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Introduction

Satellite imaging technologies have become an extremely 
useful tool for collecting data in various agricultural 
applications because they allow the acquisition of 
standardised and repeated information at different spatial 
and temporal scales (Gillan et al. 2019; Geilpel et al. 2021). 
However, the major limitations of currently available satellite 
sensors include high costs, insufficient spatial resolution for 
identifying the proposed variable, the risk of cloudy scenes, 
and long revisit periods (Yang et al. 2017).

To address this gap, unmanned aerial vehicles (UAVs), 
commonly called drones, have become increasingly valuable 
in various applications, such as vegetation monitoring 
(Merz and Chapman 2012), agriculture (Marino et al. 2019; 
Théau et al. 2020), water-quality analyses (Koparan et al. 
2019) and soil management (Oliveira et al. 2019). Recent 
advancements in drone technology and the development 
of photogrammetric software have led to the production of 
detailed 3D representations of rangeland vegetation (Barbedo 
2019; Barnetson et al. 2020; Lussem et al. 2020; Geilpel 
et al. 2021). Drones can observe images at centimetre 
resolution for frequent on-demand deployments yielding 
imagery on scales sufficiently fine to resolve low-structure 
rangeland vegetation (Barnetson et al. 2020). When drone 
images overlap, they can be used to create a 3D model of 
the observed area (Visockiene et al. 2016). Software is 

available that can produce digital surface models (DSM), 
orthophotos and other related products (Bossoukpe et al. 
2021a). Furthermore, vegetation indices offer a quantitative 
measurement of vegetation features per image pixel (Yeom 
et al. 2019). Machine learning algorithms, such as Random 
Forest Regression and Partial Least Squares Regression, 
have been applied to estimate rangeland plant biomass and 
quality using highly correlated spectral reflectance data, often 
outperforming simple linear regression models (Vera-Velez 
et al. 2023; Zwick et al. 2024). These new tools, along with 
the imaging products we can create using them, have the 
potential to address a variety of rangeland management 
issues (Ogungbuyi et al. 2024).

The Sahel region of Africa forms a transitional zone 
between the Sahara Desert to the north and more fertile 
southern regions. Spanning from Senegal in the west to 
Djibouti in the east (Figure 1), the rangeland is pivotal for 
pastoralism, contributing significantly to overall food security 
and the local economy (De Haan et al. 2016). It also provides 
vital ecological services, including erosion protection, wildlife 
habitat support and carbon sequestration (Umutoni et al. 
2015; Mbow et al. 2020; Gebremedhn et al. 2025).

However, many of these ecosystems are deteriorating due 
to climate change, drought and desertification (Tagesson et 
al. 2015; Lo et al. 2022; Wieckowski et al. 2024), as well as 
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suboptimal grazing management (Gebremedhn et al. 2023). 
Key parameters for grazing systems in the region are crude 
protein (CP), neutral detergent fibre (NDF), acid detergent 
fibre (ADF) and digestible organic matter (DOM) (Barchiesi-
Ferrari et al. 2011; Amole et al. 2022). The methods 
currently used to evaluate plant biomass and quality in these 
Sahel rangelands involve labour-intensive field surveys, 
which are often difficult to generalise to larger areas, or 
laboratory-based techniques that involve time-consuming 
pre-processing procedures (Escarcha et al. 2018). 
Sustainable pastoralism also depends on understanding 
rangeland climate and management practices. However, 
describing the antecedent conditions of rangeland resources 
is challenging due to the heterogeneity of grazing landscapes 
at both micro and macro spatial scales throughout the year. 
Many pastoralist properties are extensive, making it difficult 
to detect issues in a timely manner through ground scouting 
alone (Lo et al. 2022, 2024).

