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Abstract

Forest fires, intensified by climate change, threaten tropical ecosystems by accelerating
biodiversity loss, releasing carbon emissions, and altering hydrological cycles. Continuous
detection of fire-induced forest loss is therefore critical. However, commonly used optical-
based methods often face limitations, particularly due to cloud cover and coarse spatial
resolution. This study explores the use of C-band Sentinel-1 Synthetic Aperture Radar (SAR)
time series, combined with Bayesian Online Changepoint Detection (BOCD), for detecting
and continuously monitoring fire-induced vegetation loss in forested areas. Three BOCD
variants are evaluated: two single-polarization approaches individually using VV and VH
reflectivities, and a dual-polarization approach (pol-BOCD) integrating both channels. The
analysis focuses on a fire-affected area in Baixo Uraim (Paragominas, Brazil), supported
by field-validated reference data. BOCD performance is compared against widely used
optical products, including MODIS and VIIRS active fire and burned area data, as well as
Sentinel-2-based difference Normalized Burn Ratio (ANBR) assessments. Results indicate
that pol-BOCD achieves spatial accuracy comparable to dNBR (88.2% agreement), while
enabling detections within a delay of three Sentinel-1 acquisitions. These findings highlight
the potential of SAR-based BOCD for rapid, cloud-independent monitoring. While SAR
enables continuous detection regardless of atmospheric conditions, optical imagery remains
essential for characterizing the type and severity of change.

Keywords: fire-induced forest loss; change detection; near real-time; time series; SAR;
Sentinel-1; Brazilian Amazon

1. Introduction

The monitoring of forest loss in the Amazon rainforest is vital to mitigate its exten-
sive impacts on ecosystems, climate stability, and socio-economic conditions. Despite its
crucial role in global carbon storage, the Amazon carbon sink is declining due to climate
change [1]. Deforestation contributes to this decline through two main mechanisms: the
loss of biomass and the release of large amounts of CO; during combustion. When forests
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are cleared or burned, significant quantities of carbon stored in vegetation are emitted into
the atmosphere, exacerbating global warming. Deforestation also strongly alters regional
water cycles. By reducing evapotranspiration, it disrupts precipitation patterns and leads
to prolonged droughts [2], which intensify dry conditions and further stress the ecosystem.
Biodiversity loss is another severe consequence of deforestation. The removal of forest
habitats directly threatens countless species. Moreover, soil degradation reduces permeabil-
ity and increases runoff, which in turn heightens erosion risk and transfers sediments to
rivers, adversely affecting aquatic habitats [3,4]. Recent studies show that deforestation and
selective logging increase local temperatures and reduce rainfall [5,6]. These climate shifts
promote prolonged dry spells that favor further deforestation activities [7,8]. In parallel,
drier conditions and increased fragmentation increase vegetation flammability, making
forests more susceptible to wildfires [9,10].

In South America, especially in the Amazon rainforest, wildfire severity and fre-
quency have risen sharply in recent decades [11]. This trend is driven by more frequent
droughts [12] and commodity-driven deforestation [13]. Wildfires not only threaten human
populations and wildlife but also release substantial CO, emissions [14]. They degrade
soil and vegetation, further reducing the forest’s capacity to recover. The extent of forest
recovery depends on ecosystem type, fire severity, and frequency, with humid tropical
forests showing long-term biomass reductions due to increased tree mortality [15]. Re-
cent experimental evidence from southeastern Amazon forests highlights that droughts
combined with repeated land-use fires can drive nonlinear forest degradation, reducing
canopy cover, promoting invasive grasses, and increasing vulnerability, potentially leading
to alternate vegetation states with uncertain persistence [16].

Optical multi-spectral data have been widely studied for mapping wildfire-burned ar-
eas and assessing burn severity [17]. Specifically, the Near Infrared (NIR, A = 0.7 — 1.3 pm)
and Short-Wave Infrared (SWIR, A = 1.3 — 2.5 pm) bands have emerged as the most fre-
quently used due to wildfire-induced changes, which cause a reduction in chlorophyll,
leading to a decrease in NIR reflectance, and a reduction in moisture, resulting in an in-
crease in SWIR reflectance [18]. These findings motivated the design of several spectral
indices, among which the most well-known are the Normalized Burn Ratio (NBR) and its
bi-temporal form, the difference NBR (dANBR), which compares pre- and post-fire data [19].
In wildfire monitoring, the data provided by the Moderate Resolution Imaging Spectrora-
diometer (MODIS) [20] and the Visible Infrared Imaging Radiometer Suite (VIIRS) [21] are
commonly used for initial fire mapping, while Landsat and Sentinel-2 data are utilized for
post-fire boundary delineation and burn severity assessment. MODIS and VIIRS, which
are characterized by low to moderate spatial resolution, detect thermal anomalies. These
anomalies are then analyzed to identify pixels with high radiative heat, which are flagged
as active fires. Landsat and Sentinel-2, which have higher spatial resolution on the order of
tens of meters, are then used to compute dNBR and assess burn severity [22,23]. However,
optical observations are affected by cloud cover [24], especially in tropical regions, and may
also be influenced by smoke from active fires. Additionally, reflectance-based indices often
struggle to provide accurate results, particularly for intermediate burn severity levels where
multiple factors intersect. These challenges limit the ability of optical-based approaches to
monitor fires in a continuous and accurate manner.

Synthetic Aperture Radar (SAR), which is unaffected by atmospheric conditions like
clouds and can operate independently of daylight, provides a valuable alternative to
optical-based sensors for rapid forest fire monitoring. The capabilities of multi-frequency
(i.e., X-, L-, C-band) SAR imagery in multiple polarizations have been widely investigated
for burnt area mapping and fire severity estimation [18,25,26]. Specifically, C-band Sentinel-
1, developed by the European Space Agency (ESA) as part of the Copernicus program,
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holds significant potential for rapid forest loss monitoring due to free data access provided
to users, ensuring broad accessibility. The mission’s long-term continuity is guaranteed,
and its dual-satellite configuration enables a revisit time of six days. Several Near Real-Time
(NRT) forest loss monitoring systems, currently operational in various tropical regions, use
Sentinel-1 data to detect deforestation. These systems, such as RADD [27], TropiSCO [28,29],
DETER-R [30], and LUCA [31] rely on changes in normalized backscatter 7 to identify
forest loss. However, differentiating between deforestation practices remains challenging,
as changes in the backscatter signal can indicate vegetation loss without revealing the
specific type of deforestation practice.

