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A B S T R A C T

Sugarcane is a major tropical C4 crop of global economic significance, primarily used for sugar, ethanol, and 
bioenergy production. As climate change accelerates, with projected increases in global temperatures, under
standing the temperature sensitivity of sugarcane’s radiation use efficiency (RUE) is crucial for projecting yield 
under changing environmental conditions. In this context, this study aimed to characterize sugarcane RUE 
response to temperature across various environments and varieties from key producing regions worldwide. Using 
experimental data from six countries (Brazil, South Africa, United States of America, Zimbabwe, Argentina, and 
La Réunion) and 40 distinct varieties, our results indicated that maximum RUE (RUEMAX) is consistent across 
varieties, while apparent RUE (RUEA) showed significant variation. Based on this diverse dataset, we parame
terized different RUEMAX temperature response formalisms used in crop models (APSIM-Sugar, DSSAT-Canegro, 
MOSICAS, and emergent formalisms). We compared their ability to simulate RUEA in various regions accurately. 
Our analysis revealed significant differences in formalism performance, emphasizing the need for accurate 
parameterization. Additionally, we demonstrated that predictions of biomass production under climate change 
scenarios are highly sensitive to the formalism parameterization used to represent the RUE-temperature rela
tionship. These findings highlight the critical importance of refining crop models considering temperature 
response and cardinal temperatures (optimal range: 30–33◦C) to enhance projections of sugarcane yield under 
future climate conditions. We discussed physiological processes that may explain differences in RUEA among 
varieties. Incorporating these refined mechanisms into models will support more accurate climate impact as
sessments and aid breeding programs focused on developing high-yield sugarcane varieties.
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Glossary

Acronyms Units Definitions

RUE g DM 
MJ− 1

Radiation-use efficiency, the rate at which a plant is able 
to convert intercepted solar radiation into dry biomass.

RUEA g DM 
MJ− 1

Apparent radiation-use efficiency, calculated as total 
aboveground biomass at final biomass sampling date 
divided by cumulative intercepted shortwave (global) 
solar radiation since crop start.

RUEMAX g DM 
MJ− 1

The maximum radiation-use efficiency calculated across 
a sequence of biomass sampling dates in a single 
cropping season.

RUEO g DM 
MJ− 1

Theoretical maximum radiation-use efficiency under 
ideal water, temperature, and nutrient conditions.

ADM t ha− 1 Aboveground dry biomass per area
SRAD MJ m− 2 

d− 1
Daily shortwave radiation (global solar radiation)

PAR MJ m− 2 

d− 1
Daily photosynthetically active radiation

fiRAD MJ MJ− 1 Canopy interception fraction of shortwave (global) solar 
radiation

iRADc MJ m− 2 Cumulated canopy-intercepted shortwave (global) solar 
radiation

Anet µmol m− 2 

s− 1
Instantaneous leaf net photosynthesis

GPP µmol m− 2 

s− 1
Gross primary productivity

1. Introduction

Sugarcane (Saccharum spp.) is a perennial C4 tropical grass belonging 
to the Poaceae (Gramineae) family and the genus Saccharum (Moore 
et al., 2013). It is a crop of significant economic importance worldwide, 
cultivated primarily to produce sugar, ethanol, electricity, and other 
by-products such as fertilizers, specialty chemicals, paper, and compost 
(Moore and Botha, 2013). In 2022, around 1.9 billion tons of sugarcane 
were produced from 26 million ha globally (FAOSTAT database). The 
demand for sugarcane-derived products is projected to rise in the future, 
driven by population growth and increasing industrial applications, 
including biofuels, bioplastics, and other innovative uses (Goldemberg 
et al., 2014; Leal et al., 2013). To meet this demand, there is a need to 
avoid extensification and increase yield in existing cultivated areas.

Climate change, driven by increases in air temperature in response to 
increasing concentrations of greenhouse gases (carbon dioxide, 
methane, and nitrous oxide), is expected to impact future sugarcane 
production (Dias and Inman-Bamber, 2020; Linnenluecke et al., 2018; 
Marin et al., 2014; Singels et al., 2021). As temperature change is a 
primary response to greenhouse gas accumulation in the atmosphere, 
projected increases in temperature are associated with a relatively low 
level of uncertainty (Thornton et al., 2014). Global surface mean tem
peratures have risen by 1.1◦C over the last century and are projected to 
reach +1.5◦C in the near term (2030–2035). By 2100, temperatures are 
expected to increase further, ranging from +1.4◦C under a low-emission 
scenario to +4.4◦C under a high-emission scenario (IPCC, 2023). 
Tropical regions, where sugarcane is predominantly grown, are ex
pected to experience significant increases in the annual hottest day 
temperatures (IPCC, 2023).

While global warming’s impacts on other climatic variables, such as 
rainfall, involve great uncertainty, there remains a substantial risk that 
precipitation may decrease or become more variable in many sugarcane- 
producing regions in the future (Feng et al., 2013). Water performs 
numerous critical functions in plants, with cooling through evaporation 
requiring the largest volume of water. Thus, decreases in rainfall can 
exacerbate heat stress in plants by effectively increasing the tempera
tures they experience (Inman-Bamber et al., 2012). Consequently, ac
curate projections of climate change impacts on sugarcane production 
depend on robust modeling of how changes in temperature influence 
key plant physiological processes.

One of the advantages of sugarcane is its exceptional ability to use 
sunlight to drive photosynthesis and produce biomass. The efficiency 
with which a crop converts canopy-intercepted solar radiation into 
biomass can be quantified using a parameter known as radiation-use 
efficiency (RUE, g MJ− 1) (Monteith et al., 1997). Sinclair and Muchow 
(1999) reported a sugarcane RUE of about 2.0 g DM MJ− 1 SRAD and 
stated that this is the highest value of all economically significant field 
crops. However, there is ongoing debate regarding whether RUE is a 
stable trait across varieties and the growing season, excluding 
yield-limiting factors (Acreche, 2017; Acreche et al., 2015; De Silva and 
De Costa, 2012; Dias et al., 2021a; Donaldson et al., 2008; Robertson 
et al., 1996). This controversy reduces the accuracy of climate change 
projections on biomass production in different regions.

Resolving the RUE-variety debate requires some interpretation of 
how RUE is measured and what different reported RUE values represent 
(see Glossary, which includes detailed acronyms, and their definitions 
and units of measure). In principle, RUE is calculated as the change in 
dry biomass between two points in time, divided by the solar radiation 
intercepted by the crop during that period (Monteith et al., 1997). 
Typically, biomass measurements exclude root biomass, and intercepted 
radiation can refer to either shortwave (global) (SRAD, MJ m− 2 d− 1) or 
photosynthetically active radiation (PAR, MJ m− 2 d− 1). When RUE is 
calculated as the total crop biomass at harvest (or final biomass sample) 
divided by total radiation intercepted since crop start, it is referred to as 
‘apparent’ RUE (RUEA, g MJ− 1) (Robertson et al., 1996; Sinclair and 
Muchow, 1999). Conversely, RUE calculated for a period between two 
biomass sampling events is termed RUEP (g MJ− 1). RUEA can be lower 
than RUEP if stresses (e.g., very hot or cold conditions, drought, low 
nutrient availability) or other processes (high maintenance respiration, 
lodging) reduce biomass accumulation rates during specific sampling 
periods. The highest sugarcane RUEP value for sugarcane in a single 
cropping season has been termed RUEMAX (g MJ− 1) (Jones et al., 2019; 
Muchow et al., 1994; Park et al., 2005; Robertson et al., 1996; Sinclair 
and Muchow, 1999). For a large dataset, the highest RUEMAX approaches 
the theoretical maximum RUE for sugarcane (or a specific variety), 
referred to as RUEO (Jones et al., 2019; Singels, 2013).

Sugarcane RUE has been observed to be sensitive to air temperature 
(Dias et al., 2021a; Donaldson et al., 2008). Crop species with the C4 
photosynthesis pathway, such as sugarcane, are better adapted to higher 
temperatures (> 25◦C) compared to species with C3 photosynthesis 
(Long, 1999). This adaptation underscores the importance of C4 crop 
species in warmer future climatic conditions. It is also acknowledged 
that C4 crop species are significantly sensitive to variations in air tem
perature within the 20–30◦C range (Long, 1999). This temperature 
range is typical of current sugarcane-producing regions worldwide (Dias 
and Inman-Bamber, 2020). The anticipated economic importance of 
sugarcane in the future underscores the urgent need to project the im
pacts of climate change on sugarcane productivity accurately. This is 
essential for planning effective adaptation strategies to mitigate the 
adverse effects of climate change and, where possible, capitalize on its 
positive impacts. In this context, RUE remains as a critically important 
emergent physiological trait in sugarcane. The magnitude of expected 
future temperature changes is substantial enough to significantly impact 
the RUE of typical C4 crops by shifting sugarcane-growing environments 
closer to, or further from, their optimal temperature range.

