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A B S T R A C T

Understanding the association between agroecosystem factors across multiple scales is essential for sustaining 
production in agroecosystems under disease pressure. Cocoa swollen shoot virus (CSSV) is a devastating and 
currently uncontrollable epidemic, posing the greatest threat to cocoa production in West Africa. The present 
study investigates the associations between CSSV incidence, meteorologic conditions, soil properties, agrofor
estry variables and landscape composition at different scales, using Self-Organizing Maps, an analysis method 
that handles nonlinearity and complex variable interactions. This study was based on data collected between 
2021 and 2023 in 150 cocoa plots representing diverse cocoa-growing conditions in Côte d’Ivoire, which were 
clustered according to factor similarity. We found that low disease incidence was primarily associated with more 
frequent events of extreme precipitation and lower variation in temperature. On the contrary, a high incidence of 
CSSV was linked to a higher density of trees hosting the virus. We drew on existing knowledge of disease 
epidemiology, mealybug vector biology and cocoa tree physiology to interpret these results. Additionally, plots 
with low disease incidence were predominantly surrounded by non-host land, suggesting that large-scale man
agement strategies could help mitigate CSSV incidence by promoting non-host land use at the landscape level.

1. Introduction

Extensive research on epidemic drivers in agroecosystems highlights 
global concerns regarding pathogen emergence and disease severity in 
agriculture (Jones, 2009). Sustainable strategies are needed to maintain 
and enhance agroecosystem services including crop production and 
pathogen control (Liu et al., 2022; Vega et al., 2023). Epidemic factors 
act through various ecological processes—biological, physical, and 
chemical—within agroecosystems, including environmental conditions 
(Szczepaniec and Finke, 2019) and agricultural practices (Gurr et al., 
2017). These factors also operate at multiple spatial scales within the 
agricultural landscape (Angelella et al., 2016). At all scales, epidemic 
factors display a crucial role in shaping the complex interactions be
tween pathogens and cultivated plants (Plantegenest et al., 2007; Prasad 

et al., 2022; Zahra et al., 2023). In vector-borne diseases, these factors 
also influence insect vectors, further complicating epidemiological 
processes (Islam et al., 2020).

Environmental factors such as meteorological conditions can directly 
influence epidemics in agroecosystems by influencing pathogen spread, 
abundance and pathogenicity. Temperature and humidity, for instance, 
can directly regulate pathogen replication and dissemination, up to an 
optimal threshold, through their direct effects on cellular mechanisms 
(Amari et al., 2021; Glasa et al., 2003). Meteorological conditions also 
indirectly impact vector-borne disease epidemics by affecting vector 
population dynamics, such as abundance and dispersion, notably 
through their effects on survival and flight activity (Morsello and Ken
nedy, 2009). Moreover, drought, heat, and extreme light conditions also 
modulate plant responses to pathogens, often weakening plant defenses 
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(Mittler and Blumwald, 2010).
Soil properties, including physical, chemical and biological charac

teristics, can also play a crucial role in plant health and susceptibility to 
diseases (Ghorbani et al., 2008). Combined with meteorological condi
tions, they can indirectly influence pathogen-host interactions by 
inducing abiotic stress that weakens plant defences increasing plants 
susceptibility to infections (Atkinson and Urwin, 2012). Soil organic 
matter enhances water and nutrient retention (Banwart et al., 2014) 
while soil structure controls water flow, nutrients, oxygenation and root 
development (Bronick and Lal, 2005), and soil pH level regulates 
nutrient availability (Barrow and Hartemink, 2023), ultimately 
impacting plant resilience to disease.

Agricultural practices can directly affect pathogens or modify envi
ronmental conditions, either benefiting or hindering their development. 
In agroforestry systems, for example, shade trees mitigate air and soil 
extreme temperatures through light interception (Merle et al., 2022). 
This reduces plant physiological stress, generally making crops less 
susceptible to disease (Schroth et al., 2000). Furthermore, neighbouring 
plants in agroforestry systems can serve as alternative hosts for patho
gens, provide habitats for vectors, or, conversely, support natural en
emies of vectors, thereby contributing to disease natural regulation in 
crops (Avelino et al., 2023). Enclosing crops with non-host plants has 
been explored as a strategy to reduce vector-borne virus transmission 
(Hooks and Fereres, 2006), as non-host species serve as physical barriers 
that limit vector dispersion and act as pathogen sinks by capturing them 
when vectors land or probe, particularly in the case of non-persistent 
transmission (Fereres, 2000). In addition, depending on their composi
tion and structure, landscapes surrounding crops can act as barriers over 
considerable distances, with similar biological processes involved. These 
landscapes typically form a mosaic of habitats that interact, providing a 
wide range of essential ecosystem services such as pest and disease 
regulation (Power, 2010; Vialatte et al., 2019; Zhang et al., 2007). 
Indeed, landscapes with diversified composition can help dilute path
ogen inoculum, depending on land connectivity, with some areas 
serving as reservoirs while others act as pathogen sinks (Papaïx et al., 
2014). The spatial arrangement of these habitats can either facilitate or 
hinder pathogen transmission by shaping vector movement through 
corridors or barriers (Tischendorf and Fahrig, 2000). As landscapes 
evolve, new conditions may emerge that promote vector establishment, 
potentially leading to new outbreaks (Meentemeyer et al., 2012).

