanding of agricultural contexts within textual
information. To evaluate this capability, consider an extract from a
6

M. Koptelov et al. SoftwareX 31 (2025) 102258
Table 1
Summary of the evaluation results using different settings.
 Method Data Accuracy (weighted)
 7 classes 15 classes
 Paragraphs original 0.87 0.79
 augmented 0.88 0.82
 Sentences original 0.79 0.75
 augmented 0.82 0.78

report from the NoAW project (Fig. 5). In this example, the tool
identified:

• market opportunities: various market opportunities in the agri-
cultural and bioeconomy sectors, particularly in sustainable prac-
tices, organic farming, and alternative energy production (only
extract).

• limitations and barriers: challenges such as decreasing feed-in
tariffs, complex regulatory requirements, including building codes
and permitting procedures (first extract), as well as potential
regulatory and geographic obstacles (another extract).

• stakeholders’ expectations: mentions of goals and commitments
outlined by directives (first extract) and the expectations and re-
sponsibilities placed on stakeholders to achieve objectives related
to water management (another extract).

These examples demonstrate AgriCode’s effectiveness in processing
both structured and unstructured data to derive valuable insights.

4. Impact

Automatic coding of interviews in qualitative research is a highly
desired functionality among researchers in this field. We developed
the AgriCode tool to address this need in our project. To demonstrate
its effectiveness, the next paragraph presents the results of the tool’s
experimental evaluation.

The results demonstrate strong performance achieving up to 87%
accuracy for paragraphs and up to 79% for sentences (Table 1). Fine-
tuning the classifier on augmented data using RAG improved overall
performance by up to 3% (for detailed results per class please refer to
Appendix C). We also evaluated the model on the second round data,
which shows promising potential for the tool (for the results please refer
to Appendix D).

AgriCode can be particularly useful for annotation support and error
verification, not only in the next rounds of Delphi for the Agriloop
project but also in other projects with a similar context. Further-
more, the tool’s workflow can be adapted for any other domain where
automated coding of textual data is needed.

5. Conclusions

We presented the AgriCode tool for coding interviews used to
collect expert knowledge on valorization of agricultural residues. The
tool’s workflow includes data augmentation using RAG to address
data scarcity, followed by the application of an offline classifier. This
approach improved prediction quality for specific classes where en-
hancement was needed and resulted in a slight overall performance
improvement.

Compared to an LLM, AgriCode’s workflow is less demanding in
terms of infrastructure as it only requires a single GPU or access to a
Google Colab for fine-tuning BERT classifiers. Additionally, AgriCode
does not require permanent API usage fees, only during the data
augmentation phase. This makes AgriCode a more accessible option in a
limited resource setting. The results provided by AgriCode’s fine-tuned
classifiers are also reproducible, which may be important for certain

applications. However, the tool’s scalability remains a limitation. To
add more classes or use another code system, the whole process needs
to be repeated from data augmentation to classifier fine-tuning, and
updating the legend in the interface. This can make it less efficient for
larger-scale projects that require frequent updates to the code system.

Currently, the tool supports predictions up to two levels of the
category system, and performance for fine-grained settings could still
be improved. We plan to continue this work by incorporating the data
from the upcoming rounds of interviews within the Agriloop project.
After completing all rounds and collecting more data, it will be possible
to increase the number of classes to include up to three levels of the
code system hierarchy. Finally, we aim to explore the development of
a system, based on an LLM and few-shot learning, capable of coding
interviews and other texts in this context using any given hierarchy of
classes with only a few examples per class.

CRediT authorship contribution statement

Maksim Koptelov: Writing – original draft, Software, Methodol-
ogy, Data curation, Conceptualization. Jan Linck: Writing – review
& editing, Validation, Data curation, Conceptualization. Pierre Bis-
quert: Writing – review & editing, Methodology, Funding acquisition.
Patrice Buche: Writing – review & editing, Methodology, Funding
acquisition, Data curation. Mathieu Roche: Writing – review & editing,
Methodology, Conceptualization.

Ethics statement

The interview response data used for fine-tuning the classifiers
and for data augmentation originally contained brand names and per-
sonal information of the respondents. These data were pseudonymized
with the respondents’ permission. Any resemblance to real brands or
individuals, if present, is purely coincidental.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors acknowledge the support of the European Union’s
Horizon Europe research and innovation program AgriLoop (project ID
101081776).

