Inhibition of *Cowdria ruminantium* infectious yield by interferons alpha and gamma in endothelial cells

INTRODUCTION

Cytokines are a family of proteins which are synthesized by the cells of vertebrates in response to a wide variety of stimuli. They have pleiotropic effects and act both in an autocrine and paracrine way (3). There are more than 40 different cytokines known so far which interact in a very complex and still obscure manner to orchestrate the body's immune response. The understanding and mastering of the cytokine network would enable us to control the body's immune response. The development of vaccines with antirickettsia (2) and antichlamydia (8) properties. In this report we demonstrate for the first time that IFN α and γ are capable of inducing, in vitro and in vivo an anticrodria state in the cells treated with subsequent reduction of the yield of infectious *Cowdria* organisms. The possible role of IFNs in the resistance of cattle against *Cowdria* infection is discussed.

MATERIAL AND METHODS

Isolation and culture of cells

Bovine endothelial cells from the brain microvasculature (BMEC) were a kind gift of Dr. F. JONGEJAN (The Netherlands). These cells were grown in BHK-21 (Glasgow modification) supplemented with 10% foetal calf serum, penicillin (100 U/ml), streptomycin (100 µg), fungizone and L-Glutamine (2 mM). BMEC and BUEC at passage 20 were used in this study. Primary cultures of human endothelial cells from umbilical cord arteries were a kind gift of Dr. F. JONGEJAN. The cultivation of *Cowdria* ruminantium infections, is of considerable fundamental interest.

From a more practical point of view, cytokines may help to explain the mechanisms involved in the protective immune response against *Cowdria* and in the pathogenesis of cowdriosis which in turn would be of help in the search for a safe, easy to use and efficient vaccine against this disease. Our group has started an extensive study on the involvement of interferons (IFN α and γ), interleukins (IL-1 and IL-6) and tumor necrosis factor (TNF) in *Cowdria ruminantium* infections. We have shown (11) that cattle that resisted experimental infection with the rickettsia produced significant level of circulating IFN whereas animals that died did not. IFNs were first known for their antiviral activity but have been shown both in *vitro* and in *vivo* to have antirickettsia (2) and antichlamydia (8) properties. In this report we demonstrate for the first time that IFN α and γ are capable of inducing, in *vitro* and *in vivo* to have antirickettsia (2) and antichlamydia (8) properties. In this report we demonstrate for the first time that IFN α and γ are capable of inducing, in *vitro* and *in vivo* an anticrodria state in the cells treated with subsequent reduction of the yield of infectious *Cowdria* organisms. The possible role of IFNs in the resistance of cattle against *Cowdria* infection is discussed.

Cowdria cultivation in vitro

The Senegal stock of *Cowdria* was given to us as sucrose-phosphate-glutamate (SPG) cryopreserved stabilates by Dr. F. JONGEJAN. The cultivation of *Cowdria* was identical for all endothelial cells and was done as previously described for BUE cells (4). Briefly, the cells were...
Ph Totté D. Blankaert P. Zilimwabagabo J. Wérenne

grown to confluence in 80 cm² tissue culture flasks (Nunc). The cells were infected using SPG cryopreserved stabilities of *Cowdria* diluted in complete growth medium (see isolation and culture of cells) supplemented (subsequently reported as "infection medium") with tryptose phosphate broth (Gibco) at 2.9 g/l and hepes buffer (20 mM) (pH 7.0-7.2). The cells were incubated in a 5 % CO₂ - 37 °C incubator (no rocking platform was used). When more than 70 % of the cells were lysed, the culture supernatant was centrifuged for 15 min at 1,500 g; the pellet obtained from 2 ml of supernatant was resuspended in 1 ml SPG buffer before snap freezing in liquid nitrogen. Stabilates of *Cowdria* at passage 9 to 11 (with an incubation period of about 10 days between each passage) were used in this study.

IFNs, IFN assay, anti-IFN antibodies

Recombinant Bovine Interferon alpha C (rBoIFNaC, specific activity 2.10⁶ U/mg) was cloned and expressed in *E. coli* (provided by Dr. A. SHAFFERMAN, Israel Institute of Biological Research, Ness-Ziona). Recombinant Bovine Interferon gamma (rBoIFNg, specific activity 2.5 10⁶ U/mg) and neutralizing antibodies to BoIFN α and γ were kindly given to us by Dr. R. STEIGER from CIBA-GEIGY. Recombinant human interferon alpha 2 (rHuIFNa2, specific activity 10⁶ U/mg) was a gift of Dr. C. WEISSMANN from Zürich University. The antiviral activity of all IFNs was estimated before use on Madin Darby bovine kidney cells (MDBK) using the classical test of reduction of the cytopathogenicity of Vesicular Stomatitis Virus (10). The antiviral activity is expressed in laboratory units, no international standards being available as reference for bovine IFNs. One unit of antiviral activity is defined as the reciprocal of the dilution that gives 50 % protection against viral challenge under standard conditions.