The cocoa swollen shoot virus (CSSV) disease is the main viral threat 
to cocoa production in West Africa (Ploetz, 2016). Infected cocoa trees 
(Theobroma cacao L.) exhibit severe symptoms, including leaf chlorosis, 
shoot swelling, and substantial reductions in pod and bean production 
(Ofori et al., 2022). Typically, pod production declines sharply within 
three years of infection, ultimately leading to tree mortality (Crowdy 
and Posnette, 1947). CSSV is transmitted by at least fourteen mealybug 
species (Koffi et al., 2024 in press) which can acquire the virus within 
hours through feeding and retain it for a few days on their stylets (Obok 
et al., 2018; Roivainen, 1976). Mealybug dispersal mainly occurs locally 
through canopy migration, particularly via mobile first-instar nymphs 
engaged in active foraging, while older nymphs and adults are largely 
sedentary (Cornwell, 1958). Wind-borne dispersal is also possible but 
generally limited to localized spread under cocoa canopy (Cornwell, 
1960) or further via tall host trees overhanging or surrounding cocoa 
plots, creating elevated pathways for extended dispersion. Moreover, 
human activities may facilitate broader dispersal by moving 
CSSV-infected planting materials, such as seeds (Quainoo et al., 2008) or 
seedlings (Assiri et al., 2009).

Current eradication strategies for CSSV rely on the roguing of 
symptomatic trees in disease outbreaks, including adjacent asymptom
atic trees that may be infected (Thresh and Owusu, 1986). However, this 
approach is not widely adopted by cocoa farmers, as infected trees 
remain a source of income, despite decreasing production (Gyamera 
et al., 2023). Moreover, no curative treatment is available to date. Not 
only do farmers often fail to associate the disease with its mealybug 

vectors (Reyes et al., under review), but insecticides are also largely 
ineffective against these pests. The latter are protected by their waxy 
layer, by shelters built by tending ants or not accessible in crevices of 
wood (Hanna et al., 1955). Additionally, breeding programs for CSSV 
resistance have achieved only partial tolerance (Gyamera et al., 2023). 
However, planting CSSV non-host species around cocoa crops has shown 
promise in CSSV containment strategy in Togo (Oro et al., 2012), Ghana 
(Domfeh et al., 2016) and Côte d’Ivoire (Babin et al., 2023). In addition, 
agroforestry-based preventive strategies, particularly the integration of 
shade trees, have gained attention for their potential to mitigate CSSV 
severity compared to full-sun plots, especially when plot shade cover is 
around 50 % (Andres et al., 2018). Shade tree buffer temperature and 
humidity fluctuations (Abdulai et al., 2018), especially in the face of 
extreme climatic events (Niether et al., 2018). These conditions benefit 
cocoa physiology (Asitoakor et al., 2022; Mensah et al., 2022) and 
support mealybug predators and parasitoids, enhancing natural pest 
regulation (Bigger, 1981). However, certain tree species commonly 
found within cocoa plots, such as Cola chlamydantha K. Schum. (Mal
vaceae) or Ceiba pentandra (L.) Gaertn. (Bombacaceae), are alternative 
hosts for CSSV (Posnette et al., 1950; Tinsley, 1971), although their 
specific role in CSSV dynamics remains unquantified.

To conclude, CSSV remains uncontrolled and continues to spread 
rapidly across West Africa, highlighting the urgent need to identify the 
key epidemic drivers in order to support more effective management 
strategies. Previous studies have primarily focused on microclimate and 
local soil properties as factors affecting the vector biology or individual 
cocoa tree response to infection. As emphasized by Ameyaw et al. 
(2024), little is known about how broader agroecological conditions, 
such as meteorological factors, soil characteristics, the presence of 
alternative host species, and landscape context, shape disease intensity 
at larger spatial scales. We hypothesize that environmental conditions 
unfavourable to cocoa health or conducive to vector development 
contribute to increased disease intensity. We also hypothesize that the 
presence of alternative host trees of the virus within agroforestry sys
tems may increase disease spread particularly at long distance, and that 
the composition of the surrounding landscape plays a significant role in 
disease progression. Finally, we propose that these factors operate in 
combination, leading to the emergence of distinct cocoa plantation 
profiles with varying levels of vulnerability to the disease. To test these 
hypotheses, we applied unsupervised Self-Organizing Maps (Kohonen, 
1982), a method widely used in ecological and epidemiological research 
for identifying complex, multidimensional patterns (Chon, 2011). By 
offering new insights into the epidemiology of CSSV, our study aims to 
support the development of more targeted and sustainable disease 
management strategies in Côte d’Ivoire.

2. Materials and methods

2.1. Studied cocoa production areas

The present study is based on data collected in smallholder cocoa 
plots selected across the cocoa-growing regions of Côte d’Ivoire. An 
initial survey identified 15 cocoa production areas (Fig. 1), chosen to 
capture a diverse range of climatic conditions (temperature and rain
fall), vegetation types and soil properties, ensuring comprehensive 
representation of the country’s cocoa-growing conditions (N’guessan 
et al., 2017). This also accounted for historical westward expansion of 
cocoa cultivation over the past seven decades (Ruf et al., 2015), which 
has led to considerable variation in technical practices, social and eco
nomic dynamics. In a second phase, 10 plots were selected in each cocoa 
production area to capture the diversity of cocoa growing conditions 
across the landscape. The structural complexity of the vegetation was 
considered within cocoa production area. Selected plots ranged from 
full-sun monocultures to complex agroforestry systems with varying 
levels of shade provided by associated tree species (details in Konan 
et al., 2023). Plots also varied in age, ranging from recently established 
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plantations of 4 years to old plantations up to 70 years, with an average 
plot age of 20 years across all selected plots. Within the same cocoa 
production area, the average age range of plots was 28 years. Differences 
in age between cocoa production area were not statistically significant, 
except for Biankouma, which had significantly younger plots of 9 years 
old in average compared to Gueyo, Meagui and San-Pédro (Dunn’s test 
with Bonferroni correction, p < 0.05). Plot varied also in productivity, 
from low yielding, averaging in minimum 182 kg/ha, to highly pro
ductive plots, averaging in maximum 1862 kg/ha in cocoa production 
area. Moreover, plot sizes ranged from 0.3 to 5 ha, with a mean of 1.6 ha 
across all selected plots, and did not differ significantly between cocoa 
production area (Kruskal-Wallis rank sum test, p = 0.2). The high ge
netic diversity of cocoa (Guiraud et al., 2018) was not accounted for, as 
cocoa genotypes recombination remains largely uncontrolled due to the 
widespread use of planting material derived from informal, artisanal 
nurseries (Assiri et al., 2016). Geographic coordinates for each of the 
150 plots were recorded using a GPS device (Garmin GPSMAP 64 s) to 
ensure precise georeferencing of cocoa plots.