In the specific context of fire scar mapping using Sentinel-1 data, several methods
have been proposed. A burned area detection approach applied to Mediterranean forests
is developed in [32] to analyze temporal changes in radar backscatter. The method relies
on detecting abrupt decreases in VH and VV backscatter following fire events, using a
differencing technique between pre- and post-fire acquisitions. To minimize noise and false
detections, a series of thresholding and filtering steps are applied, including normalization,
terrain correction, and speckle filtering. Another burned area detection algorithm that
integrates temporal backscatter change analysis with thermal hotspot data from MODIS
and VIIRS is developed in [33]. The method applies the Reed—Xiaoli anomaly detector to
identify significant changes in VH and VV backscatter ratios and uses land cover stratifica-
tion to adapt to local scattering conditions. A Random Forest classifier is further employed
to map burned areas in the absence of hotspot information. Additionally, an automatic
deep learning-based framework is developed in [34] for NRT forest fire mapping using
Sentinel-1 data. Specifically, the approach utilizes dense pre-fire Sentinel-1 time series in VV
and VH polarizations to characterize the natural temporal variability of backscatter across
different land cover types. Upon the acquisition of each new image during a wildfire event,
a log-ratio change detection is first applied against a selected pre-fire reference image. A
time series-based anomaly detection technique then identifies significant deviations from
the norm, generating an initial coarse burnt area map. This map is used to automatically
select training samples for a convolutional neural network, which is fine-tuned online to
produce high-resolution burn confidence maps. These maps are subsequently binarized
using thresholding and progressively merged to construct a fire progression map.

Despite the large adoption and the many benefits provided by Sentinel-1, in case of
forest fires, the effects on C-band backscatter depend on several factors, including fire
intensity [35], vegetation type and structure (e.g., canopy height and density), and moisture
content [32]. Generally, the occurrence of fire reduces the forest canopy, thereby decreas-
ing volume scattering and exposing the ground, whose contribution becomes a major
component of the overall backscatter response. However, despite this straightforward
physical effect, forest fires induce complex phenomena in the observed reflectivity. Canopy
reduction typically results in a drop in reflectivity under dry conditions, particularly in
cross-polarization [26]. Canopy reduction also exposes open terrain and tree trunks, favor-
ing surface and double-bounce scattering between the ground and dead standing trees [36].
Although post-fire areas typically display structural changes (e.g., defoliation, burned
trunks), C-band’s capacity to distinguish between burned and unburned regions is often
constrained by overlapping radar backscatter from varying fire severities. Severe burns,
associated with complete canopy removal, lead to significant reductions in reflectivity.
However, partial burns, characterized by residual ground biomass, may exhibit mixed
scattering behaviors. Furthermore, C-band SAR is less sensitive to surface fires compared to
lower-frequency radar bands such as L-band [36]. Surface fires, which primarily affect the
understory or ground vegetation, may not cause sufficient changes in radar backscatter to
be detectable with C-band SAR data. This limitation can reduce fire detection accuracy in ar-
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eas affected by low-intensity fires or those that do not produce significant structural changes
in vegetation. Rainfall modifies the dielectric constant, leading to increased scattering in
single-bounce, double-bounce, and volume scattering mechanisms [37].

This study leverages extensive ground reference data collected during a field cam-
paign following a large forest fire event that occurred between September and November
2024 in the province of Paragominas (Pard), Brazil. This dataset provides a rare oppor-
tunity to validate satellite-based fire detection results with direct field observations from
a fire-affected region, offering a reliable reference for algorithm performance assessment.
The primary objective of this work is to assess the capability of Sentinel-1 C-band SAR
data for the rapid detection of forest loss caused by fire events. The specific aim is to deter-
mine whether changes in SAR backscatter, across both co- and cross-polarized channels,
can reliably indicate fire-induced forest loss over short time scales. Given the complex
interactions between fire severity, vegetation structure, and radar signal behavior, the
capacity of C-band SAR to capture varying fire intensities needs to be explored. To achieve
this objective, a Bayesian inference-based algorithm (BOCD) previously developed for
NRT forest loss monitoring [38] is applied. This method models probabilistic variations
in SAR backscatter to detect forest disturbances. Furthermore, the multivariate version of
the algorithm (pol-BOCD) [39], which processes both co- and cross-polarized Sentinel-1
channels jointly, is employed to investigate its effectiveness and potential improvements in
capturing fire-driven changes in forest structure compared to single-polarization BOCD
methods. Additionally, Sentinel-1-based results are compared with MODIS and VIIRS
burned area products, as well as active fire alerts. dNBR is also calculated using Sentinel-2
optical imagery, and the results are compared both spatially and temporally with those
from the BOCD methods. This comparison aims to assess the complementarity of SAR and
optical observations for fire detection and post-fire impact evaluation.

The paper is structured as follows: Section 2 describes the selected study area and
provides information on the characteristics and timeline of the Baixo Uraim fire episodes.
Furthermore, it discusses both field-validated reference data and Sentinel-1 input data, and
provides insights into the BOCD algorithms (single-polarization and dual-polarization)
used for rapid fire-induced forest loss detection. Furthermore, Sections 3 and 4 present
and discuss the results obtained from the BOCD methods, compared to those derived from
MODIS, VIIRS, and Sentinel-2. Finally, Section 5 offers concluding remarks.

2. Materials and Methods
2.1. Study Area

The study area for this work is the municipality of Paragominas, located in the state
of Pard, in the northeastern Brazilian Amazon. In Par4, fire is extensively used at the
agricultural-forest interface to clear land for agricultural expansion, making it a major
contributor to deforestation and greenhouse gas emissions in the region [40]. Paragominas
was established in 1965 during the construction of the BR-010 highway, which connects
Belém, the capital of Pard, with Brasilia [41]. The city’s development occurred during a
period of accelerated deforestation, encouraged by the Brazilian government as a primary
condition for establishing land ownership [42]. Initially, Paragominas’ economic expansion
was largely driven by timber extraction [43], cattle ranching [44], and small-scale subsis-
tence farming [45]. However, from the 2000s onward, the landscape began shifting with
the expansion of grain cultivation, eucalyptus plantations, and significant smallholder
settlement projects [46]. As a result of the land occupation process, the total deforested area
reached 8600 km? by 2010 [42]. In 2008, Paragominas was placed on Brazil’s ‘blacklist’ of
the 36 municipalities with the highest deforestation rates in the Amazon. This designation
triggered intensified government enforcement actions and monitoring by the Brazilian
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Institute of Environment and Renewable Natural Resources (IBAMA) [42]. Removal from
the ‘blacklist’ required reducing deforestation to less than 40 km? per year and imple-
menting the environmental property register (CAR) in at least 80% of the municipality. In
response, local stakeholders committed to a territorial development shift under the Green
Municipality Program (GMP) [47]. Following significant progress in reducing deforestation,
Paragominas was removed from the ‘blacklist” in March 2010 and has since become a model
for deforestation control policies. Figure 1 shows examples of land use in Paragominas
during September 2024.