RUE is an important parameter in many dynamic sugarcane simu
lation models, including DSSAT-CSM-CANEGRO (referred to as ‘DSSAT- 
Canegro’ from now on; Jones and Singels, 2018) and APSIM-Sugar 
(referred as ‘APSIM’ from now on; Keating et al., 1999), which are the 
most widely used worldwide to date (see Dias and Inman-Bamber, 2020
for a complete list of sugarcane models). MOSICAS (Christina et al., 
2021) and DSSAT-CSM-SAMUCA (Vianna et al., 2020) have gained 
attention in the past five years. These models differ in their represen
tation of RUEO and its response to temperature, which includes both the 
cardinal temperature as well as the formalism for response to temper
ature (Jones et al., 2019; Vianna et al., 2022) usually using linear (e.g. 
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DSSAT-Canegro and APSIM) or symmetric curvilinear (e.g. MOSICAS) 
responses. Some of these differences can be linked to the difference in 
RUE representation in crop models, whether considering net (APSIM) or 
gross (DSSAT-Canegro and MOSICAS) photosynthesis (Jones et al., 
2021). To explore the impact of climate change on sugarcane produc
tivity, crop models are essential tools to represent biomass accumulation 
response to temperature through the RUE concept, and literature sug
gests that formalisms that represent the nonlinear and non-symmetric 
response of photosynthesis to temperature (Johnson et al., 2010; 
Wang and Engel, 1998) can be used to improve the ability of crop 
models to make reliable predictions under current or projections under 
future climate scenarios (Wang et al., 2017). Thus, having confidence in 
the sugarcane RUE response to temperature in these models is critical.

The broad objective of this study was to characterize the sugarcane 
RUE response to temperature using field data spanning environments 
and varieties across important sugarcane-producing regions worldwide 
to ensure that projections of future sugarcane yield are as accurate and 
representative as possible. Specific objectives were to i) evaluate if 
RUEMAX varies across varieties in major producing countries, ii) assess 
whether the formalisms used in crop models appropriately represent the 
RUE response to temperature, and iii) investigate the impact of different 
formalisms on biomass projections in crop models and their sensitivity 
to the choice of RUE-temperature response in the context of warming 
climates.

2. Material & methods

2.2. RUE datasets

The data used in this study included sugarcane in-field experimental 
data previously published in the literature and whose original data were 
collected from the authors (including plant growth, meteorological data; 
Table 1). Two experiment datasets were gathered: i) varietal experiment 
datasets, where experiments included variety comparisons in the same 
field, and ii) crop model calibration and sensitivity datasets, including 
only one variety per experiment. The first dataset was used to assess 
variety differences in RUEMAX and RUEA, and the second was used for 
crop model calibration and sensitivity analysis.

The “varietal experiment” dataset included measurements of the 
fraction of intercepted radiation (fiRAD) by the sugarcane canopy 
considering the incident global solar radiation (SRAD, in MJ m− 2 d− 1) 
and periodic aboveground dry mass (ADM, in tons, g or kg DM ha− 1) 
sampling over the crop season.

The “calibration and sensitivity” dataset included periodic ADM, 
fiRAD, and Leaf Area Index (LAI), except for South African data (SAF- 
PONG and SAF-MEDG), which only included observations of accumu
lated intercepted radiation (iRADc) with ADM. All experiments were 
fertilized under optimal conditions. Most of the experiments were irri
gated except for a few, which were rainfed (experiments in Argentina 
and the RUN-SALS experiment in La Reunion) when rainfall was enough 
to meet sugarcane water demand. In this paper, a trial was defined as a 
one-year growth cycle in a specific site and country (Table 1).

2.3. Leaf photosynthesis and GPP datasets

In addition to RUE, in-field data of instantaneous leaf net photo
synthesis (Anet, µmol m− 2 s− 1) and gross primary productivity (GPP, 
µmol m− 2 s− 1) were gathered from the literature and original data were 
collected from the authors. Anet and GPP variables were normalized 
between 0 and 1 using the 99% upper quantile as the higher observed 
values. The sources, experimental conditions, and measurements are 
briefly described below.

The first dataset measured leaf photosynthesis in sugarcane (plant 
crop cycle) in Campinas, Sao Paulo State, Brazil (Magalhães Filho, 
2014). The design included four varieties (SP79-1011, IACSP94-2094, 
IACSP94-2101, and IACSP95-5000) with four replicates grown under 
optimal fertilization and irrigation. Anet was measured on eleven dates, 
from 125 to 477 days after planting, from 7:00 to 17:00, every 2 hours. 
Measurements were taken using an infrared gas analyzer (LI-6400XT, 
LICOR, Lincoln NE, USA) under natural variations of air temperature, 
relative humidity and light intensity. Measurements were recorded 
under low coefficient of variation (CV < 5%) and temporal stability. Leaf 
and air temperature were measured with the LI-6400XT. Note that leaf 
and air temperature were similar in this experiment, and thus, the 
response to air temperature was chosen in the following analysis.

In the second dataset, GPP was estimated in a highly monitored 
rainfed experimental site with eddy-covariance measurements during 
the second and third ratoons of sugarcane variety SP83-2847 at an 
hourly time step, in Luiz Antonio, São Paulo State, Brazil (Cabral et al., 
2013, 2012). The filtered and gap-filled net ecosystem exchange (NEE) 
data was partitioned into GPP and Ecosystem respiration (Reco) through 
the “nighttime partitioning” method (Wutzler et al., 2018), applying the 
temperature response function of nighttime NEE fluxes to estimate Reco 
during daytime, based on the Lloyd & Taylor model (Lloyd and Taylor, 
1994). GPP and air temperature above the canopy were used in our 
analysis.

Table 1 
RUE datasets used for the varietal experiment analysis or the calibration and sensitivity analysis, including country, experiment identification, number (No.) of plant 
and ratoon crop cycles, and number of varieties compared in each site and data source.

No. of Crop Cycle

Datasets Country Experiment ID Plant Ratoon No. of varieties Source

Varietal experiment La Reunion RUN-DEL1* 1 0 18 (Christina et al., 2020)
RUN-ICSM* 1 1 5 (Jones et al., 2019)

Brazil BRA-MGSR* 2 0 6 (Dias et al., 2020, 2021a)
BRA-PIGL* 3 0 6 (Dias et al., 2020, 2021a)
BRA-CRU 1 1 3 (Cruz et al., 2021)

South Africa SAF-ICSM* 1 1 5 (Jones et al., 2019)
USA USA-ICSM* 0 1 6 (Jones et al., 2019)
Zimbabwe ZIM-ICSM* 1 0 6 (Jones et al., 2019)
Argentina ARG-SAEZ 1 2 5 (Saez et al., 2019)

Calibration 
& Sensitivity

La Reunion RUN-SALS 0 3 R579 (Viaud, 2023)
RUN-LINV 1 0 (Christina et al., 2020)

Brazil BRA-VIAN 0 2 RB867515 (Vianna et al., 2020)
BRA-PIGL 3 0 (Dias et al., 2020, 2021a)

South Africa SAF-PONG 0 3 NCo376 (Donaldson, 2009)
SAF-MEDG 0 2 (Singels et al., 2005)

Argentina ARG- SAEZ 1 2 LCP 85- 
384

(Saez et al., 2019)

* used in the variety x environment interaction analysis in this study (section 2.3)
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2.4. RUE calculation and varietal effect analysis

RUE was calculated as the increase in sugarcane ADM divided by the 
accumulated daily iRAD in each plot from each trial. Two RUEs were 
calculated: RUEA, defined as the final ADM at harvest divided by the 
cumulated intercepted global radiation over the crop cycle since 
planting, and RUEMAX, calculated as the maximum RUE observed be
tween successive biomass sampling dates during the crop cycle. The 
corresponding mean air temperature to this RUEMAX was calculated as 
the mean between these two sampling dates. To calculate RUE, the daily 
fiRAD was estimated over the growth season based on a logistic growth 
function (Verhulst, 1838), a common sigmoidal-style curve used in 
agricultural studies (Archontoulis and Miguez, 2015): 

fiRAD(d) =
fiRADmax

1 + 100 e− b d (1) 

RUEA =
ADM(harvest)

∑d=harvest
d=0 fiRAD(d) SRAD(d)

(2) 

RUEMAX = max
0≤d1,d2≤harvest

(
ADM(d2) − ADM(d1)
∑d=d2

d=d1fiRAD(d) SRAD(d)

)

(3) 

Where d is the number of days since planting or previous harvest, 
fiRADmax is the maximum intercepted radiation reached, and b is an 
empirical fitting parameter.