2.2. CSSV disease assessment

The CSSV disease intensity was assessed from May 2021 to April 
2023 across the 150 (15 studied cocoa production areas x 10 plots) 
selected plots (Fig. 1, Fig. 3A). A plot was classified as infected if at least 
one cocoa tree exhibited CSSV symptoms, such as red banding, leaf 
chlorosis, and shoot swelling (Muller, 2016). Plots and outbreak zones 
were delineated using GPS to determine their total area. Outbreak zones 
included a 3-meter buffer around symptomatic trees to account for po
tential asymptomatic infections (Muller et al., 2001). CSSV incidence for 
each plot was calculated and defined as the total area of all outbreaks, 
including buffer zones, divided by the total plot area.

2.3. Meteorological conditions

We used meteorological data from AgERA5, provided by the 
Copernicus Climate Change Service and publicly accessible (Boogaard 
et al., 2020). This dataset, based on the fifth generation of ECMWF 

Fig. 1. Studied cocoa production areas distribution. The map illustrates the distribution of the 15 studied cocoa production areas (1: Aboisso, 2: Adzopé, 3: 
Agnibilékrou, 4: Azaguié, 5: Biankouma, 6: Blé, 7: Bonon, 8: Fresco, 9: Grand-Béréby, 10: Guéyo, 11: Guibéroua, 12: Guiglo, 13: Méagui, 14: San-Pédro, 15: Soubré), 
within which ten cocoa plots were selected. The CSSV disease incidence was assessed across different areas over multiple years, represented on the map by distinct 
symbols. The background represents the percentage of land dedicated to cocoa cultivation by region (Assiri et al., 2016), although the map does not necessarily 
delineate officially recognized national boundaries.
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atmospheric reanalyses, provides meteorological variables at a spatial 
resolution of 0.1◦ × 0.1◦ (~10 km x 10 km) and a daily temporal reso
lution. The parameters considered include wind speed at 10 m above the 
ground level (m/s), temperature at 2 m above the ground surface (◦C), 
precipitation flux (mm/day), and relative humidity at 15:00 h local time 
at 2 m above ground level (as a percentage of air water vapor 
saturation).

Given the complex interactions between meteorological conditions, 
plants physiology, vectors dynamics and CSSV incidence, meteorolog
ical data were analysed across multiple time windows using various 
statistical aggregations (Van de Pol et al., 2016). The statistical aggre
gations included mean, median, minimum, maximum and variance, 
capturing different biological processes, such as the effect of central 
tendencies in data distribution (Cao, 2021) or extreme weather events 
(Bailey and Van de Pol, 2016). Meteorological data were analysed over a 
five-year period (January 2018–December 2022) to assess both short- 
and medium-term climate influences on disease incidence (Fig. 3A). 
Seasonal variations were also considered by distinguishing four distinct 
periods: the major dry season (December–April), the minor dry season 
(August–September), the major rainy season (May–July) and the minor 
rainy season (October–November). A total of 596 meteorological vari
ables were compiled for the 150 plots.

2.4. Soil quality indicators at the plot scale

To evaluate soil quality, we utilized a minimal set of soil quality 
indicators defined by Rousseau et al. (2012), based on scientific litera
ture on to cocoa-based agroforestry systems and old-growth forests. Soil 
data were retrieved from SoilGrids (ISRIC, 2019) at a spatial resolution 
of 250 m (Hengl et al., 2017). The selected indicators included bulk 
density (kg/m3), soil pH and soil organic carbon content (g/kg) (Hengl 
et al., 2015). These global soil properties, derived from machine 
learning models and compiled between 2008 and 2014, are assumed to 
have remained largely stable and are thus considered representative of 
current conditions (Fig. 3 A).

2.5. Plot-scaled agroforestry characteristics

Between March 2021 and November 2022 (Fig. 3 A), a forest in
ventory was conducted to document trees associated with cocoa plots, 
with a diameter at breast height (DBH) ≥ 10 cm (Kouassi et al., 2023). 
Stand basal area (m²/ ha) was used as standard proxy for evaluating plot 
shade levels (Bagny Beilhe et al., 2020; Mitchell and Popovich, 1997). 
Stand basal area ranges from 0.2 m²/ha in full-sun cocoa plots to 
26 m²/ha in shaded cocoa systems. Within cocoa production areas, the 
standard deviation of stand basal area varies from 1 to 8 m²/ha, 
reflecting both intra- and inter-area variability. Additionally, a 
literature-based list of 20 tree species known as alternative host of CSSV 
was compiled (Texte A1). Host tree density was assessed using the same 
proxy, defined as host tree basal area (m²/ha) and goes from 0 to 
7 m2/ha.