© - @

Figure 1. Images collected during a field campaign showing land use in Paragominas during

September 2024: (a) Soybean field, captured on 25 September 2024; (b) Grazing pasture, captured
on 25 September 2024; (c) Cassava plantation, captured on 24 September 2024; (d) Land cleared for
agriculture, captured on 23 September 2024. © Marta Bottani.

Traditionally, the vegetation in Paragominas is evergreen lowland rainforest [48], with
a canopy height ranging from 25 to 40 m and an aboveground biomass of approximately
300 t ha—! [41]. The area has a tropical climate, with an average annual temperature of 26
°C [49] and average annual rainfall of 1900 mm year~!. The dry season typically lasts from
July to November. The region’s terrain consists of fragmented plateaus, ranging in elevation
from 110 to 220 m above sea level, interspersed with large valleys where the elevation
drops to 45-80 m [49]. The plateaus, which are usually several kilometers wide, lack surface
water channels. In contrast, the valley floors are characterized by a more extensive network
of streams [50]. Figure 2 depicts the Paragominas municipality, highlighting land use and
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land cover (from TerraClass 2022: https:/ /www.terraclass.gov.br/, accessed on 15 May

2025), as well as the protected indigenous area of Alto Rio Guama.
48.5°W 48.0°W 47.5°W 47.0°W 46.5°W

Amazon

Brazil

3.0°

3.5°S
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Figure 2. Map of the Paragominas municipality, showing land cover and land use (©2022 TerraClass).
Optical background image from Google Earth (©2025 Google).

2.2. The Fire Event: Timeline and Characteristics

This work is motivated by the availability of ground reference data collected during
a field trip, related to a forest fire that occurred between September and November 2024
in Baixo Uraim, within the Paragominas municipality. The fire was initially set by some
indigenous farmers as part of a traditional agricultural practice involving controlled burn-
ing. Particularly, indigenous communities in the Amazon have long used fire as a land
management tool [51]. Such practice is now being challenged as the climate grows increas-
ingly drier. Known as indigenous fire stewardship, this practice involves the intentional
and controlled use of fire to manage ecosystems, enhance biodiversity, support agricultural
activities [52], and mitigate wildfire risk. In many regions, small farmers have adopted
similar practices—following the example of indigenous communities—by using shifting
cultivation with slash-and-burn techniques. However, the rapid changes in climate and
the increasing dryness of the forest make fire-management practices a potential threat.
More frequent fires, linked to intensified agriculture, reduce fallow periods and weaken
the forest’s ability to evapotranspire during the dry season. In parallel, logging and forest
fragmentation increase flammability and facilitate fire spread [10]. Combined with a lack
of rainfall, water stress intensifies, making vegetation highly flammable.

The Baixo Uraim fire is characterized by two main episodes, occurring approximately
one month apart. The fire was initially set on 23 September 2024, by indigenous farmers.
However, the farmers were unable to return to the fields to monitor the fire due to the
death of a community member, which necessitated a 10-day mourning period according
to indigenous traditions, during which time they were prohibited from returning to work.
The community believed the fire would self-extinguish, but it spread beyond the cleared
areas into the forest. Unattended due to the community’s absence and exacerbated by the
drought conditions of the dry season, the fire eventually became uncontrollable, marking
the first significant burning episode, which lasted approximately one week. The first burn
was an understory fire that primarily consumed dead material and litter on the ground
within primary and secondary forests in the area (Figure 3a). While the green vegetation
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remained unburned during this initial episode, it dried out in the days following the fire,
eventually falling to the ground and creating a new layer of highly flammable material. The
fire was ultimately contained by locals, who employed firebreaks and backfires to control
its spread. Overall, the first burning episode of the Baixo Uraim fire affected an area of

approximately 37 km?. Images of the fire are shown in Figure 3a—c.

(a) (b)

49°W 48°W 47°W

v\
P

B Fire 1
Fire 2
[ Protected Indigenous Area

(d)
Figure 3. Images of the first burning episode in Baixo Uraim and the fire location within the
Paragominas province: (a) Ground-level fire in a forest, captured on 23 September 2024; (b) Ground-
level fire on agriculture, captured on 23 September 2024; (c) Aerial view of the Baixo Uraim fire,
captured on 23 September 2024; (d) Location of the Baixo Uraim fires. ©Marta Bottani (a,b), ©Krishna
Naudin (c), Background ©2024 PlanetScope (d).

Approximately one month after the first burning episode, around 27 October 2024,
the second burning occurred and lasted for two weeks, until about 10 November 2024.
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The second fire was triggered by strong winds that reignited the embers from the first
fire, which had remained in hollow trunks and roots. The fire spread to consume the new
layer of dead material left by the initial burn, along with dry branches and trunks. It was
only contained along roadsides and in pastures, where control efforts were more feasible,
and with substantial support from local farmers. The fire was ultimately extinguished by
the heavy rains of the wet season, which began in mid-December. The second burn was
significantly more destructive than the first, affecting approximately 102 km? of land.

2.3. Field-Validated Reference Data

Following the on-field retrieval of GPS coordinates, the full extent of the Baixo Uraim fires
was delineated through manual inspection of high-resolution (3.7 m) PlanetScope monthly
mosaics. Figure 3d shows the fire locations, while Figure 4 shows the corresponding Plan-
etScope optical mosaics captured before and after the fire events. Specifically, the October
mosaic highlights the burned area from the first fire episode, while the November mosaic
reveals the effects of the second burn. Mosaics from the period preceding the fires are included
to outline agricultural parcels cleared during that time, as they will be discussed later in the
results. The June mosaic was omitted due to significant cloud coverage.