Regressions were performed in each plot from the varietal experi
ment dataset using the nlsLM function (minpack.lm R package, Elzhov 
et al., 2016). A comparison between predicted fiRAD and measured 
fiRAD can be found in Supplementary Material Fig. S1, which yielded a 
root mean square error (RMSE) of 0.11 and a mean bias of -0.03.

First, the RUE response to the interaction between the variety and its 
environment (defined as a trial) was assessed using a subset of the 
varietal experiment where the same variety was tested in different sites 
(Table 1). The effect of the interaction between variety and trial, and 
crop class (CropClass, i.e., plant or ratoon crop) on RUEA and RUEMAX 
was assessed using a linear analysis of variance: 

RUE ∼ CropClass + Variety + Trial + CropClass : Variety + Trial

: Variety (4) 

To ensure residue normality, the RUE variables were transformed 
using a Box-Cox transformation (powerTransform and bcPower R func
tion, car R package, Fox et al., 2023). As non-significant interaction was 

found (see 3.1 result section), the influence of crop class and variety on 
the whole varietal experiment dataset was assessed using a mixed linear 
analysis of variance with the trial as a random effect (nlme R package, 
Pinheiro et al., 2022): 

RUE ∼ CropClass + Variety + (1|Trial) (5) 

Variables were also Box-Cox transformed to ensure residue 
normality. Predicted means and confidence intervals per variety or 
CropClass were estimated using the emmeans function (emmeans R 
package, Lenth et al., 2023). The emmeans function was also used to 
perform pairwise comparison with a Tukey p-adjustment method.

2.5. Description of RUE - temperature formalisms in crop models

In most sugarcane crop models, the influence of daily mean tem
perature (TMEAN) on RUE is applied as an efficiency response function of 
temperature (fTRUE, unitless 0-1), and the daily potential biomass pro
duction results from fTRUE, total intercepted radiation, and RUEMAX. 
Crop models use different formalisms of temperature effects on RUE, and 
four of them were compared in this study. The first formalism (referred 
to as ApsimCanegro), used in the APSIM (Keating et al., 1999) and 
DSSAT-Canegro (Jones and Singels, 2018) models, consists of a trape
zoidal function, with a linear increase or decrease between two optimal 
temperatures: 

if(TMEAN ≤ TB | TMEAN ≥ TX) {fTRUE =0} (6) 

if(TMEAN ≥ TOPT1 | TMEAN ≤ TOPT2) {fTRUE =1 } (7) 

if
(

TMEAN > TB

⃒
⃒
⃒
⃒ TMEAN < TOPT1)

{

fTRUE =
TMEAN − TB

TOPT1 − TB

}

(8) 

if
(

TMEAN > TOPT2

⃒
⃒
⃒
⃒ TMEAN < TX)

{

fTRUE =
TX − TMEAN

TX − TOPT2

}

(9) 

Where TB, TOPT1, TOPT2, TX are base, first, and second optimum 
(optimum range), and maximum temperature, respectively.

The second formalism (referred to as Mosicas), used in the MOSICAS 
crop model (Christina et al., 2021), was a symmetric curvilinear 
response with only one optimal temperature and no base and maximum 
temperature but a rate of decrease with suboptimal temperatures: 

fTRUE = 1 − TDEC|TMEAN − TOPT|
γ (10) 

if(fTRUE ≤ 0) {fTRUE =0} (11) 

Where TOPT is the optimal temperature and TDEC and γ are parame
ters controlling the rate of decrease in RUE with temperature.

The third formalism (referred to as Wang-Engel) proposed by Wang 
and Engel (1998) has been shown to be effective in simulating the 
phenology and photosynthesis response of varied annual crops to tem
perature (Streck et al., 2007; Wang et al., 2017, 2018). It is a 
non-symmetric curvilinear response with an optimal temperature, base 
temperature, and maximum temperature: 

if(TMEAN ≤ TB | TMEAN ≥ TX) {fTRUE =0} (12) 

Where TOPT is the optimal temperature, TB and TX are the base and 
maximum temperature for RUE, and β is a parameter controlling the 
curvature.

The fourth formalism (referred to as Johnson), a modified beta 
function to describe the photosynthesis response to temperature, pro
posed by Johnson et al. (2010), was similar to the Wang-Engel 
formalism but with a maximum threshold: 

fTRUE =

(
(1 + c)TOPT − TB − c TMEAN

(1 + c)TOPT − TB − c TREF

)(
TMEAN − TB

TTREF − TB

)c

(14) 

Where TOPT and TREF are optimal temperatures, TB is the base 

if (TMEAN >TB|TMEAN <TX)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α =
ln(2)

ln(TX − TB/TOPT − TB)

fTRUE =

(
2(TMEAN − TB)

α
(TOPT − TB)

α
− (TMEAN − TB)

2α

(TOPT − TB)
2α

)β

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(13) 
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temperature, and c a curvature coefficient.

2.6. Temperature response regression analysis

The parameterization of the fTRUE functions was performed based on 
a quantile regression to assess the envelop curve of RUE response to 
temperature, as many other processes could reduce RUEMAX other than 
temperature in the dataset, such as variation in water and nutritional 
status in field-grown plants even under well-managed conditions. The 
dataset used to assess the change in RUEMAX with air temperature 
included the dataset used in the varietal experiment (averaged per va
riety and trial, Table 1) as well as additional RUEMAX values published in 
the literature (Araújo, 2016; Barbosa, 2017; De Silva and De Costa, 
2012; Donaldson, 2009; Donaldson et al., 2008; Muchow et al., 1997; 
Olivier et al., 2016; Park et al., 2005; Schwerz et al., 2018; Silva, 2009; 
Singels and Smit, 2002). To parameterize the fTRUE response, a 
normalized RUEMAX was defined as the measured RUEMAX divided by 
the maximum predicted RUEMAX obtained in the varietal effect analysis 
(i.e., 3.0 g DM MJ− 1 SRAD).

Despite including published RUE data, the dataset did not include 
RUEMAX response to very high (above 32◦C) or very low (below 15◦C) air 
temperatures and could not be used alone to parameterize RUE response 
to very low and high temperatures. Consequently, the change in leaf 
photosynthesis and canopy GPP to temperature was also explored 
through two additional datasets as a proxy for crop RUE (see Section 
2.2). The change in Anet and GPP with air temperature was parameter
ized for each formalism using a 99% quantile regression (nlrq function 
from quantreg R package, Koenker, 2009). For formalisms including a 
minimum temperature, a lower boundary was defined for minimum 
temperature as 7◦C in the regression, based on previous studies on 
canopy GPP or net ecosystem exchange responses to temperature 
(Colmanetti et al., 2024; Cuadra et al., 2012) as well as leaf photosyn
thesis response (Peixoto and Sage, 2017; Sage et al., 2013).

For high-temperature response, two strategies were defined for RUE 
response to air temperature: i) a Leaf-type response, where temperature 
parameters at high temperatures (TOPT2, TMAX, and TREF) were fixed to 
the same value obtained in the Anet response regression, and ii) a GPP- 
type response, in which the temperature parameters at high tempera
tures were fixed to the same value obtained in the GPP regression. Note, 
as the Mosicas formalism did not require minimum and maximum 
temperatures, no parameters were fixed for this formalism. The change 
in RUEMAX with mean air temperature in each formalism was parame
terized using a 90% quantile regression due to a lower number of ob
servations (n = 179) compared to Anet (n = 1,055) or GPP (n = 8,436).

To compare formalisms and assess the quantile regression quality, 
we calculated the quantile loss (or pinball loss) index QLI as follows: 

QLI =
1
n
∑n

i=1

{
τ (yi − ŷi) if(yi ≥ ŷi)

(1 − τ) (yi − ŷi) if(yi < ŷi)
(15) 

Where yi is the observation, ŷi is the corresponding predicted 
quantile, τ is the quantile level (e.g., 0.9), and n is the number of ob
servations. A lower QLI indicated a better quantile fit (note that only 
comparison at the same quantile level is appropriate).