2.6. Land cover of Côte d’Ivoire

The land cover of Côte d’Ivoire was mapped for 2017 and 2020, 
corresponding to four and one year prior the disease assessment, 
respectively (Fig. 3 A). Both maps were generated by the Centre 
d′Information Géographique et du Numérique (CIGN) of the Bureau 
National d’Etudes Techniques et de Développement (BNETD) using 
Sentinel 2 satellite images. The 2020 map is publicly available via the 
Africa GeoPortal (BNETD-CIGN, 2023), while the 2017 map is available 
upon request. As these maps used two different nomenclatures, a ho
mogenized one was described in Tables A2 and A3. We grouped land 
cover types into four categories based on their potential to host CSSV: 
“non-cocoa” includes lands and crops that are not likely to host CSSV, 
but may be suitable for mealybug vectors, which are generally 

polyphagous (Strickland, 1951). The “natural vegetation” groups lands 
that could include alternative hosts of CSSV and serve as habitats for 
mealybug vectors. “Others” encompass lands that are unsuitable envi
ronments for both CSSV and mealybugs. Finally, “cocoa” includes cocoa 
lands that can become infected and serve as the primary host and 
reservoir of the virus. However, the classification in 2017 does not 
distinguish between cocoa and coffee and the cocoa category was named 
“cocoa/coffee” in 2017 but “cocoa” in 2020.

The landscape composition surrounding the 150 plots was assessed 
by calculating the relative proportions of the different land cover cate
gories within varying buffer zones. Buffer sizes were selected based on 
current knowledge of CSSV transmission mechanisms. A buffer zone 
with a 50-meter radius was applied to represent local disease trans
mission, primarily through the short-distance movement of infectious 
mealybug vectors within the cocoa canopy or via wind transport within 
cocoa plots (Cornwell, 1960, 1958). Two larger buffer zones, with 
300-meters and 1000-meters radius, were considered to account for the 
broader spread of CSSV, partly facilitated by human activities such as 
the movement of infected planting materials. Although wind-driven 
mealybug dispersal is unlikely beyond 50 meters within a cocoa plot, 
long-distance virus spread via mealybugs remains possible when tall 
host trees overhang or surround cocoa plots, creating elevated pathways 
for extended dispersion. Landscape composition within buffers zones 
were extracted using the exactextractr (Baston et al., 2023), raster 
(Hijmans et al., 2025), and sf (Pebesma, 2018) packages. In both 2017 
and 2020, the landscape was predominantly composed of “cocoa” and 
“non-cocoa”, with lower proportions of “natural vegetation” and 
“others”, although some outliers were observed (Fig. 2). On average, 
“cocoa/coffee” was more present in 2017, while “non-cocoa” became 
the dominant land cover in 2020 across all spatial scales. In 2017, 
“cocoa/coffee” and “non-cocoa” exhibited greater differences in mean 
values and higher variability across spatial scales compared to 2020 
(Fig. 2). However, in 2020, variation increased progressively from larger 
to smaller spatial scales.

2.7. Self-Organizing Map

The self-organizing map (SOM) is an automated data analysis 
method widely used for clustering and data exploration (Kohonen, 
2013). It is particularly effective in handling nonlinearity, complex in
teractions, and strong correlations between variables (Koudenoukpo 
et al., 2021; Mendoza-Carranza et al., 2018; Stephan et al., 2022), while 
also handling high-dimensional data (Delgado et al., 2015; Wirth et al., 
2011). These features make SOM particularly suitable for the analysis of 
complex ecological datasets. Network training was performed using the 
unsupervised som function from the kohonen package (Wehrens and 
Buydens, 2007). The algorithm performs a non-linear projection of 
multidimensional data, mapping input vectors onto a two-dimensional 
grid of nodes, each characterized by prototype vectors of the same 
dimension as the input vectors (Fig. 3B). The data were initially centred 
and scaled to ensure that variables with different units did not dispro
portionately influence the distribution of input vectors across the nodes 
(Stephan et al., 2022). During training, input vectors are fed into the 
network, and the ‘best-matching unit’, defined as the prototype vector 
closest to the input vector, is identified. Moreover, the network 
self-organizes by adjusting a node’s prototype vector, and its neighbours 
within a defined radius to better match the input vector (Chon, 2011). At 
the end of the training, each node is thus characterized by a prototype 
vector that represents multiple input vectors. SOM can be combined 
with clustering methods to group prototype vectors, enabling quanti
tative analysis of both the map and the underlying data (Vesanto and 
Alhoniemi, 2000). In this study, we refer to this approach as the 
SOM-hclust algorithm. Hierarchical cluster analysis (hclust) was per
formed using Ward’s aggregation criterion, which minimizes total 
within-cluster variance, with the hclust function from the stats package 
(R Core Team, 2024). The number of clusters was determined based on 
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the break in slope of the dendrogram and the subsequent jump in hier
archy, indicating distinct cluster separation (Fig. 3B), using the awe
SOMscreeplot function from the aweSOM package (Boelaert et al., 2022). 
Dendrograms were segmented using the cutree function of the dendex
tend package (Galili, 2015).

2.8. Clustering based on agroecosystem factors and CSSV incidence

Cocoa plot clusters were identified by the SOM-hclust algorithm 
(Fig. 3B) based on 5 categories of standardized variables: CSSV inci
dence, meteorological conditions, soil properties, agroforestry and 
landscape composition and parameters described in Table A1. The 

selection of variables was guided by biological hypotheses: 596 meteo
rological variables, 4 soil property variables, 2 variables describing 
shade conditions and host tree presence, 24 variables representing 
landscape composition in 2017 and 2020 (at 50, 300, and 1000-meters 
of radius), and one variable characterizing CSSV incidence in each plot. 
Since all variables are equally weighted during SOM training, it was 
crucial to maintain a balanced number across categories to prevent 
biases in cocoa plot typology. Particular attention was given to selecting 
meteorological variables, which had a higher spatial resolution than the 
other variables. Due to this higher resolution, multiple cocoa plots 
shared similar values for wind speed, temperature, precipitation, and 
humidity, introducing a spatial structure among the plots that could bias 