Appendix A. Code definitions

This appendix contains the list of codes for the 7-class and 15-class
settings implemented in AgriCode.

A.1. The 7-class setting codes

C0 other (not pertinent)
C1 market opportunities
C2 limitations and barriers
C3 stakeholders’ expectations
C4 valorization
C5 company+experts
C6 type of stream
7

M. Koptelov et al. SoftwareX 31 (2025) 102258
Table B.2
Corpus size of the first (R1) and second (R2) rounds for the 7-class setting (C0-C6) for paragraphs and sentences, for the original (orig) and
augmented (augm) data.
 Entries Data C0 C1 C2 C3 C4 C5 C6 Total
 Paragraphs R1 (orig) 126 102 98 96 54 30 25 531
 R1 (augm) 157 102 115 96 54 30 25 579
 R2 (cleaned) 39 55 17 23 1 17 11 163
 Sentences R1 (orig) 784 296 247 314 124 112 58 1935
 R1 (augm) 784 367 247 314 160 112 62 2046
 R2 (cleaned) 146 192 49 55 8 86 61 597

Table B.3
Corpus size of the first (R1) and second (R2) rounds for the 15-class setting (C0-C14) for paragraphs (P) and sentences (S), for the original (orig) and augmented (augm) data.
 Entries Data C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 Total
 P R1 (orig) 126 65 59 45 35 32 30 26 25 22 17 16 11 10 9 528
 R1 (augm) 126 65 59 45 35 32 30 26 25 22 42 16 25 10 9 567
 R2 (cleaned) 39 1 4 4 4 1 17 30 11 8 13 15 8 0 0 155
 S R1 (orig) 784 117 102 151 82 81 112 120 58 74 74 81 56 29 14 1935
 R1 (augm) 784 117 102 237 123 81 112 169 58 74 74 81 71 29 32 2144
 R2 (cleaned) 146 1 5 7 6 8 86 99 61 43 55 42 5 0 0 564

Table C.4
Evaluation results for the 7-class setting (C0-C6) for paragraphs (P) and sentences (S) on the original (orig) and augmented (augm) corpus. Acc corresponds to weighted accuracy,
and F1 to the run with the highest Acc.
 Method Data C0 C1 C2 C3 C4 C5 C6 Acc Acc
 F1 F1 F1 F1 F1 F1 F1 max mean
 P orig 0.68 0.88 0.85 0.90 0.95 0.92 1.00 0.87 0.83
 augm 0.74 0.86 0.86 0.90 0.95 0.92 1.00 0.88 0.85
 S orig 0.78 0.84 0.88 0.86 0.42 0.93 0.78 0.79 0.78
 augm 0.78 0.88 0.85 0.80 0.70 0.95 0.72 0.82 0.78

A.2. The 15-class setting codes

C0 other (not pertinent)
C1 stakeholders’ expectations > valorization/PHA-applications
C2 limitations and barriers > valorization /PHA-applications
C3 market opportunities > PHA MO
C4 market opportunities > PHA-Applications MO
C5 valorization > current structures
C6 company+experts
C7 limitations and barriers > Main issues and challenges for

extracted/microbial protein
C8 type of stream
C9 stakeholders’ expectations > PHA expectation
C10 limitations and barriers > Main issues and challenges for PHA
C11 market opportunities > MP MO
C12 stakeholders’ expectations > MP
C13 valorization > satisfaction
C14 valorization > advantages

Appendix B. Data set properties

This appendix presents data set properties used in the AgriCode’s
workflow (Tables B.2, B.3). It includes corpus sizes from the first (R1)
and second (R2) rounds of data for both paragraphs and sentences,
for the 7-class and 15-class settings. The tables show the differences
between the original and augmented R1 corpora, which were used
for both training and validation, as well as their comparison with the
cleaned R2 data, used for validation only (see Appendix D for more
details).