The default RUE parameterization for the different formalisms 
referred to the parameter values obtained from the literature (Jones 
et al., 2021 for ApsimCanegro; Christina et al., 2021 for Mosicas; Wang 
et al., 2018 with maize parameters for Wang-Engel; Johnson et al., 2010
with C4 species parameters and TOPT = 33◦C for Johnson) and QLI was 
calculated for this default parameterization.

2.7. Crop model sensitivity to RUE-T formalism and parameterization

The influence of model formalism and parameterization on RUEA 
and ADM simulations was explored in different locations under current 
and future climates. To this aim, we adapted the MOSICAS crop model 

v1.1.0 (Christina, 2025a), which was written in R in open-access 
(https://gitlab.cirad.fr/mathias.christina/mosicas), and thus the RUE – 
temperature response equation was easily changed. MOSICAS, a deter
ministic thermoradiative type model that accounts for water stress, 
consists of daily growth and carbon balance modules linked to a water 
balance module. The canopy is represented by LAI following a “big-leaf” 
approach, whereas the intercepted radiation is calculated based on the 
extinction coefficient approach. The model converts the daily inter
cepted radiation into daily gain in total dry mass, considering 
temperature-reducing factors, water stress, and maintenance respira
tion. To use the aboveground RUE measured in this study, we modified 
the model to express RUE based on SRAD. Note that the MOSICAS model 
uses the air temperature above the canopy in the RUE temperature 
response curve, so the input temperature from the weather station is 
directly used in the calculation.

For each variety (Table 1, calibration and sensitivity analysis data
set) and depending on available observations, we first calibrated the 
model on the dynamics of LAI, fraction of intercepted radiation (fiRAD), 
or cumulated intercepted radiation (iRADc). Details on calibrated pa
rameters can be found in Supplementary Material Table S1. The RUEMAX 
value was assumed constant across varieties and fixed to the same higher 
value as the one used to normalize RUEMAX (3.0 g DM MJ− 1 SRAD, see 
Section 2.6). Parameter optimizations were performed using the RGe
noud optimization code provided with the MOSICAS model (see gitlab 
repository). Then, we changed the RUE temperature response equations 
using the new parameter values obtained during the procedure 
described in section 2.4. In addition, the sensitivity of each variety to 
water stress was calibrated to simulate ADM observations accurately. 
Simulation’s accuracy was assessed by comparing observations (calcu
lated in Section 2.5) and predictions based on the coefficient of deter
mination (R2), relative RMSE (rRMSE) and Willmott’s index of 
agreement (d): 

rRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1(Si − Oi)
2

√

O
(16) 

d = 1 −

∑n
i=1(Si − Oi)

2

∑n
i=1(|Si − O| + |Oi − O|)

2 (17) 

Where Si and Oi are the simulated and observed values, O the mean 
observed values, respectively, and n the number of observations.

We assessed the long-term sensitivity of the crop model to the choice 
of formalism in three sites on Reunion Island with contrasting temper
ature patterns. We chose Reunion Island as a study case due to its high 
climate variability, with sugarcane ranging from sea level to 1,000 m a.s. 
l. (Christina et al., 2021). Climate change scenarios were available at a 
high spatial resolution (3×3 km; Leroux et al., 2021) for Reunion Island. 
The projections were produced as part of the BRIO project (Building 
Resilience in the Indian Ocean) by coupling the large-resolution scale 
CNRM-ESM2-1 model (from CMIP6) and the high-resolution scale 
ALADIN model to better represent climate projections in the main Indian 
ocean territories, including Reunion Island (Leroux et al., 2021). In this 
study, we used climate change data from the RCP 8.5 scenario to illus
trate the sensitivity to high change in temperatures over time. Based on a 
previous climate change study on sugarcane yield (Christina et al., 
2024b), we selected three sites with contrasting average annual tem
peratures (12.7, 22.1, and 25.1◦C, average over the 2016-2025 period) 
but similar average daily global radiation (8.6, 9.4, and 8.7 MJ m− 2 

d− 1). These sites were located (latitude/longitude) at -20.93/55.66, 
-21.11/55.75, and -21.14/55.72 at 20, 135, and 730 m a.s.l. Simulations 
were performed following the method applied by Christina et al. 
(2024b) in these areas using the R579 variety. Potential ADM under 
non-limiting water conditions was simulated to isolate the projected 
ADM’s response to the temperature increase.

At each site, and for each model formalism and parameterization, the 
difference in ADM between future years and a baseline was calculated, 
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using the period 2016-2025 as the average reference baseline. Then, the 
simulated yearly increase in ADM was calculated as the slope between 
the difference in ADM and the year. To assess model sensitivity to the 
formalisms and parameterizations, we calculated the coefficient of 
variation (CV) of the yearly increase in ADM among formalisms or pa
rameterizations. In addition, the relative contributions of model 
formalism and model parameterization to uncertainties were quantified 
by investigating the response of the simulated average yearly increase in 
ADM to the combination of the different model formalisms and 

parameterization based on a linear analysis of variance (Tao et al., 
2018). The share of variance by model formalism, parameterization, and 
interaction was calculated based on their respective sum of squares.

3. Results

3.1. RUE response to variety and crop cycle

The maximum and apparent RUE showed high variability depending 

Fig. 1. Apparent (RUEA) and maximum (RUEMAX) radiation use efficiency (g DM MJ-1 SRAD) depending on trials in the varietal experiment dataset (a), crop class 
(plant or ratoon crop, b, c), and variety (d, e). Black points and bars represent the predicted means and confidence interval by the mixed model. Small transparent 
points indicate the observed values.
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on countries, sites and varieties with RUEA values ranging from 0.5 to 
2.5 g DM MJ− 1 SRAD and RUEMAX ranging from 1.0 to 4.5 g DM MJ− 1 

SRAD (Fig. 1a). In our varietal experiment dataset, there was no inter
action between variety and trial for RUEA (F21,141 = 1.06; p = 0.398) or 
RUEMAX (F21,141 = 0.88; p = 0.613). Similarly, neither RUEA (F10,141 =

0.78; p = 0.644) nor RUEMAX (F10,141 = 1.26; p = 0.258) presented 
interaction between crop class and variety. In the mixed model without 
interaction, the crop class did not influence RUEA (F1,11 = 0.14; p =

0.71) or RUEMAX (F1,11 = 0.004; p = 0.95, Fig. 1b,c). On the contrary, 
RUEA (F39,236 = 3.08; p < 0.0001) and, to a lesser extent, RUEMAX 
(F39,236 = 1.54; p = 0.027) differed between varieties.

Considering RUEA, and crossed confidence intervals, a high number 
of significant differences were noticed among varieties, with mean 
predicted values ranging from 0.66 to 1.78 g DM MJ− 1 SRAD (Fig. 1d). 
The highest RUEA values were observed in varieties from Argentina (e. 
g., Fam, L91, RA or Tuc varieties) and Brazil (RB varieties). The change 

Fig. 2. Change in normalized maximum radiation use efficiency (RUEMAX) with mean air temperature depending on formalism (ApsimCanegro, Johnson, Mosicas, 
and Wang-Engel) based on default parameters values (a) and quantile regression using a Leaf-type (d) or GPP-type response (e) for very high and very low tem
peratures. Leaf-type and GPP-type response parameters for very low and high temperatures were obtained from the change in normalized net leaf photosynthesis 
(Anet, b) or normalized gross primary productivity (GPP, c) with temperature.
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in RUEMAX among varieties was much lower compared to RUEA. The 
mean RUEMAX predicted values ranged from 1.32 to 3.04 g DM MJ− 1 

SRAD (Fig. 1e). Nonetheless, considering pairwise regressions, only two 
varieties differed among themselves in the RUEMAX pairwise comparison 
at 5%, the SP80-1842 and F160 varieties (p = 0.0491). All others 
showed no significant differences in the pairwise comparisons.

3.2. Change in RUE with temperature

Based on the current default RUE formalism parameterizations 
(default temperature response parameter values), ApsimCanegro and 
Mosicas formalisms did not allow an appropriate envelope curve of 
normalized RUEMAX response to mean air temperature with high 
quantile loss index (QLI, Fig. 2a, Table 2). ApsimCanegro and Mosicas 
overestimated RUEMAX for temperatures ranging from 10 to 20◦C 
(Fig. 2a). Considering the net photosynthesis (Anet) response at leaf level 
or GPP response to air temperature, all formalisms were able to accu
rately represent the observed values range with low 99% QLI ranging 
from 0.0055 to 0.0057 for Anet and 0.0061 to 0.0065 for GPP (Fig. 2b,c 
Table 2). Based on a visual assessment, the Johnson formalism repre
sented a slightly lower increase in GPP for temperatures ranging from 10 
to 20◦C compared to other formalisms. Based on Anet and GPP re
gressions, we have fixed the base (TB) and high temperature (TX, TOPT2, 
or TREF) parameters in ApsimCanegro, Wang-Engel, and Johnson for
malisms to propose two options based on the leaf photosynthesis or GPP 
dynamics at very high temperature (Fig. 2d,e, Table 3). In the normal
ized RUEMAX – temperature response, whether based on Anet or GPP 
dynamics, all formalisms presented similar QLI, lower than the default 
parameterization (Table 2). Nonetheless, the Mosicas formalism failed 
to predict realistic base temperature in the GPP-type regression.