Fig. 2. Boxplots of land cover category proportion across spatial scales. Boxplots illustrate the proportions of four land cover categories (“cocoa”, “non-cocoa”, 
“natural vegetation”, “others”) across three buffer sizes (50 m, 300 m and 1000 m radius) for two years (2017 in grey and 2020 in white). Boxplots display the 
median, interquartile range, minimum and maximum values, with outliers represented as points beyond the whiskers.
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Fig. 3. Overview of data collection timing and analysis A) Timeline of study data: boxes represent variables within specific time windows; double arrows indicate 
variables that remained constant throughout the disease assessment period; crosses denote variables with a one-year timeframe. B) Methodological summary: A self- 
organizing map and hierarchical clustering defined typologies of cocoa plots. A meteorological typology identified the most discriminative variables among 596 
related to wind speed, humidity, temperature, and precipitation. Similarly, a landscape typology was based on 24 variables describing landscape composition in 2017 
and 2020 across various buffer sizes. Finally, a cocoa plot typology was created and analysed using the selected variables.
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the cocoa plots profiling process. For this reason, the number of mete
orological and landscape variables was reduced by selecting only those 
most representative of the meteorological and landscape typology of the 
studied area.

2.9. Variable selection

Meteorological and landscape typologies were identified by the 
SOM-hclust algorithm, with parameters detailed in Table A1. Since 
variable importance was not directly given in the unsupervised SOM- 
hclust process, a post-hoc analysis was necessary to estimate the rela
tive contribution of variables. This estimation was achieved by training 
a supervised model on the typology, using Random Forest as the selec
tion method (Gregorutti et al., 2017) with the randomForest and impor
tance functions from the randomForest package (Liaw and Wiener, 2002). 
However, Random Forest is sensitive to correlations since random var
iables permutations can influence importance criteria (Toloşi and Len
gauer, 2011). To address this issue, variables were screened using 
Recursive Feature Elimination (RFE) (Fig. 3B). As described by Gre
gorutti et al. (2017), RFE is a backward selection algorithm that itera
tively removes the least important variable in the Random Forest 
classification. Its robustness to correlation stems from its approach to 
updating variable importance measures. The Mean Decrease Accuracy 
(MDA) was recommended to assess variable importance, as outlined by 
Gregorutti et al. (2017). This metric evaluates the impact of excluding a 
variable on the model’s overall accuracy. A total of 5000 RFEs were 
conducted, and the mean rank was computed over these iterations to 
ensure a robust selection process. The top-ranked variables were 
considered the most important to be selected. If two variables shared the 
same biological significance and had a Person correlation exceeding 
70 % (Bhatt et al., 2013), then only one was selected. Correlations were 
computed and visualized using the chart.Correlation function from the 
PerformanceAnalytics package (Peterson et al., 2024). To ensure balance 
across variable categories, selection was restricted to three meteoro
logical variables and three landscape variables.

2.10. Analysis of cocoa plot clusters

First, we analysed the distribution of all selected variables across 
cocoa plot clusters generated by the SOM-hclust algorithm using box
plots. Variables in different clusters were found to be non-normally 
distributed and did not exhibit equal variances. Consequently, non- 
parametric tests were used to compare variables distributions across 
clusters (Blair and Higgins, 1980). Pairwise comparisons between clus
ters were conducted using the Wilcoxon rank sum test (Wilcoxon, 1945) 

with the pairwise.wilcox.test function from the stats package. The 
Bonferroni correction was applied to the Wilcoxon tests due to the 
multiple tests being conducted (N = 180, alpha = 3e-04) (Armstrong, 
2014). Given that cocoa plots are geospatially referenced, we mapped 
the plots according to their cluster assignments.

3. Results

3.1. Variable selection

The analysis of landscape composition variables led to their classi
fication into six distinct groups, derived from 24 initial variables. 
Through the Recursive Feature Elimination (RFE) process, the most 
representative variables were the areas occupied by “cocoa (cocoa/ 
coffee)” and “non-cocoa” in 2017 and 2020 across multiple spatial 
scales. These variables exhibited higher mean ranks (greater than 10) 
compared to “natural vegetation” or “others” (Fig. 4A). Among the top 
three selected variables, the most frequently chosen were “cocoa/cof
fee” in 2017 at the 50-meters radius, as well as “cocoa” in 2020 at both 
the 50-meters and the 1000-meters radius. Since the correlation co
efficients among variables remained below 0.7, the top three selected 
variables were retained. The selected variables were strongly correlated 
with their respective land category (r > 0.7, p < 0.001) and negatively 
correlated with “non-cocoa” at different scales (r < -0.7, p < 0.001), 
supporting similar biological meaning.

Similarly, meteorological variables were classified into six groups, 
derived from an initial set of 596 variables. Using the RFE selection 
process, temperature and precipitation variables were identified as the 
most representative of these groups (Fig. 4B). Among the representative 
variables (mean rank greater than 10), the most frequently chosen were 
the temperature range and variance during the short rainy season of 
2020. Due to their strong correlation (r = 0.96, p < 0.001), these two 
variables convey similar information on thermal variability, reflecting 
low temperature fluctuations during this period. Since the “range” 
variable demonstrated better classification performance, it was retained. 
Following a similar approach, the mean precipitation during the short 
rainy season of 2019 was preferred over the median precipitation during 
the main rainy season of 2020 (r = 0.84, p < 0.001). Likewise, the 
maximum precipitation during the short dry season of 2019 were 
selected over the precipitation range (r = 1, p < 0.001), as the minimum 
precipitation value in this case was always zero.