In contrast, high-resolution imagery from drones enables 
efficient capture of low-altitude images over vast areas 
(Zhang et al. 2021). This capability has the potential to 
simplify the estimation of herb biomass and tree community 
characteristics in the Sahelian rangeland ecosystems 
(Bossoukpe et al. 2021b; Taugourdeau et al. 2022). 
However, to the best of the researchers’ knowledge, the 
use of affordable drone technology to assess the quality of 
rangeland vegetation for livestock feeding in the Sahelian 
rangelands remains underexplored. Most studies using 
near-infrared imagery (NIR) have been conducted in 
temperate rangeland ecosystems, rather than in tropical or 
arid rangelands (Meng et al. 2022; Wang et al. 2024; Zhu et 
al. 2024). However, the use of drones equipped with NIR or 
multispectral cameras remains costly, making them difficult 
to deploy for many researchers and farmers in low-income 
settings (Cucho-Padin et al. 2020; Makam et al. 2024). 
Therefore, this study aimed to assess the feasibility of using 
a budget-friendly drone equipped with visible red, green and 
blue (RGB) cameras to estimate herbaceous biomass and 

quality in the Senegalese rangeland ecosystem. Specifically, 
(i) we estimated herbaceous biomass and quality attributes 
based on RGB imagery outputs using a random forest model; 
and (ii) we analysed the multivariate relationships between 
drone-derived indices and vegetation attributes.

Material and methods

Description of the study area
The study was carried out in the savanna ecosystem of 
Senegal located in the Sahel region of West Africa (Figure 1). 
The region has a unimodal rainfall pattern, with a short rainy 
season extending from June to October. Annual rainfall 
ranges from 200 mm in the northern Sahelian zones to 
1 200 mm in the southern sub-humid zones, reflecting a clear 
North–South gradient. Average annual temperatures are 
35 °C.

The soil varies across the gradient, with sandy soils 
dominating the northern sites and ferralitic soils more 
common in the southern regions (Taugourdeau et al. 
2023). Vegetation types represent a diversity of rangeland 
ecosystems, ranging from open Sahelian steppe with sparse 
herbaceous cover and almost no trees, to denser wooded 
savannas with higher vegetation cover. This range of 
ecological conditions enhances the applicability of the study to 
broader dryland contexts. The land-use system in the region 
is mainly pastoral; animal husbandry is completely dependent 
on natural vegetation. Cattle breeders are nomadic and use 
most of the land for natural grazing.

Drone imagery collection
A total of 43 sites were selected along the North–South 
climatic and ecological gradient. Each site covered 100 m x 
100 m (1 ha). Inside each 1 ha site, three wooden triangles, 
painted in white, were marked out prior to the flight being 
carried out to delimit the camera images. Flights were 
conducted using a Parrot ANAFI drone with a PIX4D capture 
application (https://www.pix4d.com/product/pix4dcapture) 
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using the double grid flight plan. Flight altitude was 80 metres, 
with 80% front and side overlap at low speed and an 80° 
camera angle.

The drone surveys were conducted at the end of the 
growing season, between September and October, coinciding 
with the flowering stage of most herbaceous species. 
Flights began in the northern sites (September), where the 
growing season ends earlier, and progressed southward 
(late September to October). Flights were performed during 
daylight hours, with some variability in lighting conditions 
based on time of day and site accessibility.

Biomass sampling and collection
Following each drone flight, biomass sampling was conducted 
within the corresponding 1 ha site. Inside each site one to 
three 1 m2 quadrats were distributed randomly to capture 
intra-site variability. At each site, herbaceous biomass 
was harvested from the 1 m² quadrats, yielding a total of 
80 quadrats across all 43 sites.

All herbaceous vegetation within each quadrat was clipped 
at ground level. Fresh mass (FM) was immediately weighed 
in the field. Samples were then stored in a plastic bag and 
later oven-dried at 65 °C to constant weight to obtain dry 
mass (DM). Data collection was synchronised with the drone 
flights to ensure that all samples were taken during the peak 
flowering stage, thereby reducing seasonal error related to 
differences between flowering and senescence stages.

Vegetation quality analysis
To analyse vegetation quality, the DM was ground to 1 mm, 
then scanned to acquire the spectral signature using a Bruker 
TANGO OPUS FT-NIR spectrometer. Spectral data were 
recorded as absorbance (A) using the following equation 
(Cambou et al. 2016):
	 A = log 1/ R	 (1)

where R is reflectance.
Subsequently, indicators of vegetation quality for 

livestock feeding including the CP, NDF, ADF, and DOM 
of the samples were estimated from the samples. These 
predictions were based on models calibrated by the animal 
feed laboratory at CIRAD’s SELMET Joint Research Unit 
in Montpellier, France. The models were established with 
reference to values from vegetation biomass samples 
collected throughout the savanna ecosystem of Senegal 
(Table 1).