Anti-Cowdria activity of interferons in vitro

We have studied the effect of IFNs on the infectious yield of *Cowdria ruminantium*. It was done by titrating the infectivity of supernatants collected from *Cowdria*-infected cells (in the presence or absence of IFN) using a Tissue Culture Lethal dose 50 % (TCLD50) test we have established (see below). Supernatant freshly collected from an 80 cm² flask, showing 70 % lysis, or more, due to *Cowdria* infection, was used as inoculum. The infected supernatant was centrifuged 5 min at 300 g to remove cell debris and diluted 2-fold in "infection medium" (see *Cowdria culture in vitro*). 500 µl of the diluted supernatant was added to confluent BME cells in a 24-well plate at 37 °C-5 % CO₂. After 24 hours incubation the medium was renewed. At day five post-infection 500 µl of fresh medium was added to the wells. IFNs were added at different times (see results) and the medium was replaced 24 h after every treatment. Control cells, IFN-treated but not infected, and infected but not treated, were included in each experiment. In order to demonstrate the involvement of BoIFN α and γ, these IFNs were incubated together with their respective neutralising antibodies (20 min at 37 °C) before addition to the cells and compared to IFN alone. The progress of the infection was followed daily by light microscopy. Supernatants were collected in all wells at day 9 post-infection. Each supernatant was centrifuged at 15,000 g for 15 min and the pellet was resuspended in 100 µl SPG before snap freezing in liquid nitrogen. The infectivity of these supernatants was measured using the tissue culture lethal dose 50 % (TCLD50) assay described below.

TCLD50 assay for Cowdria ruminantium titration

BME cells were grown to confluence in 96-well plates (Nunc). *Cowdria* samples to be tested and cryopreserved in SPG were thawed at 37°C, serially diluted 2-fold in "infection medium" with a final volume of 100 µl/well and added to the cells. The medium was replaced 24 h after infection and from there on half of it was replaced every four days. The plates were incubated 15 days in a 37 °C-5 % CO₂ incubator. After incubation the cells were fixed in formaldehyde for 30 min and then stained with crystal violet. The end point (50 % lysis) can be determined using a light microscope or by measuring the absorbance (A₅₄₀). The TCLD50 of the sample is the reciprocal of the dilution that gives 50 % lysis of the cells after 15 days of incubation. The TCLD50 test measures the infectivity of the samples which depends on the concentration in *Cowdria* elementary bodies. An example of *Cowdria* titration is shown in fig. 1.

Figure 1 : Illustration of a Cowdria titration using the TCLD50 method.

RUE cells were IFN treated at day 0 and 1. Supernatants were collected at day 9 post-infection.
2-5A synthetase assay

2-5A synthetase activity was assayed in the cytoplasmic fraction of the cells according to a method described elsewhere (see accompanying paper "Role of Interferons in infectious diseases in the bovine species").

RESULTS

Kinetics of Cowdria yield as measured by the TCLD50 method

The development of Cowdria (followed by light microscopy) in BME cells in the absence of IFN was similar to observations previously reported with BUE cells (5). Non-fusing colonies (morulae) of Cowdria were detected in the cytoplasm of the cells as soon as day four after infection. Cell lysis (with release of infectious organisms) occurred at day five and progressively increased until complete destruction of the monolayer by day 10 - 11 post-infection. The infectious yield of Cowdria was not detected by the TCLD50 assay before day 7 post-infection (fig. 2). Thereafter the yield rapidly increased and reached a peak at day 9, which corresponded to more or less 80% cell lysis, and then slowly decreased (fig. 2).

Effect of IFNs α and IFN γ on the infectious yield of Cowdria in endothelial cells

We found that the infectivity of supernatant collected from Cowdria-infected BME cells was significantly reduced when rBoIFNαC was added to the medium. The inhibitory effect was dependent on the dose of rBoIFNαC and completely blocked by anti-rBoIFNα antibodies (fig. 3). The number of colonies was significantly reduced in the IFN-treated cells (not shown) but a few morulae were still visible even at the highest IFN concentration and ultimately lead to a complete destruction of the monolayer. rBoIFNαC was not cytotoxic for the cells in the presence or absence of Cowdria.