Appendix C. Experimental evaluation

This appendix presents evaluation results of AgriCode.
To demonstrate the efficacy of the tool, we evaluated it using test

data for both the paragraph and sentence methods. For each method,

we evaluated both the 7-class and 15-class settings. Finally, we assessed
both the original and augmented data using the same (non-augmented)
test split. The data set properties are presented in Tables B.2, B.3
in Appendix B, while the results are provided in Tables C.4, C.5 in
this appendix. For the augmented classifiers, only the best results are
presented.2

As seen from the results, the original classifier for paragraphs
achieves very good performance across almost all classes in the 7-
class setting (88%–100% F1 score). The least performing classes are C0
and C2. While we experimented with other combinations,2 augmenting
these two classes resulted in the expected performance improvement
(raising C0 to an acceptable level of 74% and C2 to 86%, with the
average performance improving from 83% to 85%). This was achieved
by augmenting the training sets of the C0 and C2 classes by 30%
and 20%, respectively (Table B.2). On the other hand, in the 7-class
sentence setting, the most problematic class is C4, which exhibits low
performance. Through data augmentation, we improved the perfor-
mance of this class to an acceptable level (70% F1), while maintaining
the same average weighted accuracy (78%). This improvement was
achieved by augmenting the C4 training set by 30%. Second class in this
setting which performance could be improved is C0 (78%). However,
augmenting it did not lead to the desired results and was therefore
replaced by other classes (C1, C4 and C6). This helped reduce class
imbalance and led to an overall performance improvement from 79%
to 82%. Interestingly, the performance of the sentence classifier for the
C0 class is higher than that of the paragraph classifier. We believe this is
because shorter fragments of the ‘‘not pertinent’’ class contain less key
vocabulary found in specific classes, which reduces the likelihood of
misleading the classifier. The same behavior is observed in the 15-class
setting, further supporting our hypothesis.

The 15-class setting is more challenging. We achieved acceptable
performance for most classes (F1 scores ranging from 67% to 96%
for both paragraphs and sentences), except for C0 and C10. While we
managed to improve the performance of class C10 in both settings, we
were unable to significantly enhance the performance of class C0 with-
out compromising overall performance. Moreover, class C0 consistently
8

M. Koptelov et al. SoftwareX 31 (2025) 102258
Table C.5
Evaluation results for the 15-class setting (C0-C14) for paragraphs (P) and sentences (S) on the original (orig) and augmented (augm) corpus. Acc corresponds to weighted accuracy,
and F1 to the run with the highest Acc.
 Method Data C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 Acc Acc
 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 max mean
 P orig 0.56 0.84 0.96 0.84 0.93 0.86 0.83 0.77 1.00 0.73 0.50 0.86 0.80 1.00 0.67 0.79 0.73
 augm 0.58 0.84 0.96 0.94 0.93 0.93 0.92 0.83 1.00 0.73 0.80 0.86 0.67 1.00 0.67 0.82 0.79
 S orig 0.63 0.71 0.67 0.77 0.76 0.90 0.93 0.84 0.92 0.73 0.23 0.96 0.82 0.73 0.80 0.75 0.74
 augm 0.63 0.60 0.73 0.68 0.86 0.95 0.97 0.84 0.96 0.71 0.48 0.92 0.85 0.92 1.00 0.78 0.76

Table D.6
Summary of the validation results on the R2 data.
 Method Data Accuracy (weighted)
 7 classes 15 classes
 Paragraphs Original 0.80 0.64
 Augmented 0.74 0.78
 Sentences Original 0.61 0.51
 Augmented 0.67 0.63

shows low performance in both paragraph and sentence settings, and
class C10 performs very poorly in the sentence setting. This can be
explained by the fact that we did not augment these classes, simply
because effective augmentation was not feasible. There are two main
reasons for this. First, we found that a BERT-type classifier struggles to
effectively distinguish non-pertinent instances (class C0) in multi-class
setting, as these instances lack class-specific vocabulary and contain a
significant amount of general vocabulary common to other classes. As
the number of classes increases, the vocabulary differences between
them become more blurred. As a result, augmenting these instances
do not provide the expected improvements. Second, augmenting C10
actually led to a complete drop in performance for this class.2 This
may be because C10 is very similar to C2 as both address limitations
and barriers of PHA, but with slightly different focuses (C10 targets
producers of PHA, while C2 focuses on PHA end-products). The BERT
classifier can be misled due to the minimal vocabulary difference
between these two classes. Therefore, we focused on augmenting other
classes where performance could still be improved (C3, C4, C7, C12 and
C14). This helped reduce class imbalance and led to performance gains
for most of these classes, contributing to a slight overall improvement.