3.3. Change in RUEA simulations depending on formalism and 
parameterization

Dynamics of LAI, fraction of intercepted radiation (fiRAD), and cu
mulative intercepted radiation were calibrated for each variety, allow
ing accurate prediction of fiRAD with rRMSE ranging from 0.08 to 0.16 
depending on varieties (Fig. 3). Different parameters were calibrated, 
including a parameter controlling the daily rate of increase in LAI, the 
sensitivity of LAI to water stress, and the extinction coefficient 
(Table S1). A unique optimal RUEMAX value was used for all varieties 
(3.0 g DM MJ− 1 SRAD), based on the maximum predicted value per 
variety in the variance analysis (Fig. 1) and used to normalize the RUE – 
temperature response (Fig. 2). Nonetheless, to accurately simulate the 
aboveground dry mass dynamics, the sensitivity of RUE to water stress 
was calibrated for each variety and lowered for LCP85384 and NCo376 
varieties (Fig. 3d, Table S1). With a unique RUEMAX across varieties, 
simulated aboveground dry biomass (ADM) rRMSE ranged from 0.19 to 
0.43 (considering all formalism and parametrization combined, Fig. 3d). 
However, the choice of formalism and parameterization influenced the 
accuracy of simulated RUEA (Fig. 3e). Using the default parameteriza
tion, the ApsimCanegro, Mosicas, and Wang-Engel formalisms tended to 

overestimate RUEA values. For all four formalisms, the GPP-type and 
Leaf-type parameterization showed a lower rRMSE on RUEA compared 
to default parameterization (Fig. 3e). In addition, GPP-type and Leaf- 
type parameterization showed similar rRMSE in the Mosicas and Wan- 
Engel formalisms. Still, the GPP-type showed a slightly lower rRMSE 
(0.188) compared to Leaf-type parameterization (0.200) with Apsim
Canegro, and it was the opposite for Johnson formalism.

3.4. Biomass response to climate change and sensitivity to formalism and 
parameterization

The influence of model formalism choice and parameterization in 
model responses to future climate was explored using three selected sites 
with contrasting mean air temperatures in Reunion Island (Fig. 4), 
evaluated through projected potential ADM (without water stress). 
Regarding parameterization, the change from the default parameteri
zation to the new Leaf-type or GPP-Type parameterization significantly 
affected the rate of increase in ADM over the years in most sites (Fig. 4a). 
With the ApsimCanegro, Mosicas, and Wang-Engel formalisms, the 
default parameterization projected a lower increase in ADM over the 
years compared to the new Leaf and GPP-Type parameterization. For 
example, with ApsimCanegro in the intermediate site (TMEAN = 22.1◦C), 
the average yearly increase in ADM was 0.09 t ha− 1 yr− 1 with the default 
parameterization. At the same time, it was 0.36 and 0.28 t ha− 1 yr− 1 

with Leaf-type and GPP-type parameterizations (Fig. 4a). In addition, 
the difference was higher in the warmer site. With ApsimCanegro, the 
yearly increase in ADM was higher by 21, 200, and 307% with the GPP- 
type parameterization compared to the default one in the 18.7◦C, 
22.1◦C, and 25.1◦C sites, respectively (Fig. 4a). Similar behavior was 
observed for the Wang-Engel formalism and, to a lesser extent, the 
Mosicas formalism. With the Johnson formalism, lower differences be
tween default and new parameterization were observed, except in the 
coldest site, where the increase in ADM was lower with the new 
parameterization than with the default one.

The sensitivity to the choice of formalism or the choice of model 
parameterization was evaluated with the coefficient of variation (CV) in 
the yearly increase in ADM due to change in formalism (Fig. 4b) or 
parameterization (Fig. 4c). The sensitivity to the choice of formalism 
was low with the new parameterization (whether Leaf-type or GPP-type) 
compared to the default parameterization (Fig. 4b). Small differences 
were observed between Leaf-type and GPP-type regarding sensitivity to 
the choice of formalism with similar CV between 4.2% and 11.6% 
depending on sites, except for the GPP-type sensitivity in the warmest 
site with a CV of 21.6% due to lower early increase with the Johnson 
formalism. Regarding sensitivity to model parameterization, the 
ApsimCanegro formalism was the most sensitive, with CV ranging from 
24 to 58%, depending on the sites. By comparison, the Mosicas and 
Johnson formalism had CV ranging from 11% to 32% depending on 
sites. Nonetheless, differences in sensitivity to model parameterization 
mainly reflected the difference between the default parameterization 
and the newly proposed ones. Globally, except for the coldest site, model 
parameterization was the primary source of variability in the simulated 
increase in ADM (Fig. 4d). In the coldest site, model formalism had a 
strong influence due to discrepancies in RUE-temperature response at 
low temperatures among formalisms (Fig. 2).

4. Discussion

4.1. Contrasted response of RUEA and RUEMAX to variety

It is well known that sugarcane RUE declines with crop age, even 
when temperature, water, and nutrient status are not apparently 
limiting. This phenomenon was termed the “reduced growth phenom
enon” (RGP) by Park et al. (2005) and later on further explored by Van 
Heerden et al. (2010). Our results, based on a network of field experi
mental trials, suggest that the RUE before its decline, equivalent to 

Table 2 
Quantile loss index (QLI) in the different RUEMAX – temperature response 
formalisms depending on the quantile regressions on net leaf photosynthesis 
(Anet), gross primary productivity (GPP), and radiation use efficiency (RUE). The 
quantiles used for regressions were 0.99, 0.99, and 0.9 for Anet, GPP, and RUE 
due to differences in the number of observations.

Formalism Index Anet GPP RUE 
(default)

RUE 
(Leaf- 
type)

RUE 
(GPP- 
type)

ApsimCanegro QLI 0.00551 0.00613 0.0411 0.0248 0.0238
Mosicas QLI 0.00570 0.00626 0.0280 0.0249 0.0249
Wang-Engel QLI 0.00549 0.00628 0.0357 0.0242 0.0241
Johnson QLI 0.00554 0.00646 0.0313 0.0240 0.0272
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RUEMAX, is minimally influenced by varieties, not only locally as 
observed in high-yielding sites in Brazil (Dias et al., 2021a), but also for 
40 varieties across six producing countries in our study where only two 
varieties differed in RUEMAX (SP80-1842 and F160). Sugarcane breeders 
worldwide have likely involuntarily selected high RUEMAX genotypes 
while screening for high sucrose yields. Despite the expectation that 
RUEMAX is closely linked to crop yield, existing evidence does not always 
support this, likely due to RGP (De Silva and De Costa, 2012; Donaldson 
et al., 2008; Jones et al., 2019). Our results highlight how RUEA strongly 
differs among varieties. Thus, there are opportunities to understand the 
reasons better and exploit that for crop and agronomic intervention 
improvements to increase sugarcane production. As the RGP varies 

among sugarcane varieties (Dias et al., 2021a), growth slowdown 
sensitivity could explain differences in RUEA despite similar RUEMAX 
among varieties.

Lodging, declining leaf nitrogen (N) status with age, localized feed
back inhibition of photosynthesis by high sugar content in leaf and/or 
high stalk sucrose content, and high respiration were hypothesized to be 
the causes of RGP (Park et al., 2005; Van Heerden et al., 2010) but none 
of them are conclusive to date and perhaps will not be because these 
phenomena might have concomitant causes operating together to 
decrease RUE over time. Lodging is definitely involved with RGP (Van 
Heerden et al., 2015), and recent studies showed how lodging sensitivity 
differed significantly among varieties according to aerial traits such as 

Table 3 
Parameter values in the different RUEMAX – temperature response formalisms depending on the quantile regressions on net leaf photosynthesis (Anet), gross primary 
productivity (GPP), and radiation use efficiency (RUE).