3.2. 3Description of cocoa plot clusters

The SOM-hclust algorithm classified cocoa plots into six distinct 

Fig. 4. Variable selection based on average ranks over 5000 iterations of Recursive Feature Elimination (RFE). RFE was applied to typologies generated by the SOM- 
hclust algorithm on 150 plots representing cocoa-growing conditions in Côte d’Ivoire. The top ten variables are displayed, with the first rank representing the most 
important variable. Selection was performed separately for A) landscape composition variables and B) meteorological variables. The top three selected variables are 
highlighted with enclosing lines. High correlations (above 70 %) between selected variables and other variables are indicated by symbols.
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clusters (1− 6), based on agroecosystem factors (Fig. 5). Cluster 1 con
sists of 9 plots, Cluster 2 of 10, Cluster 3 of 52, Cluster 4 of 59, Cluster 5 
of 14, and Cluster 6 of 6 plots. A significant trend was observed from 
Cluster 3 to Cluster 6, characterized by an increase in the mean inci
dence of CSSV disease from 6 % to 44 %, an increase in temperature 
ranges from 2◦C to 3◦C, and an increase in the proportion of land 
composed of “cocoa/coffee” in 2017 from 50 % to 100 %. Conversely, 
maximum precipitation decreased along this gradient, from 50 mm/day 
to 24 mm/day. No significant trends were detected from Cluster 3 to 
Cluster 6 for soil pH, mean precipitation, the proportion of land 
composed of “cocoa” in 2020, stand basal area, which averaged 6 m²/ha 

across all clusters, and the basal area of CSSV host trees, which averaged 
1 m²/ha.

Cluster 2 stood out as particularly distinct from the other clusters, 
exhibiting higher soil organic carbon and lower bulk density (p < 3e-04 
for all comparisons). Additionally, compared to Cluster 1, Cluster 2 was 
characterized by a greater temperature range, a higher proportion of 
land under cocoa cultivation in 2020 within a 1000-meter radius, lower 
maximum precipitation, and a lower stand basal area, which averaged 
18 % in Cluster 1 (p < 3e-04 for all comparisons). Similarly to Cluster 1, 
Cluster 2 did not record any CSSV infection and showed no significant 
differences in mean precipitation, pH and the proportion of land under 

Fig. 5. Boxplots of CSSV incidence and agroecosystem factors across five cocoa plot clusters. Cocoa plot clusters were generated by SOM-hclust algorithm applied to 
150 plots representing cocoa-growing conditions in Côte d’Ivoire. Boxplots display the median, interquartile range, minimum, maximum, and outliers, which are 
represented as points beyond the whiskers. Wilcoxon rank sum tests were performed between clusters with a Bonferroni correction (N = 180) for multiple tests 
comparison. Clusters sharing the same letter are not significantly different.
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cocoa cultivation in 2017 (p > 3e-04 for all comparisons).
Cluster 4 appeared to be an intermediate cluster between Clusters 3 

and 6. It shared similarities with Clusters 3 and 6 in terms of CSSV 
incidence, soil organic carbon, bulk density, and the proportion of land 
composed of “cocoa” in 2017 (p > 3e-04, for all comparisons). It also 

resembled Cluster 3 in terms of temperature range (p = 2.0e-03) and 
host tree basal area (p = 1.8e-02), while sharing similarities with 
Cluster 6 in terms of mean precipitation (p = 8.5e-01), maximum pre
cipitation (p = 2.0e-01) and the proportion of land composed of “cocoa” 
in 2020 at 50-meter and 1000-meters radii (p > 3e-04).

Fig. 6. Spatial distribution of cocoa plot clusters and associated agroecosystem characteristics. The spatial distribution of the studied cocoa areas in each cluster is 
highlighted using the same colours as in Fig. 5. Significative differences of agroecosystem factors between Cluster 3 and the other clusters were represented using 
distinct symbols. To provide insight into the surrounding landscape composition, a 1 km buffer zone was mapped around a representative plot from each cluster, 
based on 2017 land cover data. The background map outlined the location of the studied cocoa production areas, described in Fig. 1.
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3.3. CSSV profiles comparison

Clusters 1, 2, and 4 did not exhibit significant differences in mean 
CSSV incidence (Fig. 5, p > 3e-04). Clusters 1 and 2 contained no 
infected plots. Cluster 1 was located in Adzopé and Aboisso, near the 
Ghanaian border in southeastern Côte d’Ivoire, while Cluster 2 was 
found exclusively in the Biankouma region, at the northwestern edge of 
the cocoa-growing area (Fig. 6). In contrast, Clusters 3, 4, 5, and 6 
included both infected and non-infected plots, with mean CSSV inci
dence of 6 %, 10 %, 26 %, and 43 %, respectively (Fig. 5). Cluster 3 was 
distributed across Blé, Guéyo, Guibéroua, Guiglo, and Soubré, in west
ern Côte d’Ivoire, with two additional plots in Adzopé. Further south, 
Cluster 4 was concentrated in Azaguié, Fresco, Grand-Béréby, Méagui, 
and San-Pédro, while also including three plots in Adzopé and six in 
Aboisso. Cluster 5 was located between Bonon and Agnibilékrou, 
whereas Cluster 6 was exclusively found in Agnibilékrou (Fig. 6). CSSV 
assessments were conducted in 2022 for Cluster 1, in 2023 for Cluster 2, 
from 2021 to 2023 for Clusters 3 and 4, and in 2021 for Clusters 5 and 6 
(Fig. 1. and Fig. 6).