Appendix D. Validation on R2 data

The tool was also evaluated on data from the second round of
interviews (Table D.6). To perform this evaluation, we cleaned the data
by retaining only responses to questions similar to those in R1. We
applied the Levenshtein distance [41], setting it to 20 for paragraphs
and 15 for sentences, with the exact values determined experimentally.

The peak performance in this setting reached 80% for paragraphs
and 61% for sentences. The drop in performance for R2 data, particu-
larly for sentence-level classification, is likely due to changes in both
the questions and the code system in the second round. This had a
significant impact on sentence-level classification since the questions
contribute a substantial portion of the vocabulary used for classifi-
cation. The augmented classifier improved performance by 6%–14%
except in the paragraph-level 7-class setting. We believe this is due to
the evolved code system and difficulties in mapping certain classes. This
issue could be avoided if the code system remains consistent across all
rounds of interviews.

Finally, the drop in performance could be explained by a poten-
tial bias in the annotated training data. To minimize this risk, it is
important to ensure both high data quality and a sufficient number
of labeled examples. One way to improve annotation quality is by
developing clear annotation guidelines and involving multiple anno-
tators to label the same data. This helps to make the labels more
consistent and less subjective. To deal with the limited amount of data,

we already employ a RAG-based approach, which enhances the dataset
by retrieving relevant external content. This has improved the accuracy
of predictions, especially for challenging categories such as ‘‘other (not
pertinent)’’ and some underrepresented specific classes. We believe that
continuing to improve this method could lead to even better results. An
alternative solution we are considering is a sequential training, where
models trained on R1 and R2 data are used to predict labels for R3,
and so on through subsequent rounds. Since this approach is highly
data-dependent, increasing the amount of annotated data across rounds
would be beneficial for both performance and robustness.

Data availability

The manually annotated data, as well as the synthetically generated
data used for fine-tuning the models, are publicly available at the
following link: https://doi.org/10.57745/91BXIY.

References

[1] Knott E, Rao AH, Summers K, Teeger C. Interviews in the social sciences. Nat
Rev Methods Prim 2022;2(1):p. 73.

[2] Marjaei S, Yazdi FA, Chandrashekara M. MAXQDA and its application to LIS
research. Libr Philos Pr 2019;1–9.

[3] Oun MA, Bach C. Qualitative research method summary. Qual Res
2014;1(5):252–8.

[4] Thorne S. Data analysis in qualitative research. Evidence- Based Nurs
2000;3(3):68–70.

[5] Perrin AJ. The CodeRead system: Using natural language processing to automate
coding of qualitative data. Soc Sci Comput Rev 2001;19(2):213–20.

[6] Crowston K, Liu X, Allen EE. Machine learning and rule-based automated coding
of qualitative data. Am Soc Inf Sci Technol 2010;47(1):1–2.

[7] Chen NC, Drouhard M, Kocielnik R, Suh J, Aragon CR. Using machine learning
to support qualitative coding in social science: Shifting the focus to ambiguity.
Trans Interact Intell Syst 2018;8(2):1–20.

[8] Rietz T, Maedche A. Cody: An AI-based system to semi-automate coding for
qualitative research. In: Proceedings of the 2021 conference on human factors
in computing systems. 2021, p. 1–14.

[9] Baumgartner P, Smith A, Olmsted M, Ohse D. A framework for using machine
learning to support qualitative data coding. Tech. rep., Center for Open Science;
2021, http://dx.doi.org/10.31219/osf.io/fueyj.

[10] Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al. Trans-
formers: State-of-the-art natural language processing. In: Proceedings of the
2020 conference on empirical methods in natural language processing: system
demonstrations. ACL; 2020, p. 38–45.

[11] Devlin J, Chang M, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the 2019 annual con-
ference of the North American chapter of the ACL: human language technologies.
2019, p. 4171–86.

[12] Kuckartz U, Rädiker S. Analyzing qualitative data with MAXQDA. Springer;
2019.