ARls

(a) 05/2024 (b) 07/2024

Bgcs s

0i: ¢} e O
A

(c) 08/2024 (d) 09/2024

A

(e) 10/2024 () 11/2024

Figure 4. Manually delineated burned areas derived from PlanetScope optical mosaics. Panels (a—d)
show agricultural parcels cleared prior to the fires. Panel (e) highlights the burned area from the
first fire, while panel (f) depicts the effects of the second fire. Red indicates the first fire, and yellow
indicates the second. Background imagery ©2024 PlanetScope.
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2.4. Sentinel-1 Input Data

This study employs Sentinel-1 Radiometrically Terrain-Corrected (RTC) products pro-
cessed by Catalyst and retrieved from the Microsoft Planetary Computer catalog (https:
/ /planetarycomputer.microsoft.com/catalog, accessed on 7 April 2025). The processing chain
comprises radiometric calibration, terrain correction, and orthorectification. No additional
speckle filtering is applied, resulting in imagery with a spatial resolution of approximately
20 m in azimuth and 22 m in ground range. Both polarimetric channels are utilized: cross-
polarized (VH) and co-polarized (VV). The data used in this study correspond to a one-year
period (1 January to 31 December 2024) and have a 12-day revisit interval, as they were
acquired exclusively from Sentinel-1A following the loss of Sentinel-1B in December 2021.
The limited revisit time during the Baixo Uraim fires restricts the number of available ac-
quisitions capturing the burning events. Figure 5 presents a timeline of available Sentinel-1
acquisitions during the Baixo Uraim fires, alongside the approximate timing of the burning
events and the dates of Sentinel-2 optical acquisitions. Specifically, the white circles denote
the dates of the only cloud-free Sentinel-2 acquisitions during this period, while the black
circles indicate cloudy images. The last Sentinel-1 image before the fire was acquired on 13
September 2024. The next acquisition, on 25 September, coincided with the first fire event.
Subsequent acquisitions, on 7 October and 19 October, captured the period between the
end of the first fire and the onset of the second. Following 19 October, there was a gap in
Sentinel-1 acquisitions, coinciding with the occurrence of the second burn. The final images,
acquired on 12 November, 24 November, and 6 December, were taken shortly after the
conclusion of the second fire event. In total, this dataset comprises six images documenting
the fire period before the onset of heavy rains in mid-December.

™
s v e s
o v v
Qq ,\ QQQ ,\ :\Q ’\ 0,:&'\'
Vv e oV o'y
Fire 1 Fire 2
s o Q,L\x Q> Q> QF Q> &u tss
v v v v n 1 v M
D 4 S ) RO RN 'y d N
Q¥

@ Cloudy Sentinel-2
O Clear Sentinel-2

Figure 5. Timeline of Sentinel-1 acquisitions during the Baixo Uraim fires, showing approximate
burning timing and the dates of clear and cloudy Sentinel-2 acquisitions.

The expected Sentinel-1 C-band backscatter (7°) behavior following the Baixo Uraim
fires is illustrated in Figure 6. Before the start of the first fire (T;), Sentinel-1 backscatter,
primarily driven by volume scattering within the canopy, is expected to remain relatively
stable. After the initial burn (T3), a general decrease in backscatter is anticipated due to
canopy thinning, which reduces volume scattering, along with a decrease in the soil’s dielec-
tric constant. However, double-bounce effects may still occur in co-polarized backscatter
due to signal interactions between dry soil and vertical trunks. Following the second fire
(T3), a further reduction in the soil’s dielectric constant is expected, leading to a continued
decrease in backscatter, now mainly driven by surface scattering. Finally, with the onset of
heavy rainfall (T;), an increase in the ground’s dielectric constant is anticipated, causing a
rise in backscatter that may obscure the burning effects. While this behavior is expected in
the area affected by both fire events (red in Figure 4), the area impacted exclusively by the
second burn (yellow in Figure 4) should only experience phases 17, T, and Tj.
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Figure 6. Schematic representation of the expected C-band backscatter behavior following the Baixo
Uraim fires. 'yO denotes the backscatter, and ¢ denotes the soil dielectric constant.

The temporal and statistical evolution (whisker-box plots) of co-polarized (VV) and
cross-polarized (VH) Sentinel-1 backscatter over the Baixo Uraim fire-affected region is shown
in Figure 7, along with total precipitation and soil temperature data obtained from ERA-5 daily
products, provided by the European Centre for Medium-Range Weather Forecasts (ECMWFE).
The backscatter plots show the average behavior across 250 randomly sampled polygons
within forested areas, each approximately 50 x 50 pixels in size, located within the fire-affected
region. These plots are intended for illustrative purposes only; the actual change detection
algorithm operates at the single-pixel level, without any spatial averaging.

VV and VH Backscatter Variability Across Time
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Figure 7. (a) Temporal and statistical (whisker-box) evolution of Sentinel-1 co-polarized (VV) and
cross-polarized (VH) backscatter, derived from 250 randomly sampled polygons, each approximately
50 x 50 pixels in size. (b) Corresponding daily precipitation and surface temperature data obtained
from ERA-5 daily products.
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Opverall, the backscatter behavior aligns with previously discussed expectations. Specif-
ically, both VV and VH backscatter levels decrease following the first fire. Notably, the
co-polarized backscatter appears more sensitive to variations in the ground’s dielectric
constant, and the resulting reduction in reflectivity is not compensated by an increased
double-bounce scattering contribution, since the VV polarization channel is relatively in-
sensitive to this scattering mechanism. During the first fire, the absence of precipitation
and a progressive increase in soil temperature further support the observed decrease in
backscatter values. An additional reduction in backscatter is observed after the second fire,
followed by a sharp increase with the onset of the rainy season. Specifically, following the
second fire, soil temperature increases further in the absence of rainfall, before beginning to
decrease as the rainy season begins, bringing abundant precipitation.

2.5. SAR-Based Algorithm for Detecting Fire-Induced Forest Loss

To detect fire-induced forest loss in Baixo Uraim, this work employs the Bayesian
Online Changepoint Detection (BOCD) algorithm [38], initially designed for NRT defor-
estation monitoring. In its original configuration, BOCD processes single-polarization,
single-pixel Sentinel-1 backscatter time series in an online manner, continuously updating
the probability of a change (i.e., forest loss) as new data becomes available. Practically,
the method aims to partition a time series into sequential segments, with changepoints
marking the beginning of each new segment. This segmentation is performed online by
estimating the posterior probability of the run length (i.e., 7t), which represents the number
of observations since the last detected changepoint and is associated with the hidden state
of a Markov model:

p(re, x1:) . (1)
Yoo P(re,x1:t)

The joint distribution of the run length and the observed time series up to time f,

P(7t|xl:t) =

p(rt,x1.t), required for the computation of (1), can be expressed as follows [53]:

-1
p(re, x1) = Z P(xflrtflfxfﬁ%) p(relri—1) p(reio1,Xwe-1) - 2)
Ho =0 ——~—— T/
Posterior Pred.  Transition Prob. Message

The calculation of the joint distribution relies on the evaluation of the terms in (2). Specif-
ically, the recursive term p(r;_1,X1.+—1) illustrates the message-passing principle of the
algorithm, highlighting that the current joint distribution depends on the joint distribu-
tion at the previous time step. Additionally, the posterior predictive term p(x¢|r;_1, xgﬂ)
depends on the likelihood of the Sentinel-1 input data and the prior distribution of the
model parameters. Finally, the transition probability p(r¢|r;_1) accounts for spatial context,
incorporating prior knowledge on deforestation in neighboring pixels. Further technical
details regarding the BOCD algorithm and its implementation can be found in [38].