Among clusters with multiple CSSV-infected plots (Clusters 3, 4, 5, 
and 6), three significantly different profiles emerged (Fig. 6): a “Low 
CSSV” incidence profile (Cluster 3) and two “High CSSV” incidence 
profiles (Clusters 5 and 6). The analysis of factors associated with dis
ease incidence indicated that CSSV incidence was primarily associated 
with maximum precipitation and landscape composition in 2017, fol
lowed by temperature range (Figure A1). The “Low CSSV” profile was 
characterized by nearly twice the maximum precipitation and half the 
temperature range compared to the “High CSSV” profiles (p < 3e-04 for 
all comparisons). Additionally, the “Low CSSV” profile exhibited a lower 
proportion of land under cocoa cultivation in 2017 (p = 1.7e-05) 
compared to Cluster 5. Regarding Cluster 6, it had 2 mm/day higher 
mean precipitation (p = 6e-05) and a significantly higher host tree basal 
area, with an average of 4 m²/ha, compared to 1 m²/ha in the “Low 
CSSV” profile (p = 1.7e-04). Furthermore, between 2017 and 2020, the 
proportion of land under cocoa cultivation decreased by 55 % in Cluster 
5 and 58 % in Cluster 6, both classified as "High CSSV" profiles, whereas 
it declined by only 3 % in the "Low CSSV" profile (Fig. 5 and Fig. 6).

4. Discussion

This study investigated the associations between environmental 
factors (meteorological conditions and soil properties), agroforestry 
factors (shade levels and alternative host trees), the surrounding land
scape composition, and CSSV incidence in cocoa orchards of Côte 
d’Ivoire. Notably, low CSSV incidence was associated with extreme 
precipitation events, low temperature variations and high mean pre
cipitation. In contrast, in one ’High CSSV’ profile, a greater presence of 
host trees was observed. Moreover, this was the first study to examine 
CSSV epidemics at landscape level. Our analysis reveals an association 
between CSSV incidence and the composition of host and non-host lands 
surrounding cocoa plots, providing insights for large-scale management 
strategies.

Our results demonstrated a strong association between CSSV disease 
and extreme precipitation events, particularly in the ‘Low CSSV’ profile, 
which experiences higher maximum precipitation compared to the ‘High 
CSSV’ profiles. In contrast, higher mean precipitation levels were found 
in a “High CSSV” profile. Based on these findings, we suggest that high 
mean precipitation may be less limiting than initially thought, as we had 
expected it to impact the vulnerability of cocoa trees to CSSV. However, 
extreme precipitation appeared to be more limiting, potentially facili
tating the leaching of cocoa trees from vector mealybug populations 
(Oyedokun et al., 2022) and limit their aerial dispersal (Cornwell, 
1960). Such events may therefore reduce both the transmission of the 
virus and the spread of mealybugs, effectively limiting the expansion of 
existing outbreaks and preventing the emergence of new outbreaks from 
the initial sites of infection. Our analysis also reveals that higher 

temperature range was strongly associated with high CSSV incidence in 
both “High CSSV” profiles, located at the northern margins of 
cocoa-growing regions that experience high temperature fluctuations. 
This association can be explained by the fact that temperatures 
exceeding an optimal range create suboptimal conditions for cocoa 
physiology, potentially weakening the plants and increasing their sus
ceptibility to disease (Hebbar, 2007). Elevated temperatures can also 
accelerate the population dynamics of mealybugs by increasing their 
reproduction rate and food intake, which in turn enhances CSSV trans
mission (Roivainen, 1976). Moreover, this profile, which exhibited 
higher CSSV incidence, seemed to be associated, although not signifi
cantly, with higher bulk density, indicating lower soil quality for cocoa 
cultivation (Araujo et al., 2018). By reducing soil porosity and aeration, 
high bulk density may limit biological activity and restrict root devel
opment, which are both critical for maintaining plant health (Passioura, 
2002; Shah et al., 2017). This suggests that environmental stressors, 
such as high temperature fluctuations and compacted soils, may act 
synergistically to weaken cocoa trees and increase their vulnerability to 
CSSV. To the best of our knowledge, this hypothesis has not been 
explored in the context of CSSV, highlighting the need for further 
research in this area.

Additionally, shading did not show significant differences between 
profiles with varying levels of CSSV incidence. However, this does not 
imply that agroforestry has no impact on CSSV disease dynamics, as 
shown by previous studies on CSSV (Andres et al., 2018), as well as other 
cocoa diseases (Ramos et al., 2024). It appears that weather and land
scape factor exert a stronger influence on the cluster characteristics than 
management practices within the plots, which did not differ signifi
cantly across clusters. To further investigate shading effects in regions 
under disease pressure, a finer-scale analysis with increased spatial and 
temporal observations per cluster could be conducted. Given that the 
’High CSSV’ profiles experience higher temperature fluctuations and 
shading mitigates temperature under the canopy (Niether et al., 2018), 
it would be of interest to specifically assess shading effects in these re
gions. However, given that we found an association between a high 
number of host trees in Cluster 6 and CSSV incidence, we recommend 
that farmers limit the presence of host trees within and around cocoa 
plots and introduce non-host shade trees. It is important to note that our 
study does not allow us to determine whether shading or the presence of 
host tree has a greater impact on CSSV incidence, so these recommen
dations should be considered with caution. Another limitation of our 
study is that the presence of herbaceous and subsistence crops that can 
host the virus under cocoa canopies was not taken into account in the 
plots. Additionally, other management practices, such as pesticide use, 
soil fertilization or cocoa tree spacing, were not included in the study 
due to the lack of available data, even though these factors may influ
ence CSSV incidence.