Formalism Parameter Anet GPP RUEMAX 

(default)
RUEMAX 

(Leaf-type)
RUEMAX 

(GPP-type)

ApsimCanegro TB 13.0 7.0 10 13.0* 7.0*
TOPT1 32.1 27.6 20 27.8 29.6
TOPT2 35.6 32.6 40 35.6* 32.6*
TX 46.8 37.7 47 46.8* 37.7*

Mosicas TOPT 33.7 28.7 32 33.1 33.1
TDEC 0.032 0.027 0.0025 0.0027 0.0027
γ 1.14 1.17 2.0 2.0 2.0

Wang-Engel TB 7.0 7.0 0 7.0* 7.0*
TOPT 34.5 29.9 27.5 30.7 30.6
TX 39.4 36.0 40 40.6* 36.0*
β 0.39 0.44 1 0.84 0.44

Johnson TB 7.0 7.0 10 7.0* 7.0*
TOPT 33.4 26.4 25 29.6 29.1
TREF 34.0 29.1 33 34.0* 29.1*
c 2.50 2.45 2 1.80 2.21

* fixed values in the regression.

Fig. 3. Comparison between observed and simulated leaf area index (LAI, a), fraction of intercepted radiation (fiRAD, b), cumulated intercepted global radiation 
(iRADc, c), aboveground dry mass (ADM, d), and apparent radiation use efficiency (RUEA, e) depending on the formalism used (ApsimCanegro, Mosicas, Wang-Engel, 
and Jonhson) and the parameterization (Default, Leaf-type, and GPP-type). The relative rRMSE, Willmott d index and R2 were indicated per variety or formalism 
parameterization. The dashed lines represent the identical curve (1:1).
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tillering and plant height (Christina et al., 2024a) but also potentially to 
belowground traits (Jongrungklang et al., 2018). However, there were 
many situations where crops did not lodge, but RUE still declined to
wards harvest under unlimited growth conditions (Park et al., 2005; Van 
Heerden et al., 2010).

Differences in RGP among varieties may represent differences in 
sensitivity to environmental limitations when considering two key 
physiological processes - photosynthesis and respiration. Leaf N status is 
closely linked to photosynthesis, and previous studies suggest that as the 
sugarcane canopy begins to expand, the plant relies substantially on its 
internal N reserves (Sage et al., 2013). As a result, the available N is 
distributed across a larger leaf area, therefore declining Anet over time. 
However, evidence suggests that the N use efficiency varies among 

sugarcane genotypes (Robinson et al., 2007), which has a close rela
tionship with photosynthesis, as most leaf N is invested in photosyn
thetic proteins such as Rubisco and PEPC (Sage et al., 2013). 
Alternatively, sugarcane photosynthesis can be inhibited by the accu
mulation of sugars in leaves (McCormick et al., 2009, 2008, 2006). 
When comparing the sensitivity of sugarcane to sucrose spraying – a way 
to inhibit photosynthesis, there was a significant variation between 
genotypes when considering Rubisco and PEPC abundances and activ
ities (Ribeiro et al., 2017). In that regard, one could argue that other 
leaves within the sugarcane canopy could compensate for the inhibitory 
effect of carbohydrates on the photosynthesis of light-exposed leaves 
and prevent or even reduce a decline in overall canopy photosynthesis 
(Inman-Bamber et al., 2011), a topic that deserves more research. In 

Fig. 4. Change in projected potential sugarcane aboveground dry mass (ADM without water stress, t ha-1) from 2015 to 2100 compared to the average 2016 to 2025 
period (a) and coefficient of variation (CV) of the average yearly increase in ADM among model formalisms depending on the parameterization (b) and among the 
parameterization depending on the formalism (c) in three selected sites of Reunion Island with contrasted mean air temperatures (TMEAN = 18.7, 22.1, and 25.1 ◦C, 
respectively). (d) represent the share of variance in yearly increase in ADM depending on formalism choice, parameterization choice, and their interaction in the 
three selected sites. Sugarcane growth was projected under the RCP 8.5 climate change scenario.
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fact, leaf photosynthesis in sugarcane is modulated more by the leaf 
carbohydrate dynamics than by leaf carbohydrate concentration 
(Ribeiro et al., 2017). When active sinks demand energy and carbon, leaf 
photosynthesis in sugarcane is stimulated (Ribeiro et al., 2017). In such 
a scenario, high-yielding genotypes might present stronger sinks and 
higher stimulation of photosynthesis compared to low-yielding geno
types. Taken together, these findings would suggest that the extension of 
down- or up-regulation of photosynthesis by sugars is 
genotype-dependent and could justify variations in RGP and RUEA 
among sugarcane cultivars studied herein.

Regarding respiration and its components, the scientific literature is 
very limited when considering its importance in field-grown crops, such 
as sugarcane. For instance, both maintenance and growth respiration 
would increase due to high temperatures (Amthor, 2025), and literature 
suggests that increased biomass production for summer-started crops 
limits high sugarcane yields compared to winter-started ones under 
well-watered and managed conditions, possibly due to elevated main
tenance respiration of larger crops (Van Heerden et al., 2010). As the 
RGP occurs during the final months of the crop cycle during stalk 
maturation in dry and cold winter seasons (Martins et al., 2025), one 
could argue that changes in respiration are not key in determining RGP 
in tropical conditions. However, the same is not true when considering 
photosynthesis, which is significantly reduced during winter and 
certainly reduces RUEA in sugarcane plants (Martins et al., 2024, 2025). 
Although there is a significant variation in leaf respiration rate among 
sugarcane genotypes (Almeida et al., 2021; Ribeiro et al., 2017; Tejera 
et al., 2007), the impact of such a process on overall canopy respiration 
and then on RGP and RUEA of sugarcane remains unknown. Under
standing this response may be a crucial target for crop improvement 
(Amthor, 2025).

In addition to RGP sensitivity, other processes could explain the 
difference in RUEMAX and RUEA response to variety, such as the diffuse 
radiation effect (determining yield factor) or the water stress sensitivity 
(limiting factor). RUE is well known to increase with the fraction of 
diffuse radiation (Sinclair et al., 1992). Under diffuse radiation, light 
penetrates more evenly through the canopy, allowing not only the upper 
but also the lower and middle leaves to photosynthesize efficiently, 
which improves the overall canopy photosynthetic productivity. How
ever, the extent to which different sugarcane canopy architectures 
among varieties may induce different responses to diffuse radiation still 
needs deeper investigation (Luo et al., 2014, 2013). Under water-limited 
conditions, there is evidence that some varieties are better than others 
regarding water deficit tolerance (Inman-Bamber and Smith, 2005; 
Venkataramana et al., 1986). Such differences in key periods of sugar
cane growth could explain why RUEA may differ among varieties while 
variability in RUEMAX is low. Nonetheless, previous studies on an 
extensive range of varieties showed that the genotype × water stress 
interaction effect on stomatal conductance and yield were small 
compared to the genotype effect (Basnayake et al., 2015, 2012), sug
gesting that differences in water-stress resistance may not be a signifi
cant effect explaining the high difference in RUEA. In our study, most of 
the experiments were irrigated, so no or limited water stress should have 
occurred, supporting the hypothesis that differences in RUEA may be 
primarily linked to differences in growth slowdown sensitivity (Dias 
et al., 2021a).

Taken together, our findings highlight the value of RUEA as an 
empirical framework to capture varietal differences, while also under
scoring its limitations for mechanistic understanding. Future research 
should aim to disentangle how processes such as respiration, biomass 
partitioning, N and sucrose dynamics, under contrasting temperature 
regimes and crop age contribute to RUEA variation. Strengthening these 
physiological links would improve their predictive capacity and use
fulness in supporting breeding and climate adaptation strategies. In 
addition to the phenomena mentioned, elite genotypes have different 
strategies to achieve high yields, e.g., differences in water and N use 
efficiency (Acreche, 2017), and even differences in the number of sinks 

and early source-sink dynamics (Saez et al., 2019). Although these 
varietal strategies do not directly explain the variability in RUEA and 
RUEMAX, it would be important to consider them as physiological traits 
indirectly selected by breeders. Moreover, whether through models or 
designed trials, it would be feasible to detect the timing and duration 
within the cycle during which genotypes grow with RUEMAX as a se
lection trait.

4.2. Modeling the RUE response to temperature

Improving the temperature response in crop models is essential to 
reduce the uncertainty of crop yield projections in the context of global 
warming (Maiorano et al., 2017; Wang et al., 2017). Our study un
derscores that the sensitivity of biomass production response to tem
perature is more influenced by the choice of cardinal temperatures 
(base, optimal, and maximum) than the choice of formalism itself. 
Furthermore, improvements in the parameterization significantly 
reduced the differences between formalisms. Therefore, the develop
ment of a better strategy for parameterizing appropriate cardinal tem
peratures in sugarcane crop models takes precedence over improving 
the formalism’s structure.