By tracking (1) over time, BOCD adapts iteratively to incoming data. With each new
observation, it updates its internal parameters to reflect the current statistical behavior
of the time series [38]. A change is detected when deviations from the modeled statistics
persist over several consecutive observations, leading to a significant drop in the most
probable run length. The detection of forest loss triggers the start of a new segment, as
illustrated in Figure 8, which depicts the algorithm’s working principle. This requirement
for temporal consistency makes BOCD robust to isolated outliers, such as those introduced
by speckle, and thus avoids the need for speckle filtering.
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Figure 8. Schematic representation of the BOCD algorithm.

Building on the complementary information provided by co-polarized and cross-
polarized Sentinel-1 channels, the BOCD framework can be extended to process multivari-
ate Sentinel-1 time series, hence dual-polarimetric acquisitions. This extension, referred
to as pol-BOCD, is conceptualized in [39]. pol-BOCD has demonstrated improved per-
formance compared to single-polarization BOCDs, particularly for detecting commodity-
induced forest loss in the Cerrado biome, a region characterized by diverse land cover
types and strong seasonality. It was particularly effective in areas where artisanal clearing
leaves substantial ground residue after deforestation. In such cases, polarization diversity
helps compensate for the lack of a clear volume scattering decrease in cross-polarization.
Because fire-induced forest loss can resemble gradual vegetation removal seen in artisanal
clearings, pol-BOCD is tested on the fire-affected region of Baixo Uraim. For comparison,
single-polarization BOCDs (VV-BOCD and VH-BOCD) are also applied to evaluate their
relative effectiveness.

2.6. Validation Procedures and Accuracy Metrics

The detection of fire-induced forest loss is defined as the loss of vegetative cover in
primary and secondary forests, according to the TerraClass land-use map, caused by fires.
It is performed using the previously presented frameworks within the extents delineated
in Figure 4. To validate the performance of the BOCD-based burned area detections, both
qualitative and quantitative approaches are employed by comparing the outputs with
established optical remote sensing products. First, a visual assessment is conducted by
comparing the spatial patterns of burned area detections derived from the BOCD methods
against multiple optical datasets, including MODIS and VIIRS burned area and active
fire products, as well as dNBR assessments obtained from Sentinel-2 imagery. This step
provides an initial evaluation of the consistency in burned area detection across products, a
comparison of the spatial resolution offered by each dataset, and a temporal evaluation
where timing information is available.

To quantify spatial accuracy, a confusion matrix is computed by comparing the BOCD-
based burned area detections against the dNBR Sentinel-2 assessment, which serves as a
reference. This evaluation is conducted exclusively within primary and secondary forest
areas classified according to TerraClass. The confusion matrix expresses agreement in terms
of percentage of pixels and categorizes detections as follows:

*  True Positives (TP): Pixels identified as burned by both BOCD and dNBR.

¢  False Positives (FP): Pixels detected as burned by BOCD but not by dNBR.

*  False Negatives (FN): Pixels marked as burned by dNBR but missed by BOCD.
*  True Negatives (TN): Pixels classified as unburned by both sensors.
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To evaluate temporal accuracy, the timing of BOCD-based detections is compared
against local knowledge on fire progression derived from field observations, as described
in Section 2.2. This temporal information is further cross-checked with the dates of clear
Sentinel-2 acquisitions used to compute the dNBR assessments, thus assessing the pro-
posed method’s ability to detect burn events continuously. Figure 9 presents the complete
methodological workflow used in this study to derive BOCD-based fire scar assessments,
refined with Sentinel-2 dNBR.

Sentinel-1 RTC Time Series

(VH & VV)
No speckle filtering

|

BOCD
Applied pixel-wise
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Forest Loss Alerts +
Time of Detection
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Figure 9. Methodological workflow for BOCD-based detection of fire-induced forest loss, refined
using Sentinel-2 dNBR for enhanced event characterization.

3. Results
3.1. BOCD Results

An example of changepoint detection using pol-BOCD for a single pixel dual-
polarization time series extracted from the fire-affected region is presented in Figure 10.

The overall fire detection results obtained using single-polarization BOCD (VV-BOCD
and VH-BOCD) and pol-BOCD over the fire-affected area in Baixo Uraim are shown in
Figure 11. The pixels identified as fire-affected are color-coded to represent the timing
of detection. The results show that pol-BOCD achieves more detections compared to
single-polarization BOCDs by leveraging the complementary characteristics of Sentinel-1
polarimetric channels. Additionally, disturbances caused by the first fire appear to be well
captured by all BOCD methods, whereas those related to the second fire are only marginally
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detected. The fire detections from pol-BOCD, categorized by land cover type, are shown
in Figure 12. The results indicate that the majority of the vegetation impacted by the fires
consists of primary forest, followed by secondary forest. Herbaceous areas and shrubland
pastures are not considered in this analysis but are included for completeness.

Sentinel-1 Single-Pixel Dual-Pol Backscatter Time Series

o -10
=
Q
S
715,
=201 —— W

(a)

Posterior Run Length Matrix

—— Change date
---- Detection Date

Number of Acqusitions

Figure 10. Example of changepoint detection using pol-BOCD. (a) Dual-polarization time series of
backscatter intensity. (b) Run length posterior probability matrix for each acquisition date. Change
date is shown in solid red, and detection date in dashed red.

VH-BOCD VV-BOCD Pol-BOCD
CJrFiret

Fire 2

Detection Dates

30/12/2024
=>Fire 1

28/05/2024

@)

Figure 11. Fire detection dates using (a) VH-BOCD, (b) VV-BOCD and (c) pol-BOCD over the
fire-affected area in Baixo Uraim. Blue/purple and bright yellow indicate pre-fire clearing (i.e., agri-
cultural parcels, pastures); orange marks the first fire event, and red shades represent the second.
Background ©2024 PlanetScope.
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Figure 12. Fire detection dates from pol-BOCD, categorized by land cover type (©2022 Terra-
Class): (a) primary forest, (b) secondary forest, (¢) shrubland pasture, and (d) herbaceous pasture.
Blue/purple and bright yellow indicate pre-fire clearing (i.e., agricultural parcels, pastures); orange
marks the first fire event, and red shades represent the second. Background ©2024 PlanetScope.