Image processing
RGB images were processed with PIX4DMapper 
(Photogrammetry software https://www.pix4d.com/) using 
Structure from Motion (SfM). SfM is a photogrammetry 
technique used to obtain reliable data of real-world objects 
in the environment by creating a variety of 3D spatial models 
as well as 2D orthomosaics from a set of images. Moreover, 
six different indices for RGB reflectance use were calculated 
from the pixel orthophotographs (Table 2).

We used the digital numbers directly when calculating 
the indices. The mean and standard deviation of the image 
processing outputs are presented in Table 3.

Data analysis

Data were analysed using R Statistical Software version 
4.2.2 (R Core Team 2022). Model calibration and validation 
was conducted using a random forest algorithm, with the 
field samples of vegetation biomass (FM and DM) and 
quality parameters (CP, NDF, ADF and DOM) as response 
variables, and drone image output as explanatory variables. 

Table 1: Mean and standard deviation (SD) of measured herbaceous 
biomass, and chemical compositions (quality)

Vegetation 
biomass (g/m2)

Vegetation chemical composition
(%)

FM DM CP NDF ADF DOM
Mean 506.55 414.25 7.43 69.08 42.58 33.04
SD 211.84 173.41 3.41 9.06 4.94 7.93
ADF = acid detergent fibre	 DOM = digestible organic matter
CP = crude protein	 FM = fresh mass
DM = dry mass	 NDF = neutral detergent fibre

Table 2: List of vegetation indices used

Acronym Name Formula Source
GR Normalised difference Green Red index (Red − Green) / (Red + Green) Bhagat et al. 2020
GB Normalised difference Blue Green index (Green − Blue) / (Green + Blue) Bannari et al. 1995
RB Normalised difference Blue Red index (Red − Blue) / (Red + Blue) Bossoukpe et al. 2021b 
VARI Visible atmospherically resistant index (Green − Red) / (Green + Red − Blue) Gitelson et al. 2002
EXG Excess of green Green − 0.39 × Red − 0.61 × Blue Barbosa et al. 2019
GLI Green leaf index (2 × Green – Red − Blue) / (2 × Green + Red + Blue) Louhaichi et al. 2001

Table 3. Mean and standard deviation (SD) of photogrammetry image processing outputs (n = 80)

MH Hmax Red Blue Green GR GB RB VARI EXG GLI
Mean 0.14 0.42 155.32 65.74 128.52 0.39 0.33 0.40 0.11 27.84 0.07
SD 0.22 1.39 43.78 32.51 32.51 0.18 0.15 0.18 0.10 20.00 0.07
EXG = excess of green	 Hmax = maximum height
GB = normalised difference Blue Green Index	 MH mean height
GLI = green leaf index	 RB = normalised difference Blue Red Index
GR = normalised difference Green Red Index	 VARI = visible atmospherically resistant index
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The predictor variables were the heights (average and 
maximum height), red, green and blue digital numbers, and 
the six vegetation indices (Table 2).

For each dataset, we randomly split the data into two 
groups, using two thirds for training (calibration dataset) 
and one third for validation (validation dataset). To address 
the unbalanced distribution of FM and DM, we applied a 
root mean square transformation. For CP, NDF, ADF and 
DOM, a log transformation was used. We determined the 
percentage of explained variance to assess how effectively 
the model fitted on the calibration dataset. In each iteration of 
the random forest process, 500 regression trees were used. 
For each tree, six predictor variables were randomly selected 
from one-third of the calibration dataset. The significance 
of each predictor variable was evaluated based on mean 
squared error (MSE) reduction and node purity. Mean 
reduction in accuracy was calculated by comparing the quality 
of regression trees with and without the variable. The variable 
with the highest mean percentage of precision reduction was 
considered the most important. In regression, node purity 
refers to the overall reduction of the residual sum of squares 
when dividing by a single variable, averaged over all trees. 
This indicates how much the prediction reduces variance.

The calibrated random forest models were used to predict 
vegetation biomass and chemical compositions for validation 
sites. These predictions were compared to field measurement 
values of the validation dataset. Model prediction quality 
was assessed using root mean squared error (RMSE) and 
relative RMSE, calculated by dividing RMSE by the mean of 
measured values (RRMSE). This random validation process 

was repeated 100 times, and average values of RMSE and 
RRMSER were calculated (Figure 2). Additionally, principal 
component analysis (PCA) was conducted to analyse 
multivariate relationships between drone-derived indices 
and vegetation attributes using the PCA function from the 
FactoMineR package in R.