One limitation of this study is that the RUE-temperature responses 
were partly derived from literature datasets, which originated from 
experiments conducted under diverse environmental and management 
conditions. As a result, differences in measurement protocols and site- 
specific factors may have introduced additional variability into the 
analysis. Despite this limitation, the environmental variability experi
enced in the dataset is its greatest strength, and it would be very costly to 
consider a multi-environment trial to parameterize the models. In this 
context, the use of envelope curves to describe the RUE-temperature 
response minimize the influence of study-specific biases, as this 
approach assesses the upper boundary of physiological response. Future 
research based on multi-location trials explicitly designed to investigate 
the interaction between temperature and RUE would provide more 
mechanistic insights and reduce uncertainty in parameterization.

Based on our study, we recommend that crop models using daily 
RUEO as a parameter apply a base temperature of 7◦C and an optimal 
temperature ranging from 30 to 33◦C, depending on formalisms, should 
be encouraged. This base temperature is lower than the ones historically 
adopted to represent photosynthesis in the widely used sugarcane crop 
models (TB = 9◦C, APSIM, Keating et al., 1999; TB = 10◦C, 
DSSAT-Canegro, Jones and Singels, 2018), but it is consistent with 
carbon exchange measurements at the canopy (Colmanetti et al., 2024; 
Cuadra et al., 2012) and leaf-scale photosynthesis (Peixoto and Sage, 
2017; Sage et al., 2013). Nevertheless, estimating the maximum mean 
daily temperature based on RUEMAX is difficult considering the usual 
sugarcane-cultivated regions since average temperature above 35◦C is 
not observed in such areas. Therefore, obtaining the uppermost RUEMAX 
temperature response based on biomass accumulation will require ex
periments in controlled environments or specific experiments under 
very warm regions.

With the currently available datasets, we recommend using GPP-type 
maximum temperatures between 36 and 38◦C for models based on air 
temperature above the canopy (e.g., DSSAT-Canegro, APSIM-Sugar, and 
MOSICAS) and using Leaf-type maximum temperatures between 41 and 
47◦C for models based on the air temperature inside the canopy (e.g., 
STICS, Kebalo et al., 2025) depending on formalism. Nonetheless, for 
models that use a daily time step, our study suggests that the maximum 
temperature adjustments are less sensitive since those conditions are not 
common over regions where sugarcane is cultivated (neither nowadays 
nor in the future). However, it should be important for models using 
photosynthesis at an hourly scale (e.g., JULES, Vianna et al., 2022). Even 
if our study highlights a low sensitivity to the choice of RUE-temperature 
formalism, we recommend Wang-Engel as a more appropriate formalism 
for future studies, as i) the parameters have clearer meanings compared 
to Johnson formalism, ii) the ApsimCanegro formalism was found to be 
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highly sensitive to the cardinal temperature values compared to other 
formalisms, and iii) Mosicas does not allow a base temperature to be 
specified.

Whether the RUEO response to temperature may differ among vari
eties remains unsolved in our analysis. The absence of interaction be
tween variety and the trial on RUEMAX in our study suggests that 
varieties should respond similarly to temperature (as suggested by 
Parent and Tardieu, 2012, in various crops). Previous studies on an in
ternational dataset also showed low interaction between genotype and 
environments with stable RUEO in four countries (Jones et al., 2019). 
Nonetheless, previous studies at the leaf scale suggest that some sugar
cane varieties or species may differ in their photosynthetic rate response 
to chilling (Du et al., 1999) or heat stress (Kohila and Gomathi, 2018; Liu 
et al., 2020; Peixoto and Sage, 2017). Currently, we recommend fixing 
the cardinal temperature parameters for the sugarcane species, regard
less of varieties and across environments. More detailed datasets may 
reveal that RUEMAX response to temperature significantly differs among 
varieties.

As highlighted by our study, the estimation of cardinal temperatures 
(base, optimal, and maximum) for RUE has substantial consequences for 
application in climate change studies, with potential underestimation of 
the increase in ADM in previous studies using the two most used models, 
APSIM-Sugar (e.g., Dias et al., 2021b) and DSSAT-Canegro (e.g., Marin 
et al., 2013; Singels et al., 2014). While we are confident that our new 
parameterization should reduce the uncertainty of ADM estimates under 
projected changing climates, the current formalisms in crop models still 
contain an inherent bias by not considering the daily temperature range 
(minimum at night and maximum during the day). High temperatures at 
hourly time scales are strongly correlated with high vapor pressure 
deficit (VPD) and could reduce photosynthesis at midday and potentially 
daily RUE despite non-stomatal control of water loss (Márquez et al., 
2024). For example, a modeling approach using an hourly time scale 
model (JULES) simulated an abrupt negative impact on sugarcane yields 
when daytime temperatures above 35◦C become more frequent in Brazil 
(Vianna et al., 2022). In addition, we cannot rule out the influence of 
low night temperatures in reducing sugarcane photosynthesis, as re
ported in other species (Santos et al., 2011). To overcome such limita
tions in current crop models, a first option would be to develop hourly 
time-scale routines into crop models, but it becomes potentially more 
difficult to use in climate change scenario assessments. A second option 
would be to use an empirical effect of the difference between day and 
night VPD on transpiration efficiency and RUE to account for the effect 
of extreme daily temperatures (as done in APSIM, Lobell et al., 2013). 
However, it may increase the level of empiricism in model parametri
zation. Most importantly, an appropriate compromise has to be found 
between biological reality and parsimony in crop models (Hammer 
et al., 2019; Yin et al., 2021).

4.3. Recommendation for calibration strategy in crop models and 
varietal-sensitivity improvements

Our results illustrate that the implications of parameterization differ 
across production environments. In hot regions, where mean annual 
temperatures approach or exceed 25◦C (e.g., northern Brazil, northern 
Australia, India, Thailand), biomass predictions may become particu
larly sensitive to the parameterization of RUE cardinal temperatures. By 
contrast, in cooler regions (e.g., Argentina, South Africa, Louisiana in 
USA), the choice of formalism tends to have a stronger influence on 
model outcomes than the exact parameter values. These findings suggest 
that varietal-specific parameterization would be most beneficial when 
simulating sugarcane performance in high-temperature environments or 
when evaluating genotypes with contrasting sensitivities to RGP.

As discussed in the previous section, the first step in calibrating crop 
models is to standardize the cardinal temperatures for sugarcane across 
all environments and varieties. If the cardinal temperatures or formal
isms are modified from previous model versions, it may necessitate 

reparametrizing RUEO in crop models. This does not imply that earlier 
studies were incorrect, but rather that they may have used an inappro
priate RUEO (e.g., very high RUE in Marin et al., 2011), or changed other 
parameter values (e.g., distinct extinction coefficient among sites, Dias 
et al., 2021a, 2019), to compensate for underestimating the effect of 
temperature.

This study used an RUEO value of 3.0 g DM MJ− ¹ SRAD using ADM 
and iRAD. It was derived from trials conducted under optimal temper
ature and irrigation conditions in high-yielding environments in Brazil. 
This value is higher than the ones used in previous studies modeling 
sugarcane growth in South Africa, Zimbabwe, USA, Australia, or La 
Reunion, with RUEO ranging from 1.3 to 2.1 g DM MJ− 1 SRAD 
depending on crop models and varieties (Jones et al., 2021; Thorburn 
et al., 2010), which were conducted under lower temperature condi
tions. Nevertheless, our value is lower than the one used in modeling 
studies in Brazil with Canegro in DSSAT v4.5 (Singels et al., 2010), with 
RUEO values around 4.6 g DM MJ− 1 SRAD (Dias and Sentelhas, 2017; 
Marin et al., 2015). Herein, the RUEO chosen is directly linked to the 
dataset used and may be subjected to biases, such as measurement errors 
or the absence of data from even higher temperature conditions. This 
value can be used as a reference, but the choice of the RUEO value must 
also consider the processes incorporated into carbon assimilation in crop 
models (Table 4). This includes factors such as the type of radiation used 
(RAD vs. PAR), whether the biomass considered includes above- and 
belowground components or only aboveground, and whether mainte
nance respiration is considered before (net RUE) or after (gross RUE) C 
assimilation.