[13] MAXQDA 24 manual. The smart coding tool. 2025, https://www.maxqda.com/
help-mx24/work-with-coded-segments/smart-coding-tool. [Accessed 30 January
2025].

[14] Chew R, Bollenbacher J, Wenger M, Speer J, Kim A. LLM-assisted content
analysis: Using large language models to support deductive coding. 2023,
Preprint arXiv:2306.14924.

[15] Dunivin ZO. Scalable qualitative coding with LLMs: Chain-of-thought reasoning
matches human performance in some hermeneutic tasks. 2024, Preprint arXiv:
2401.15170.

[16] Zhang H, Wu C, Xie J, Rubino F, Graver S, Kim C, et al. When qualitative
research meets large language model: Exploring the potential of QualiGPT as a
tool for qualitative coding. 2024, Preprint arXiv:2407.14925.
9

https://doi.org/10.57745/91BXIY
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb1
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb1
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb1
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb2
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb2
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb2
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb3
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb3
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb3
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb4
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb4
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb4
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb5
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb5
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb5
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb6
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb7
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb7
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb7
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb7
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb7
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb8
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb8
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb8
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb8
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb8
http://dx.doi.org/10.31219/osf.io/fueyj
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb10
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb11
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb11
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb11
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb11
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb11
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb11
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb11
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb12
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb12
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb12
https://www.maxqda.com/help-mx24/work-with-coded-segments/smart-coding-tool
https://www.maxqda.com/help-mx24/work-with-coded-segments/smart-coding-tool
https://www.maxqda.com/help-mx24/work-with-coded-segments/smart-coding-tool
http://arxiv.org/abs/2306.14924
http://arxiv.org/abs/2401.15170
http://arxiv.org/abs/2401.15170
http://arxiv.org/abs/2401.15170
http://arxiv.org/abs/2407.14925

M. Koptelov et al. SoftwareX 31 (2025) 102258
[17] Escórcio R, Bento A, Tome AS, Correia VG, Rodrigues R, Moreira CJ, et al.
Finding a needle in a haystack: Producing antimicrobial cutin-derived Oligomers
from Tomato pomace. ACS Sustain Chem Eng 2022;10(34):11415–27.

[18] Linstone HA, Turoff M. The Delphi method. MA: Addison-Wesley Reading; 1975.
[19] Sablatzky T. The Delphi method. Hypothesis: Res J Heal Inf Prof 2022;34(1).
[20] Laifa A, Gautier L, Cruz C. Impact of textual data augmentation on linguistic

pattern extraction to improve the idiomaticity of extractive summaries. In:
Proceedings of the 23rd international conference on big data analytics and
knowledge discovery. Springer; 2021, p. 143–51.

[21] Afzal S, Maqsood M, Nazir F, Khan U, Aadil F, Awan KM, et al. A
data augmentation-based framework to handle class imbalance problem for
Alzheimer’s stage detection. IEEE Access 2019;7:115528–39.

[22] Damodaran P. Parrot: Paraphrase generation for NLU. 2021, Computer software,
version 1.0, https://github.com/PrithivirajDamodaran/Parrot_Paraphraser.

[23] Tang R, Han X, Jiang X, Hu X. Does synthetic data generation of LLMs help
clinical text mining? 2023, Preprint arXiv:2303.04360.

[24] Gao Y, Xiong Y, Gao X, Jia K, Pan J, Bi Y, et al. Retrieval-augmented generation
for large language models: A survey. 2023, Preprint arXiv:2312.10997.

[25] Xiong H, Wu J, Liu L. Classification with classoverlapping: A systematic study.
In: Proceedings of the 1st international conference on e-business intelligence.
Atlantis Press; 2010, p. 303–9.

[26] Koptelov M, Holveck M, Cremilleux B, Reynaud J, Roche M, Teisseire M. Towards
a (semi-) automatic urban planning rule identification in the french language. In:
Proceedings of the 10th international conference on data science and advanced
analytics. IEEE; 2023, p. 1–10.

[27] Touvron H, Lavril T, Izacard G, Martinet X, Lachaux MA, Lacroix T, et al.
Llama: Open and efficient foundation language models. 2023, Preprint arXiv:
2302.13971.