Results

Vegetation biomass
The average FM was 506.55 g m−2, and the average DM was 
211.84 g m−2 (Table 1). The random forest model exhibited 
a percentage of explained variance of 67.09% for FM and 
58.78% for DM. Notably, the GLI region’s wavebands and 
the height (both mean and maximum) emerged as the most 
important variables in estimating both FM and DM (Figure 3). 
On the validation dataset, the root mean square error (RMSE) 
was 117.36 g m−2 (RRMSER = 0.31) for FM and 58.88 g m−2 
(RRMSER = 0.37) for DM (Table 4).

Vegetation quality
The average vegetation chemical compositions are presented 
in Table 1. The random forest model explained 32.21%, 
27.09%, 15.26% and 23.18% of the variance for CP, NDF, 
ADF and DOM, respectively (Table 4). Wavebands in 
the blue, green and red regions contributed mainly to the 
estimation of CP content, wavebands in the blue, green 
regions and Hmax to the estimation of NDF, wavebands 
in the blue GB and GR regions to the estimation of ADF, 
and wavebands in the blue, green and red regions to the 
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Figure 2: Data processing and analysis approach used in this work. The study was conducted on 80 quadrates. The white boxes show the 
data processing of the drone images. The grey boxes depict the sampling and analysis of vegetation biomass, and chemical composition, 
from the field sites. The green box represents the machine learning algorithm used for model calibration and validation



African Journal of Range & Forage Science 2025, 42(3): 1–11 5

BLUE

EXG

GB

Gli

GR

Green

Hmax

MH

RB

Red

VARI

0 5 10 15 20

VA
R

IA
BL

ES

IncNodePurity 400 800 1 200

Fresh mass

BLUE

EXG

GB

Gli

GR

Green

Hmax

MH

RB

Red

VARI

0 5 10 15

%IncMSE

Dry mass 

IncNodePurity 100 200 300 400
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EXG = excess of green	 Hmax = maximum height
GB = normalised difference Blue Green Index	 MH = mean height
GLI = green leaf index	 RB = normalised difference Blue Red Index
GR = normalised difference Green Red Index	 VARI = visible atmospherically resistant index
%IncMSE = percent increase in Mean Squared Error
IncNodePurity = total decrease in node impurity refers to the reduction in residual sum of squares. The variable with the largest total decrease in 
%IncMSE and the highest IncNodePurity (represented by lime green dots on the map, Figure 1) is considered the most important

Table 4: Result of random forest model calibration and validation quality indicators

Forage biomass Forage chemical composition (quality)
FM DM DM CP NDF ADF DOM

RF 67.09 0.5878 0.5878 32.21 27.09 15.26 23.18
R2 test 0.58 0.48 0.48 0.27 0.24 0.21 0.19
RMSE 117.36 58.88 58.88 2.35 6.27 3.39 5.52
RRMSE 0.31 0.37 0.37 0.32 0.09 0.08 0.17

ADF = acid detergent fibre (%) FM = fresh mass (g m–2)
CP = crude protein (%) NDF = neutral detergent fibre (%)
DM = dry mass (g –2) RMSE = root-mean-square error
DOM = digestible organic matter (%)
R2 test = R2 of the model between predicted and measured values based on the validation dataset
RF = percentage of variation explained by the random forest model on the calibration dataset
RRMSER = relative root-mean-square error
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estimation of DOM (Figure 4). On the validation dataset, the 
RMSE for CP was 2.35% (RRMSER = 0.32), for NDF it was 
6.27% (RRMSER =0.09), for ADF it was 3.39% (RRMSER = 
0.08) and for DOM it was 5.52% (RMSE = 0.17) (Table 4).

Multivariate relationships between drone indices and 
vegetation attributes

The PCA revealed that the first two principal components 
accounted for 53.3% of the total variance, with Dimension 
1 (32.2%) primarily capturing variation in drone-derived 
indices and Dimension 2 (21.1%) representing variability in 
vegetation attributes (Table 5).