Strangely enough, in the same experimental conditions, rBoIFNαC had no anti-Cowdria activity on BUE cells nor did rHuIFNα2 on HUVEC (fig. 3).

rBoIFNy was found to strongly reduce the infectious yield of Cowdria in both BME and BUE cells (fig. 4). The inhibitory effect was completely reversed by anti-rBoIFNy. In contrast with rBoIFNαC, complete protection of the cells was easily achieved with rBoIFNy. When the cells received 10 U/ml of rBoIFNy at day 0 and 1 no colonies were observed in these cells for up to 30 days post-infection (reinfection was not tested). Cytotoxicity of rBoIFNy for uninfected BME and BUE cells was observed but only when 50 U/ml or more were added to the medium for three consecutive days.

![Figure 2: Kinetics of Cowdria yield as measured by the TCLD50 assay in the supernatants of infected BME cells. Each point represents the mean value of three different wells in the same experiment, bars indicate standard deviation.](image)

![Figure 3: Inhibitory effect of IFNα on the yield of Cowdria. BME (▲), BUE (□) and HUVEC (△) cells were treated with IFN of the homologous species at day 0, 1 and 2. A control with anti-IFN alpha antibodies (⁎) was included for BME cells. Each point represents the mean value of three different experiments, bars indicate standard deviation.](image)
Comparison of Antiviral, 2-5A synthetase and cowdriacidal activity of rBoIFNαC in BME and BUE cells

In order to investigate the possibility that IFN-induced activities other than the cowdriacidal activity could also differ from one cell type to another, we compared the antiviral and 2-5A synthetase (an enzyme of which synthesis is induced by IFNs, 10) activities of rBoIFNαC in BME and BUE cells. We found (table I) that these cells have the same sensitivity to the antiviral effect of rBoIFNαC and that the small difference observed in the 2-5A synthetase activity can not explain the difference in the activity against Cowdria.

TABLE I Antiviral, 2-5 A synthetase and anticowdria activity of rBoIFNαC in BME and BUE cells.

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Antiviral activity (U/ml)</th>
<th>2-5A synthetase activity ($)</th>
<th>% reduction of Cowdria yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUEC</td>
<td>100</td>
<td>219 (± 9)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>242 (± 16)</td>
<td>0</td>
</tr>
<tr>
<td>BMEC</td>
<td>100</td>
<td>157 (± 27)</td>
<td>75 (± 10)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>288 (± 16)</td>
<td>90 (± 5)</td>
</tr>
</tbody>
</table>

($) : pmoles ATP polymerized/μg protein/h. (standard deviation)

Kinetics of rBoIFN (α and γ) induction of an anticowdria state in BME cells

The inhibitory effect was highest (fig. 5) when both IFNs were present on day one (when Cowdria organisms have been removed from the medium) which demonstrates that IFNs act through the host cells and not directly on the free organisms. The anticowdria state induced by rBoIFNαC in BME cells has a very short life time compared to that of rBoIFNγ. Pretreatment of the cells with rBoIFNαC did not affect the yield of Cowdria. In contrast, an anticowdria state could be induced in BME cells by addition of rBoIFNγ as soon as two days before infection.

![Figure 4: Inhibitory effect of IFNγ on the yield of Cowdria. BME (□) and BUE (○) cells were IFN treated at day 0 and day 1. A control with anti-IFN gamma antibodies (•) was included for BME cells. The experiment was run in triplicate, bars indicate standard deviation.](image)

![Figure 5: Kinetics of rBoIFN (α and γ) induction of an anticowdria state in BME cells. IFNs were added to the cells at various times relative to infection (as indicated on the figure). Cowdria yield (TCLD50) was determined at day 9 after infection (one-step-growth-yield assay). Two repetitions of this experiment yielded similar results.](image)
When both IFNs anticowdria activities are compared in experimental conditions that give maximal inhibition (e.g. day 1) rBoLFNα appears 10,000 times more efficient than rBoIFNγ.

DISCUSSION AND CONCLUSION

We have shown that rBoIFNαC has the property to induce in vitro an anticowdria state in BME cells. These results, together with previous data showing that IFN was produced in the plasma of animals that resisted an experimental infection with the rickettsiae (11), suggest that IFNα plays a role in the resistance of cattle to cowdriosis. However, rBoIFNαC has no prophylactic effect in vivo. Moreover, complete inhibition of Cowdria growth in BME cells was never achieved even at high IFN concentration. Therefore, IFNα may be very useful in vivo to slow down the infection allowing other mechanisms to take place in order to ensure survival of the infected animals. One possibility is that IFNγ is also produced in response to the infection. We have shown here that rBoIFNγ is a very powerful anticowdria agent in vitro but it remains to be demonstrated that it is also produced in vivo.