[28] Jiang AQ, Sablayrolles A, Mensch A, Bamford C, S. Chaplot D, Casas D, et al.
Llama: Open and efficient foundation language models. 2023, Preprint arXiv:
2310.06825.

[29] Bai J, Bai S, Chu Y, Cui Z, Dang K, Deng X, et al. Qwen technical report. 2023,
Preprint arXiv:2309.16609.

[30] Sandireddy R. Agro dataset QA final. 2024, dataset, https://huggingface.co/
datasets/Rahulrayudu/Agro_Dataset_QA_Final.

[31] Sun C, Qiu X, Xu Y, Huang X. How to fine-tune bert for text classification? In:
Proceedings of the 18th China national conference on Chinese computational
linguistics. Springer; 2019, p. 194–206.

[32] González-Carvajal S, Garrido-Merchán EC. Comparing BERT against traditional
machine learning text classification. 2020, Preprint arXiv:2005.13012.

[33] Lewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, et al. Retrieval-
augmented generation for knowledge-intensive nlp tasks. Adv Neural Inf Process
Syst 2020;33:9459–74.

[34] Kingma DP, Ba J. Adam: A method for stochastic optimization. 2014, Preprint
arXiv:1412.6980.

[35] Zhang T, Wu F, Katiyar A, Weinberger KQ, Artzi Y. Revisiting few-sample BERT
fine-tuning. In: Proceedings of the 9th international conference on learning
representations. 2020.

[36] Koptelov M, Holveck M, Cremilleux B, Reynaud J, Roche M, Teisseire M. A
manually annotated corpus in french for the study of urbanization and the
natural risk prevention. Sci Data 2023;10(1):818.

[37] Bird S, Klein E, Loper E. Natural language processing with Python: analyzing
text with the natural language toolkit. O’Reilly Media, Inc; 2009.

[38] Chase H. LLM app development framework. 2025, https://langchain.com.
[Accessed 30 January 2025].

[39] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine learning in Python. J Mach Learn Res 2011;12:2825–30.

[40] Majed A, Martin A, Andrej B, Teichtmann A, Sehmi A, Neo B, et al. Streamlit:
A faster way to build and share data apps. 2025, https://streamlit.io. [Accessed
30 January 2025].

[41] Levenshtein V. Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet physics doklady, vol. 10, (no. 8):Soviet Union; 1966, p.
707–10.
10

http://refhub.elsevier.com/S2352-7110(25)00225-0/sb17
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb17
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb17
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb17
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb17
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb18
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb19
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb20
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb20
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb20
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb20
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb20
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb20
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb20
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb21
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb21
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb21
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb21
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb21
https://github.com/PrithivirajDamodaran/Parrot_Paraphraser
http://arxiv.org/abs/2303.04360
http://arxiv.org/abs/2312.10997
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb25
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb26
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb26
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2309.16609
https://huggingface.co/datasets/Rahulrayudu/Agro_Dataset_QA_Final
https://huggingface.co/datasets/Rahulrayudu/Agro_Dataset_QA_Final
https://huggingface.co/datasets/Rahulrayudu/Agro_Dataset_QA_Final
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb31
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb31
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb31
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb31
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb31
http://arxiv.org/abs/2005.13012
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb33
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb33
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb33
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb33
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb33
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb35
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb35
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb35
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb35
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb35
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb36
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb36
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb36
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb36
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb36
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb37
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb37
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb37
https://langchain.com
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb39
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb39
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb39
https://streamlit.io
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb41
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb41
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb41
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb41
http://refhub.elsevier.com/S2352-7110(25)00225-0/sb41

	AgriCode: Automated coding for qualitative research and its application to the valorization of agricultural residues
	Motivation and significance
	Software description
	Software architecture
	Data preparation
	Data augmentation
	Learning
	Prediction
	Implementation

	Software functionalities
	Segment construction
	Paragraph classification
	Sentence classification

	Illustrative examples
	Impact
	Conclusions
	CRediT authorship contribution statement
	Ethics Statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Code definitions
	The 7-class setting codes
	The 15-class setting codes

	Appendix B. Data set properties
	Appendix C. Experimental evaluation
	Appendix D. Validation on R2 data
	Data availability
	References