Additionally, the PCA biplot (Figure 5) revealed two distinct 
variable groups, highlighting the potential of low-cost drone 
imagery to estimate vegetation biomass and quality. The red 

cluster includes drone-derived indices, primarily aligned with 
Dimension 1, indicating this component captures variation 
from image-based metrics. The green cluster represents 
vegetation biomass and quality attributes, more aligned along 
Dimension 2.

Discussion

FM predictions showed more accurate predictions compared 
to DM, as the spectral signals observed from the sensor 
may have been a more direct measurement of plant FM than 
DM (Figure 6). The prediction error values for FM and DM 
were 31% and 37%, respectively. In the same study area, 
Taugourdeau et al. (2022) reported better prediction accuracy 
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Figure 4: Important variables for the prediction of vegetation quality

EXG = excess of green	 Hmax = maximum height
GB = normalised difference Blue Green Index	 MH = mean height
GLI = green leaf index	 RB = normalised difference Blue Red Index
GR = normalised difference Green Red Index	 VARI = visible atmospherically resistant index
%IncMSE = percent increase in Mean Squared Error
IncNodePurity = total decrease in node impurity refers to the reduction in residual sum of squares. The variable with the largest total 
decrease in %IncMSE and the highest IncNodePurity (represented by lime green dots on the map figure) is considered the most important
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Table 5: Eigenvalues, variance explained, and cumulative variance 
for principal components between drone-indices and vegetation 
attributes

Component Eigenvalue %Variance 
explained Cumulative %

1 5.47 32.19 32.19
2 3.58 21.08 53.26
3 2.91 17.09 70.35
4 2.09 12.28 82.63
5 1.19 7.01 89.65
6 0.81 4.79 94.43
7 0.44 2.62 97.05
8 0.18 1.08 98.13
9 0.15 0.88 99.01

10 0.08 0.44 99.45
11 0.04 0.22 99.67
12 0.03 0.15 99.83
13 0.02 0.11 99.94
14 0.01 0.06 99.99

15–17 < 0.01 ~0.00 100.00
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for DM, at around 25% error. The distribution of biomass yield 
estimates showed a higher tendency towards overestimation 
and underestimation for both the FM and DM parameters.

The height variables (average and maximum height) 
derived from the DSM showed persistently important for 
estimating both FM and DM. This finding was in line with 
the study by Taugourdeau et al. (2022), which reported that 
the height variables obtained from a 3D model were among 
the top variables for estimating vegetation FM and DM. In 
addition, the GLI and EXG vegetation indices were the most 
important variables for estimating FM and DM. Similarly 
(Bendig et al. 2014) reported that GLI and EXG were two of 
the most important variables for estimating vegetation FM 
and DM. This indicates that the height variables (average 
and maximum height) obtained from DSM and the vegetation 
indices obtained from RGB images should be considered 
when predicting FM and DM using a low-cost drone camera.

The random forest model estimated CP content with 
an error of 32%. This result was relatively low compared 
with the result obtained by Näsi et al. (2018), who reported 
an error of 12%. Durante et al. (2014) reported an even 
smaller prediction error when estimating CP (10%). 
However, the random forest model achieved relatively high 
prediction accuracy, at 9% and 8% error, for NDF and ADF 
contents, respectively. These results were comparable 
to those reported by Starks et al. (2004), who found an 
accuracy of 10% for NDF and Pullanagari et al. (2012), 
who reported an accuracy of 7% for ADF, which assisted in 
data collection with a drone-borne hyperspectral camera. 
Additionally, the prediction error for DOM content was 17%. 
In contrast, Pullanagari et al. (2012) achieved high prediction 
accuracy (5% error) for DOM content in mixed pastures 
(i.e. commercial New Zealand pastures), using a portable 
spectrometer.

The green, red and blue bands mainly contributed to 
estimating CP content. In line with this finding, Fava et al. 
(2009) reported that the red band was known to be strongly 
correlated with leaf chlorophyll and CP content. Wavebands 
in the blue and green regions and Hmax were the most 
important variables to NDF content. Moreover, the blue, 
GR and GB bands were the most important variables for 
estimating ADF, while the blue, green and red bands were 
important for estimating DOM content. To the authors’ 
knowledge, no reference studies have been conducted using 
low-cost drone cameras to compare vegetation quality. Our 
work was based solely on the RGB bands and the extracted 
vegetation indices, but infrared indices are known for 
vegetation nutritional quality analysis (Bhagat et al. 2020), as 
these characteristics indicate the absorption of radiation at 
short wavelengths (Curran 1989).