The mechanisms underlying the IFNs-induced anticowdria activity in vitro are not known. The anticowdria activity of rBoIFNαC is undoubtedly dissociated from its antiviral and 2-5A synthetase inducing activities. We have shown that IFNs act on the cells to render them unsuitable for Cowdria growth but only electronic microscopy will tell us at which stage of the Cowdria replication cycle (fixation, transformation of elementary bodies to reticulate bodies, metabolism of reticulate bodies, etc.) IFNs actually intervene. It has been shown that degradation of tryptophan in the case of Chlamydia trachomatis (6) and metabolism of L-arginine in the case of Ehrlichia risticii (9) are among the possible pathways involved in the in vitro effect of IFNγ. The possible role played by amino acids in our model is under study.

We have found that, in contrast to BMEC, BUE cells were not sensitive to the anticowdria effect of rBoIFNαC. Differences in receptor to BoIFNα are unlikely to be the cause since in both type of cells rBoIFNαC has similar antiviral and 2-5A synthetase activities. This may reflect a true difference in cell type between capillary and large blood vessels. Endothelial cells isolated from large vessels and capillaries have indeed been shown to differ in the concentration of insulin receptors (1) and in their collagen secretory phenotypes (7). On the other hand, the difference we observed may result from cell isolation and initial culture conditions, in which case, we should not observe the same phenomenon in primary cultures. We know already that HUVEC is insensitive to IFNα mediated anticowdria activity. We have now undertaken a study in order to compare the anticowdria activity of IFNα in primary cultures of human endothelial cells from the microvasculature (HUVEC) and the microvasculature (endothelial cells of the human foreskin-HEMEC). In both cell types Cowdria ruminantium multiplies efficiently (unpublished data). However, endothelial cells from capillaries and from large blood vessels may very well respond differently to Cowdria infection in a way which may be relevant to the immunity and pathogenesis of cowdriosis.

ACKNOWLEDGEMENTS

Special thank to Dr. F. JONGEJAN who provided us with Cowdria ruminantium stabilates and useful advice. J. WERENNE and Ph. TOTTÉ wish to dedicate this paper to the late Pr. I. SAROV with whom they started a collaboration a few years ago.

REFERENCES

2. BYRNE (G.I.), TURCO (J.). Interferon and non viral pathogens. Immunology series, 1988, 42.
We have shown before that there is a positive correlation between resistance of cattle against *Cowdria* infection and early IFN production. Our *in vitro* studies demonstrated an activity of rBoIFNα2C and rBoIFNγ against *Cowdria* in bovine endothelial cells of brain microvasculature (BMEC). rBoIFNγ is much more active in this respect than rBoIFNα2C. These results suggest a role of IFNs in the resistance against the disease. Strikingly, in the same conditions rBoIFNα2C has no effect on the yield of *Cowdria* from infected bovine endothelial cells of umbilical artery origin (BUEC). Similarly we showed that HuIFNα had no effect on the multiplication of *Cowdria* in human vein umbilical endothelial cells (HUVEC). We found no differences in the capacity of BUE and BME cells to bind rBoIFNα2C. This may reflect a true difference between capillary and large blood vessels.

Key words: Cattle - *Cowdria ruminantium* - Disease resistance - Cell culture - Bovin endothelial cell - Interferon.

Anteriormente se demostró la existencia de una correlación positiva entre la resistencia del ganado contra la infección por *Cowdria* y la producción temprana de IFN. Nuestros estudios *in vitro* demuestran una actividad de rBoIFNα2C y rBoIFNγ contra *Cowdria* en las células endoteliales bovinas de los microcapilares cerebrales (BMEC). El rBoIFNγ es mucho más activo que rBoIFNα2C. Estos resultados sugieren un posible papel del IFNs en la resistencia contra la enfermedad. Sorprendentemente, bajo las mismas condiciones, el rBoIFNα2C no actúa sobre *Cowdria* en las células de endotelio bovino infectado, provenientes de la arteria umbilical (BUEC). Así mismo, se desempeñó que el HuIFNα no actúa en la multiplicación de *Cowdria* en las células de endotelio de lavena umbilical humana (HUVEC). No se encontraron diferencias en cuanto a la capacidad de unión de BUE y de BME con rBoIFNα2C, lo cual podría reflejar una diferencia entre los grandes vasos sanguíneos y los capilares.

Palabras claves: Bovino - *Cowdria ruminantium* - Resistencia a la enfermedad - Cultivo de células - Células endoteliales bovina - Interferón.