3.2. Fire Detection Using Optical Products

As outlined in the introduction, fire mapping has traditionally relied on optical multi-
spectral data. This section presents the results of fire detection over the Baixo Uraim
region using widely adopted operational burned area and active fire products from MODIS
and VIIRS. Additionally, an assessment of the Baixo Uraim fire scars and fire severity is
conducted using Sentinel-2 imagery to take advantage of its finer spatial resolution. The
spatial precision and temporal accuracy of these products in detecting the Baixo Uraim
fires are discussed and will be compared with the BOCD results in Section 4.

3.2.1. MODIS and VIIRS Burned Area and Active Fire Products

The burned area products provided by MODIS (MCD64A1) and VIIRS (VNP64A1) [54]
are widely used for fire mapping. These products, designed for post-fire burned area
assessment, are generated monthly at a spatial resolution of 500 m. In contrast, rapid fire
identification is provided by active fire products, which detect thermal anomalies daily,
with a coarse 1 km resolution for MODIS [20] and a 750 m to 350 m resolution for VIIRS [21].
The burned area and active fire products from MODIS and VIIRS for the Baixo Uraim fire-
affected region are presented in Figure 13a,b. The results show that the active fire products
effectively capture the temporal aspects of the Baixo Uraim fires, with VIIRS performing
particularly well due to its higher spatial resolution compared to MODIS, resulting in
a greater density of detections. However, the burned area products appear to capture
the burn scars only partially, with the first fire being more accurately identified than the
second by both MODIS and VIIRS. Nonetheless, the temporal patterns of the mapping are
generally consistent with ground reference information. For the sake of completeness, it is
noted that burned area products become available with a minimum delay of one month
from the fire occurrence.

It is important to note that a product similar to the MODIS and VIIRS active fire alerts
is provided by the Sentinel-3 World Fire Atlas. This NRT global fire monitoring product,
developed by ESA, is based on thermal observations from the Sea and Land Surface
Temperature Radiometer (SLSTR) onboard the Sentinel-3A and Sentinel-3B satellites. It
detects active fires using thermal anomalies, primarily during nighttime when detection
conditions are optimal, and provides information such as the location (latitude, longitude),
time of detection, and fire radiative power [55]. The product features a spatial resolution
of 1 km and daily global coverage. Within this study, a detailed comparison with the
Sentinel-3 World Fire Atlas is omitted due to its particularly low performance in detecting
the Baixo Uraim fires.
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Figure 13. Comparison of fire detection results between pol-BOCD and optical products. (a) MODIS
burned area and active fire products. (b) VIIRS burned area and active fire products. (c) Sentinel-2
dNBR based on the pre-fire acquisition on 3 September 2024, and post-fire acquisitions on 2 November
and 17 November 2024. (d) pol-BOCD results depicted on both continuous and discrete time scales.
Background ©2024 PlanetScope.

3.2.2. Sentinel-2 dNBR Analysis for Fire Severity

Fire scar extent and fire severity can be assessed by computing the dNBR using
two cloud-free optical acquisitions: one before and one after the fire event [19]. For
comparison with the Sentinel-1-based BOCD results, Sentinel-2 imagery is selected for
dNBR computation. Sentinel-2, a two-satellite constellation, provides a 5-day revisit cycle
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and enables the generation of a dNBR product at a 20 m resolution, owing to the spatial
resolution of its NIR and SWIR bands. Over a four-month period covering the Baixo
Uraim fires, from 3 September 2024, to 1 January 2025, Sentinel-2 acquired 22 images.
However, only three of these are sufficiently cloud-free to compute the dNBR. Specifically,
the cloud-free pre-fire acquisition was captured on 3 September 2024, while the first cloud-
free post-fire acquisition was obtained on 2 November 2024 (Figure 5). It is important
to note that during the 2 November 2024, acquisition, the second fire was still ongoing,
meaning the dNBR computation captures the fire effects only partially. The second partially
cloud-free Sentinel-2 acquisition was obtained on 17 November 2024, allowing for the final
assessment of the burned area and fire severity. Figure 13c, displays the dNBR results,
highlighting the fire-affected areas and the corresponding severity levels for the two dNBR
computations: post-fire 1 and post-fire 2.

The dNBR results highlight pixels affected by burning, with positive values near zero
indicating low-severity fires and values approaching one signifying high-severity burns.
As expected, the fire scars from the events are clearly delineated, except for the lower-left
corner of the second fire, where an artifact in the Sentinel-2 imagery is present. Furthermore,
the first ANBR computation on 2 November exclusively captures the effects of the first burn,
which is then complemented by the second dNBR computation on 17 November 2024, to
account for the effects of the second fire. Fire severity during the burns is predominantly
low to moderate. Notably, the delineation of the burned area from the first fire in Baixo
Uraim using Sentinel-2 imagery was only possible five weeks after the event, due to the
limited availability of cloud-free acquisitions. In contrast, the burned area assessment for
the second fire was achievable two weeks after the event.

3.3. Spatial & Temporal Performance

To quantify temporal performance, Figure 14 shows the density of pol-BOCD detection
events from the time of the first burn, compared to dNBR assessments based on the
availability of cloud-free Sentinel-2 images. This illustrates the temporal continuity of
pol-BOCD detections relative to optical-based monitoring. For spatial performance, Table 1
presents the confusion matrix comparing pol-BOCD detections to Sentinel-2 dNBR data,
which is used as the reference for the first burning episode. Specifically, the dNBR reference
dataset contains 1,027,240 burned pixels and 781,962 unburned pixels. The results indicate
that 75.4% of the areas identified as burned by dNBR are also flagged by pol-BOCD.
Only 2.1% of the pol-BOCD detections do not correspond to burned areas in the dNBR
product. Meanwhile, 9.7% of burned areas in the dNBR reference are not detected by pol-
BOCD, and 12.8% of the remaining regions are consistently identified as unburned by both
sources. These metrics reflect a high level of agreement (88.2%) between the two datasets
in identifying fire-affected areas.