Furthermore, the random forest model precession 
(adjusted R2) for FM (R2 = 59) and DM (R2 = 48) biomass was 
relatively good in the validation datasets, with higher variance 
of 67.09% for FM and 58.78% for DM in the calibration 
datasets. In contrast, the random forest model did not achieve 
satisfactory adjusted R2 (all under 0.27) in the validation 
dataset (Table 4) and low variance (all under 32%) in the 
calibration datasets for the vegetation quality parameters 
(Table 4). Many examples in the literature (Pullanagari et 
al. 2018; Bhagat et al. 2020; Geipel 2021) support that the 
generalisability of a model depends on many factors, such as 

the nature of the data, the degree of variation between the 
environments in which the calibrations are performed, and the 
size and quality of the calibration data. The low R2 results in 
our study might therefore have been due to the small sample 
size (N = 80) in the calibration dataset, one third of which 
was used for the validation dataset. In support of this, Näsi 
et al. (2018) found that large datasets were more favourable 
than models calibrated on smaller datasets. Furthermore, 
increasing the spectral resolution of drone captors could also 
be a solution to increase precision. However, the price of 
high-resolution drones is quite expensive and unaffordable for 
use in developing countries such as those in the Sahel region.

Furthermore, the PCA demonstrated clear multivariate 
relationship between drone-derived vegetation indices and 
field measured biomass and quality attributes. The PCA 
revealed that the first two components explained 53.3% of 
the total variance in drone-derived indices and vegetation 
attributes. Specifically, Component 1 (Dimension 1) explained 
32.2% of the variance (eigenvalue = 5.47), while Component 
2 (Dimension 2) accounted for 21.1% (eigenvalue = 3.58). 
The remaining components explained increasingly smaller 
portions of variance, with Component 3 contributing 17.1%, 
and Components 4 and beyond each contributing less than 
13% (see Table 5). Additionally, the PCA biplot (Figure 5) 
revealed two distinct clusters of variables. The first cluster, 
represented in red, includes variables derived from low-cost 
drone imagery: MH, Hmax, and spectral indices such as GR, 
GB, RB, VARI, EXG and GLI. These variables predominantly 
align with the positive axis of Dimension 1, indicating that this 
component is largely influenced by drone-based vegetation 
structure and indices indicators. In contrast, the second 
cluster, shown in green, includes vegetation biomass and 
quality attributes: FM, DM, CP, NDF, ADF and DOM. These 
variables are more dispersed along Dimension 2, suggesting 
this component captures a distinct gradient in vegetation 
biomass and quality indicators. The clustering patterns 
support the potential utility of low-cost drone imagery for 
estimating key indicators of vegetation productivity and forage 
quality, offering a scalable approach for rangeland monitoring 
and management.

Conclusion

Our results showed that herbaceous biomass (FM and 
DM), and forage qualities (CP, NDF, ADF and DOM) can be 
estimated using drone-derived red, green and blue (RGB) 
imagery combined with a random forest model. The model 
achieved relative root mean squared errors of 31% FM and 
37% for DM, 32% for CP, 9% for NDF, 8% for ADF and 
17% for DOM, respectively. Additionally, PCA revealed 
that the first two dimensions explained 53.3% of the total 
variance in the drone-derived indices, biomass and quality 
parameters. This suggests low-cost drone systems offer 
promising potential for supporting rangeland monitoring and 
management with less effort. However, certain limitations 
must be acknowledged. Drone-based estimation can be 
affected by vegetation density, where overlapping canopies 
may obscure ground cover, reducing prediction accuracy. 
Additionally, variable lighting conditions, flight angle and 
camera resolution can introduce noise into the data. These 
factors highlight the importance of standardised flight 
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protocols and post-processing techniques to minimise error. 
Moreover, plant structural diversity and species composition 
can influence reflectance patterns, which may affect model 
performance across different rangeland types. Future studies 
should explore how this approach performs in ecosystems 
with denser or more heterogeneous vegetation structures. 
Finally, while our results are promising, they are based on a 
limited sample size, and further studies with broader spatial 
and temporal coverage are needed. Expanding this approach 
to other dryland regions could enhance biomass and quality 
estimation accuracy and broaden its applicability across 
diverse rangeland systems.
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