Beyond meteorological conditions, soil properties and intra-plot 
management practices our results reveal that CSSV incidence was also 
associated with the surrounding landscape composition, with a signifi
cant difference between the “Low CSSV” and one of the “Hight CSSV” 
profile, four years before the first disease assessment in 2017. Notably, 
plots with lower CSSV incidence were surrounded by a higher propor
tion of “non-cocoa”, from the plot scale to the broader landscape scale. 
This suggests that “non-cocoa” influences disease dynamics and may act 
as a sink for the pathogen or as a barrier to the spread of mealybug 
vectors. Indeed, non-host plants could reduce CSSV transmission by 
either limiting opportunities for mealybugs to acquire the virus or 
causing mealybugs to lose their infectivity when feeding on them (Obok 
et al., 2018). Moreover, this landscape discontinuity may amplify this 
effect by increasing the spacing between cocoa plots. Experimental 
studies in Ghana further support this finding at the plot scale, showing 
that cocoa plots bordered by non-host species exhibited significantly 
lower CSSV incidence than those surrounded exclusively by “cocoa” 
(Domfeh et al., 2016). While these findings highlight the potential role 
of landscape composition in shaping disease dynamics, further research 
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is needed to disentangle the relative contributions of sink and barrier 
effects to understand the underlying mechanisms. Given the “correla
tive” nature of our approach and the available data, our study only al
lows us to make assumptions rather than establish causal relationships 
at this level of detail.

Moreover, our study found that in 2020, one year before the first 
disease assessment, the proportion of “cocoa” drastically decreased 
compared to 2017 in the “High CSSV” profiles, becoming not signifi
cantly different from the “Low CSSV” profile. In 2017, the "Low CSSV" 
profile was characterized by a more diversified landscape, whereas the 
"High CSSV" profile is almost exclusively surrounded by “cocoa”. This 
suggests that areas with higher CSSV incidence experienced a greater 
reduction in the proportion of “cocoa” between 2017 and 2020. How
ever, caution is needed when interpreting these results, as the maps used 
did not have the same level of precision. In particular, the 2017 map 
does not distinguish between cocoa and coffee, which may impact direct 
comparisons. We can still suppose that this is a consequence of high 
CSSV pressure, which decimated cocoa plantation, leading most farmers 
to switch to other crops (Ruf et al., 2019).

The absence of CSSV disease in Cluster 1 and the Cluster 2, located on 
opposite sides of the country, suggests that shared environmental and 
landscape characteristics may create conditions unfavourable for the 
virus’s spread or establishment. Both clusters are characterized by 
higher mean precipitation and lower proportion of the landscape 
composed of “cocoa” in 2017, which make cocoa plots more isolated 
from each other. This could indicate that reduced cocoa farm density in 
high-rainfall regions may limit CSSV spread. However, the history of 
cocoa westward expansion in Côte d’Ivoire should be seriously consid
ered as a potential factor in the current distribution of the disease, as 
shown by the localisation of Clusters 1 and 2, respectively in the last and 
the first zones of cocoa crop expansion (Barima and Konan, 2020). The 
virus may not have reached newly established cocoa production zones or 
may have already passed through the oldest ones. Additional cocoa plots 
should be sampled to confirm whether the virus is truly absent in these 
regions. As some evidence suggests the presence of CSSV in the Cluster 1 
region (Ameyaw et al., 2024), it would also be valuable to use molecular 
tools to detect latent or asymptomatic CSSV infections. This would help 
verify whether the apparent absence of the disease is due to under
reporting of asymptomatic infections, as our current disease data are 
based on visible symptoms. A study has also investigated the diversity of 
CSSV strains, their geographic distribution, and their associated disease 
severity (Kouakou et al., 2012), which may explain the absence of 
symptoms in cluster 2. These studies have shown that isolates from 
groups E and F, which are predominantly found in clusters 1 and 2 in our 
analysis, tend to be relatively mild and are associated with a slower 
progression of symptoms. In contrast, the highly aggressive group B 
isolates identified in clusters 5 and 6, where disease incidence was 
highest, have been linked to more severe outbreaks. While this viral 
diversity was not integrated into the current model due to the lack of 
isolate-specific molecular data at the plantation scale, we nevertheless 
observed a certain consistency between the clusters formed based on 
agroecological factors and the distribution of CSSV strains across the 
Ivorian landscape. This suggests potential interactions between agro
ecosystem structure and the spatial patterns of viral diversity. This un
derscores the need for future research to integrate molecular diagnostics 
and viral genotyping in order to better characterize the relationship 
between isolate aggressiveness, and agroecosystem factors.

Our findings underscore the importance of the landscape composi
tion surrounding cocoa plantations as a key factor in CSSV management. 
However, current control strategies typically focus on individual plot- 
level interventions rather than broader spatial scales. In light of these 
results, we advocate for further research exploring landscape-scale 
strategies for CSSV mitigation, with an emphasis on integrating “non- 
cocoa” lands into the agricultural landscape to reduce disease pressure. 
Such management strategies should be driven by the goal of identifying 
an optimal landscape composition that balances short-term and long- 

term economic benefits (Forster and Gilligan, 2007). To implement 
this approach, additional studies are required to determine the optimal 
proportion of “non-cocoa” land and its spatial configuration within the 
agroecosystem (Papaïx et al., 2018). The feasibility of this strategy will 
largely depend on farmers’ willingness to collaborate and adopt these 
management measures, which may be constrained by uncertainties 
regarding the potential benefits and the complexities involved in coor
dinating multiple producers (Matthews et al., 2024). However, since 
cocoa production is often organized around cooperatives that connect 
farmers within the same region, this structure may provide an oppor
tunity for implementing large-scale collective action. Cooperatives 
could serve as institutions that would facilitate resource sharing, 
knowledge exchange, and the adoption of best practices tailored to local 
conditions and constraints, ultimately supporting the successful imple
mentation of such a strategy (Garcia-Figuera et al., 2024).
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