Table 1. Confusion matrix comparing pol-BOCD burn detections against the Sentinel-2 dNBR
reference map for the first burning episode. Values represent the percentage (%) of pixels. The matrix
shows agreement between sensors: true positives (both detect burn), false positives (pol-BOCD only),
false negatives (ANBR only), and true negatives (neither detect burn).

dNBR: Burned dNBR: Non-Burned
pol-BOCD: Burned 75.4% 2.1%
pol-BOCD: Non-burned 9.7% 12.8%

Figure 15 illustrates the complementarity of the proposed SAR-based method and
optical-based monitoring. Figure 15a shows that early pol-BOCD detections preceding the
fire events align with agricultural parcels cleared during the same period, confirming the
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correct temporal ordering of disturbance events. Figure 15b presents the final burned area
map derived from pol-BOCD detections refined using Sentinel-2 dNBR. The agricultural
parcels highlighted in red in Figure 15a, incorrectly flagged as burned by pol-BOCD, are
excluded in the combined result, demonstrating the effectiveness of the fusion in reducing
false positives.
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Figure 14. Density of pol-BOCD detection events starting from the first burn date (23 September 2024),
compared to dNBR assessments derived from clear Sentinel-2 imagery. A dashed red line marks the
approximate start of fire 2, while solid and dashed black lines show dNBR results from cloud-free
Sentinel-2 data.

pol-BOCD Dates
18/12/2024

25/09/2024

Figure 15. Complementarity of pol-BOCD and Sentine-2 dNBR. (a) pol-BOCD pre-fire detections
(confirmed by Sentinel-2 dNBR, November 17, 2024) show cleared agricultural areas prior to the fires,
with no detection of fire-impacted pixels. (b) Continuous burned area map obtained by combining
pol-BOCD and Sentinel-2 dNBR. Background ©2024 PlanetScope.

4. Discussion

This section discusses the results presented in Section 3. Specifically, the outcomes of
the different BOCD methods (single-polarization and pol/-BOCD) are compared, and the
SAR-based fire detections are evaluated against optical products, focusing on both spatial
and temporal precision.

4.1. Performance of Single-Pol and pol-BOCD Algorithms

The fire detection results obtained by applying the different BOCD methods to the
fire-affected area in Baixo Uraim, as presented in Figure 11, highlight the advantages
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of pol-BOCD over single-polarization methods. The pol-BOCD method demonstrates
more comprehensive detection capabilities, identifying a greater number of fire-affected
pixels. This improved performance is likely due to its ability to exploit the complementary
information provided by both Sentinel-1 polarimetric channels: VH, which is more sensitive
to variations in canopy volume, and VV, which is more sensitive to variations in soil
dielectric constant. Among the single-polarization methods, VH-BOCD and VV-BOCD
exhibit comparable performance, with VV-BOCD detecting slightly more fire-affected
pixels but occasionally showing a delay in flagging certain areas compared to VH-BOCD.
The nominal detection delay across all BOCD methods does not exceed three acquisitions.
While the first fire is well-detected by all methods, the second fire is only partially identified.
This is likely due to the limited availability of acquisitions between the fire event and
the onset of the rainy season, which are essential for detecting pre-rainfall backscatter
reductions. The backscatter analysis in Figure 6 reveals no evidence of VV backscatter
increases, suggesting that double-bounce sensitivity did not play a role. Consequently,
the change detection relied on backscatter decreases for both VH and VV polarimetric
channels. Although HH polarization data is not available, its inclusion is anticipated to
reveal double-bounce effects, offering additional insights into the detected changes.

The fire detection results per land cover type, shown in Figure 12, provide further
context, showing that pixels highlighted in blue/purple and vivid yellow within the
primary and secondary forests are detected by the BOCD algorithms during land clearing,
which precedes the fire events. This outcome reflects the change detection nature of BOCD,
which identifies any significant alterations in the landscape without differentiating between
land clearing and fires. In such cases, the detected change corresponds to the clearing event
that occurred first. Similar results regarding the potential misclassifications of changes
unrelated to fires when using C-band SAR data are consistent with the findings in [33].
These outcomes suggest a strong potential for integrating BOCD methods with active
fire alerts and optical-based assessments to enhance their capability in distinguishing
fire-induced forest loss.

Overall, BOCD methods demonstrate significant promise for continuous monitoring
of fire-induced forest loss, offering robust spatial and temporal performance in detecting
fire-affected areas in Baixo Uraim. This is particularly noteworthy given the limited dataset
of six Sentinel-1 images with a 12-day revisit interval. Restoring the nominal 6-day revisit
cycle of the Sentinel-1 constellation is expected to further improve the performance of
BOCD methods both spatially and temporally.

4.2. Comparing SAR-Based and Optical Detection Methods

The results depicted in Figure 13a,b, illustrate the rapid capability of MODIS and
VIIRS sensors to detect active fires, making them valuable for triggering timely mitigation
activities. However, these active fire products lack the spatial resolution necessary to fully
assess the extent of the burned area. Conversely, while the burned area products offer
better spatial resolution, their effectiveness is constrained by limited temporal resolution,
as optical sensors are highly susceptible to cloud cover. The burn scar in Baixo Uraim is
only partially detected, likely due to the modest fire severity—particularly for the second
fire—and the coarse spatial resolution of the MODIS and VIIRS products. Overall, VIIRS
demonstrates superior detection capabilities compared to MODIS. Notably, the temporal
accuracy of VIIRS detections aligns well with ground reference data, with its active fire
results effectively capturing the timing of both fire events.

Insights into the comparison between BOCD methods and the MODIS/ VIIRS active
fire and burned area products can be drawn by examining their relative strengths. BOCD
methods are tailored for detecting fire-induced forest loss in NRT, addressing the cloud
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cover sensitivity of optical sensors that can cause delays in burned area detection, as seen
with MODIS and VIIRS. However, Sentinel-1-based BOCD methods do not match the daily
temporal resolution of MODIS and VIIRS active fire alerts. Instead, BOCD represents an
intermediate solution between active fire alerts and burned area products. It delivers faster,
continuously improving, and spatially precise burned area assessments by leveraging
Sentinel-1 imagery, which offers significantly finer spatial resolution compared to MODIS
and VIIRS. This suggests potential for integrating BOCD with daily active fire alerts.