As an initial approach, we recommend fixing the RUEO across all 
environments. However, while most models account for water stress, 
other processes influencing carbon assimilation are not always included 

Table 4 
Processes included in the RUEO concept and daily RUE calculations in four crop 
models, and possibility to perform a varietal calibration on these processes.

DSSAT- 
Canegro

APSIM MOSICAS STICS

Processes 
included in 
RUEO

Biomass whole ADM whole ADM 
+perennial 
reserve

Radiation PAR RAD PAR PAR
Respiration gross 

RUE
net 
RUE

gross 
RUE

net RUE

Processes 
accounted 
for in daily 
RUE 
calculation

Water stress yes yes yes yes
Nitrogen 
stress

no yes no yes

Diffuse 
radiation 
effect

no no yes no

Change in 
root-to- 
shoot

yes yes yes yes

Lodging yes yes1 no no
RGP no yes1 no no

Possibility to 
perform a 
varietal 
calibration

Water stress 
sensitivity

yes yes yes yes

Nitrogen 
stress 
sensitivity

no yes no yes

Diffuse 
radiation 
effect

no no yes no

Change in 
root-to- 
shoot

no yes yes no

Lodging yes yes1 no no
RGP no yes1 no no

*RGP: reduce growth phenomenon; RAD: global radiation; PAR: photosynthetic 
active radiation; ADM: aboveground dry mass

1 See section ‘2.2.3. Reduced growth phenomenon (RGP)’ in Dias et al. (2019)
for further details.
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(Table 4). The processes not necessarily included in the models are 
diverse: N stress, lodging and other RGP processes in high-yield envi
ronments, unpredictable variations in the root-to-shoot ratio (which is 
highly influenced by environmental factors, as highlighted by Chevalier 
et al., 2025), and, for example, the effects of diffuse radiation. When the 
crop models do not consider these processes, it may be necessary to 
calibrate the RUEO for a homogeneous environment (in terms of soil and 
climate). Nonetheless, modelers should remain aware that this calibra
tion might inadvertently compensate for other environmental factors the 
model cannot adequately represent.

Regarding varietal effects, our results suggest that RUEO should be 
standardized across varieties. Therefore, varietal calibration should 
focus on other processes that influence the daily RUE calculation in crop 
models, as mentioned in the discussion on variety in section 4.1. Many 
processes that vary among varieties are not currently accounted for in 
crop models or are accounted for but not easily calibrated per variety 
(Table 4). In such cases, a varietal calibration of RUEO may be necessary 
with the same limits as previously mentioned. Still, to effectively use 
these models as tools for evaluating varieties and potential adaptations 
to climate change, it is essential to incorporate these processes in future 
crop model development, especially for high-yielding varieties. For 
these high-yielding varieties, two key processes warrant further inves
tigation: i) integrating RGP mechanisms into crop models more mech
anistically, as suggested by Van Heerden et al. (2015) in Canegro 
structure, and ii) assessing how respiration is incorporated into crop 
models, given its critical role and sensitivity to varying temperature.

5. Conclusion

This study provides critical insights into sugarcane RUE, showing 
that RUEMAX is stable across elite varieties and is highly temperature- 
dependent, while RUEA varies significantly for these factors. There
fore, in crop modeling, RUEMAX should be assumed constant across ge
notypes and environments. Based on an international dataset, the 
analysis emphasizes the importance of accurately parameterizing crop 
model formalisms and cardinal temperatures (optimal: 30–33◦C) to 
improve projections of sugarcane yield under climate change. Addi
tionally, it offers a reference for calibrating RUE temperature response 
formalisms in major crop models and provides guidelines for model 
calibration. While RUEMAX remains consistent, the sensitivity of RUEA to 
environmental factors highlights the need for refining crop models to 
capture better varietal responses to factors related to RGP (i.e., lodging, 
the decline in N use efficiency with age, and respiration of large crops). 
Incorporating these mechanisms will enable crop models to more 
accurately simulate sugarcane productivity dynamics, supporting 
climate impact assessments and breeding programs for high-yield, 
climate-resilient varieties.
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Lenth, R.V., Bolker, B., Buerkner, P., Giné-Vázquez, I., Herve, M., Jung, M., Love, J., 
Miguez, F., Riebl, H., Singmann, H., 2023. emmeans: Estimated Marginal Means, aka 
Least-Squares Means.

Leroux, M.D., Bonnardot, F., Kotomangazafy, S., Veerabadren, P., Oikil Ridhoine, A., 
Somot, S., Alias, A., Chauvin, F., 2021. Regional climate projections and associated 
climate services in the southwest Indian ocean basin EGU21-7029. https://doi.org 
/10.5194/egusphere-egu21-7029.

Linnenluecke, M.K., Nucifora, N., Thompson, N., 2018. Implications of climate change 
for the sugarcane industry. Wiley Interdiscip. Rev.-Clim. Change 9, e498. https:// 
doi.org/10.1002/wcc.498.

Liu, Y.Y., Li, J., Liu, S.C., Yu, Q., Tong, X.J., Zhu, T.T., Gao, X.X., Yu, L.X., 2020. 
Sugarcane leaf photosynthetic light responses and their difference between varieties 
under high temperature stress. Photosynthetica. https://doi.org/10.32615/ 
ps.2020.038.

Lloyd, J., Taylor, J.A., 1994. On the temperature dependence of soil respiration. Funct. 
Ecol. 8, 315–323. https://doi.org/10.2307/2389824.

Lobell, D.B., Hammer, G.L., McLean, G., Messina, C., Roberts, M.J., Schlenker, W., 2013. 
The critical role of extreme heat for maize production in the United States. Nat. Clim. 
Change 3, 497–501. https://doi.org/10.1038/nclimate1832.

Long, S.P., 1999. 7 - Environmental responses. In: Sage, R.F., Monson, R.K. (Eds.), C4 
Plant Biology, Physiological Ecology. Academic Press, San Diego, pp. 215–249. 
https://doi.org/10.1016/B978-012614440-6/50008-2.

Luo, J., Pan, Y.-B., Xu, L., Zhang, Y., Zhang, H., Chen, R., Que, Y., 2014. Photosynthetic 
and canopy characteristics of different varieties at the early elongation stage and 
their relationships with the cane yield in sugarcane. Sci. World J. 2014, 707095. 
https://doi.org/10.1155/2014/707095.

Luo, J., Que, Y., Zhang, H., Xu, L., 2013. Seasonal variation of the canopy structure 
parameters and its correlation with yield-related traits in sugarcane. Sci. World J. 
2013, 801486. https://doi.org/10.1155/2013/801486.
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Menzer, O., Reichstein, M., 2018. Basic and extensible post-processing of eddy 
covariance flux data with REddyProc. Biogeosciences 15, 5015–5030. https://doi. 
org/10.5194/bg-15-5015-2018.

Yin, X., Struik, P.C., Goudriaan, J., 2021. On the needs for combining physiological 
principles and mathematics to improve crop models. Field Crops Res. 271, 108254. 
https://doi.org/10.1016/j.fcr.2021.108254.

M. Christina et al.                                                                                                                                                                                                                              Agricultural and Forest Meteorology 375 (2025) 110854 

16 

https://agritrop.cirad.fr/610864/
https://doi.org/10.1016/S0308-521X(98)00028-6
https://doi.org/10.1038/nplants.2017.102
https://doi.org/10.1038/nplants.2017.102
https://doi.org/10.1016/j.agrformet.2018.01.005
https://doi.org/10.1016/j.agrformet.2018.01.005
https://doi.org/10.5194/bg-15-5015-2018
https://doi.org/10.5194/bg-15-5015-2018
https://doi.org/10.1016/j.fcr.2021.108254

	Sugarcane radiation use efficiency: varietal differences, temperature dependence, and implications for modeling biomass acr ...
	1 Introduction
	2 Material & methods
	2.2 RUE datasets
	2.3 Leaf photosynthesis and GPP datasets
	2.4 RUE calculation and varietal effect analysis
	2.5 Description of RUE - temperature formalisms in crop models
	2.6 Temperature response regression analysis
	2.7 Crop model sensitivity to RUE-T formalism and parameterization

	3 Results
	3.1 RUE response to variety and crop cycle
	3.2 Change in RUE with temperature
	3.3 Change in RUEA simulations depending on formalism and parameterization
	3.4 Biomass response to climate change and sensitivity to formalism and parameterization

	4 Discussion
	4.1 Contrasted response of RUEA and RUEMAX to variety
	4.2 Modeling the RUE response to temperature
	4.3 Recommendation for calibration strategy in crop models and varietal-sensitivity improvements

	5 Conclusion
	Data availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Supplementary materials
	References