The SAR-based BOCD fire detections can be compared with fire assessments derived
from dNBR computations using Sentinel-2 optical imagery. Figure 13c illustrates the burned
area assessment for the Baixo Uraim fires, showing a clear delineation of the first fire event,
although with a five-week delay caused by persistent cloud cover that hindered Sentinel-2
acquisitions (Figure 5). Despite this delay, the burned area associated with the first fire is
consistent with ground reference data, both in terms of extent and expected fire severity. In
contrast, the delineation of the second burn scar was achieved relatively quickly, with only a
two-week delay, due to the availability of a moderately cloudy Sentinel-2 image shortly after
the second fire ended. Despite this “fortunate” outcome, the low availability of cloud-free
Sentinel-2 images during the fire period, as shown in Figure 5, highlights the challenges
posed by the high frequency of cloud cover during the transition from the dry to wet
season. Although rain had not yet begun, the increasing cloud cover significantly reduced
the availability of clear optical images. Consequently, burned area assessments relying
solely on optical imagery can be delayed by several months or even become impossible.
This is because fires are often extinguished by the first rains, and their maximum extent is
hidden by the cloud cover typical of the early rainy season. When cloud-free images are
available only during the following dry season—at least five months later—vegetation has
typically regrown, stimulated by the fertilizing effect of ash, which obscures burn scars and
leads to underestimation. In contrast, SAR imagery, which is not impacted by cloud cover,
is generally more effective for continuous fire-induced forest loss detection as shown in
Figure 14. This finding is also consistent with previous research [32-34].

Figure 13 shows the overall comparison between the top-performing SAR-based BOCD
method (pol-BOCD) and all optical products considered in this study. From the comparison,
it is evident that both pol-BOCD and Sentinel-2 dNBR provide superior spatial precision in
delineating burned scars compared to MODIS and VIIRS burned area products. However,
the VIIRS active fires alerts effectively capture the temporal aspects of the Baixo Uraim fires.
A spatial comparison between pol-BOCD and Sentinel-2 dNBR shows a strong agreement
in burned area delineation, further confirmed by the spatial performance metrics reported
in Table 1. Nonetheless, pol-BOCD detects changes regardless of their nature, including
those that occurred before the fires. Figure 15a, shows that the pol-BOCD detections prior
to the fires correspond to agricultural parcels cleared during that period, thus confirming
the temporality of subsequent fire-related detections.

From a temporal perspective, pol-BOCD provides a continuous burned area map, with
each pixel associated with a detection date typically identified within a three-acquisition
delay. In contrast, Sentinel-2 dNBR offers a burn severity map that requires the availability
of two cloud-free images (one pre-fire and one post-fire) for computation. Due to the
random nature of cloud cover and its high frequency in tropical regions, the detection
delay associated with dANBR computation is unpredictable. While some fires, such as fire
2 in Baixo Uraim, may be detected early, others, like fire 1, may take several weeks or
months to be identified. In some cases, fires may remain undetected if persistent rainfall
obscures the burn effects for an extended period, ultimately leading to their complete
disappearance. These findings highlight the advantages of SAR-based BOCD methods
for the continuous detection of fire-induced forest loss, as they are unaffected by cloud
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cover. Furthermore, optical imagery, while potentially limited by delayed availability due
to cloud cover, provides high precision and can play a crucial role in validating and refining
SAR-based detections when it becomes accessible (Figure 15b), serving as a valuable
complementary resource, as also noted in [32].

4.3. Limitations of pol-BOCD

The performance of pol-BOCD is subject to certain limitations, primarily stemming
from characteristics of the radar backscatter signal and environmental conditions that
affect SAR data acquisition. Omissions may occur when the backscatter does not exhibit a
sufficient change following a disturbance. This can happen, for instance, when the fire does
not significantly alter the vegetation structure or soil moisture in a way that is detectable
in the C-band signal. Additionally, intermediate fire stages—such as low-intensity or
patchy burns—may not produce strong backscatter variations, leading to undetected
events. Another contributing factor is heavy rainfall immediately after a fire event, which
can increase surface moisture and saturate the backscatter, thereby masking fire-related
changes. In contrast, the algorithm is inherently robust to seasonal variation. Its foundation
on a hidden Markov model enables it to adapt to regular seasonal fluctuations, while
ensuring that only temporally consistent changes—persisting across multiple consecutive
observations—result in a detection.

Temporal resolution is another potential limitation. Although this study used data
from Sentinel-1A with a 12-day revisit, the restoration of a 6-day revisit interval with
the operation of both Sentinel-1A and 1C is expected to enhance detection capabilities.
Finally, a fundamental constraint of SAR-based approaches is the limited ability to dis-
tinguish the type of disturbance. Unlike optical imagery, SAR data generally cannot
differentiate between causes such as clear-cutting and fire, as both can produce similar
backscatter signatures.

5. Conclusions

This study evaluated the potential of SAR-based BOCD methods (single- and dual-
polarization) for NRT detection of fire-related vegetation loss in forested areas, with a
comparison to the spatial and temporal performance of optical imagery-based approaches.
Although the analysis focused on vegetation loss following fire events, prior land-use
changes—such as logging and forest fragmentation—likely increased landscape flammabil-
ity, facilitating fire spread. These interacting factors underscore the complexity of attribut-
ing causality in fire-related forest loss across the Amazon. Using C-band Sentinel-1 SAR
data, BOCD methods proved to be a robust solution for the continuous monitoring of fire-
induced forest loss, as validated by field data collected in Baixo Uraim (Paragominas), Brazil.
Notably, pol-BOCD, which leverages both co- and cross-polarized Sentinel-1 channels, pro-
duced results that were spatially consistent with Sentinel-2 burned area assessments.

The findings confirmed that while optical imagery provides precise burned scar
delineation, its utility is limited by cloud cover, particularly during seasonal transitions
when optical data availability decreases. This limitation can result in delayed detections, as
observed during the first fire in Baixo Uraim, or even missed detections during extended
periods of rainfall. In contrast, SAR imagery, being unaffected by cloud cover, generally
enables continuous monitoring, even under challenging conditions. The Baixo Uraim fires
were documented using a dataset comprising only six Sentinel-1A images, acquired with a
12-day revisit cycle due to the loss of Sentinel-1B in late 2021. Despite these limitations, fire-
induced forest loss was detected within a three-acquisition delay, demonstrating promising
spatial precision. The restoration of the 6-day revisit cycle of Sentinel-1, following the
launch of Sentinel-1C, is expected to enhance pol-BOCD detection performance.
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Ultimately, the results suggested that SAR-based pol-BOCD could complement op-
tical fire detection products, providing a more reliable tool for NRT monitoring of fire-
induced forest loss. A key recommendation for future research is to integrate SAR and
optical data within a multi-sensor framework, which would enhance temporal continu-
ity and improve the characterization of fire events, enabling more reliable and timely
operational monitoring.
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