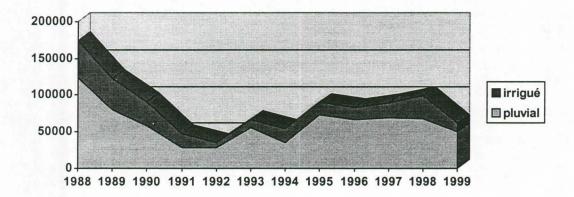


Actes des journées coton du Cirad

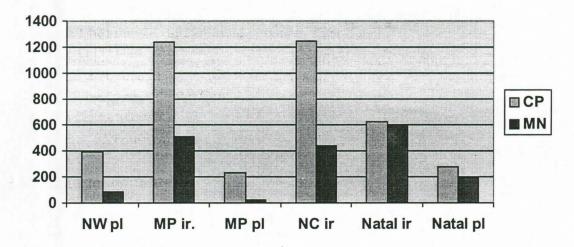
Montpellier, du 17 au 21 juillet 2000

Programme Coton Cirad-ca


Faits saillants dans les activités d'amélioration variétale du Programme coton en Afrique australe

Jean-Luc HOFS Programme coton, Afrique du Sud

1. Afrique du Sud


1.1 Evolution des surfaces

Depuis 1988 la superficie cotonnière est en diminution (figure). Elle reste en dessous des 100000 ha depuis 1990.

1.2 Les coûts de production

Les coûts de production sont variables suivant la conduite de la culture et la région. Les charges sont nettement plus importantes en culture irriguée qu'en système pluvial où l'application d'intrants est relativement faible. La culture cotonnière pluviale n'est réellement rentable que dans la province du Natal. Par contre la culture irriguée offre des marges confortables quel que soit la région.

1.3. Le paysage variétal sud africain et son évolution depuis 1997

Chaque année, au mois d'août, le Tcri et Cotton Sa définissent quelles seront les variétés à recommander pour les différentes zones cotonnières. Le tableau 1 présente les recommandations pour la saison 1999/2000. Les recommandations prennent en compte (source Cotton Sa) : le rendement, la longueur de la fibre, la ténacité de la fibre, le micronaire, le rendement à l'égrenage et les tolérances aux maladies.

Tableau 1 : variétés recommandées pour la campagne 1999/00

	(Culture irriguée	Culture pluviale				
Zone	Variété	Date de fin de	Densité	Variété	Date de fin	Densité	
		semis	Plants/ha		de semis	Plants/ha	
Low Orange river	Delta Opal	20/11	65000				
Upington	Acala OR3	20/11	65000				
Groblershoop	Nucotn 35B	20/11	65000				
Upington							
Vioolsdrif	Acala OR3	30/11	45-65000				
Northern Cape	Tetra	10/11	70000				
	Delta Opal	15/11	70000			7.8.6	
	Nucotn 35B	15/11	70000				
North West	Tetra	20/11	70000	Tetra	30/11	30000	
Vryburg/Segatoli	Delta Opal	20/11	70000	Sabie	15/11	30000	
	Nucotn 35B	15/11	70000	Delta Opal	30/11	30000	
				Nucotn 35B	30/11	30000	
North West	HS44	20/11	70000	Sicala	20/11	30000	
Rustenburg	Sabie	20/11	70000	Sabie	20/11	30000	
	Sicala	20/11	70000	Delta Opal	20/11	30000	
	Delta Opal	20/11	70000			18.1	
	Nucotn 37B	20/11	70000			778-4	
Limpopo	HS44	10/12	80000			-1111	
	Delta Opal	10/12	70000			424	
	CS189+	10/12	80000				
	Nucotn 37B	10/12	80000				
Springbok	Sicala	20/11	70000	Sabie	30/11	30000	
Loskop	Tetra	20/11	70000	Sicala	30/11	30000	
	Delta Opal	20/11	70000	Delta Opal	30/11	30000	
	Siokra V15	20/11	70000	Siokra V15	30/11	30000	
	Nucotn 37B	20/11	70000	Nucotn 37B	30/11	30000	
Lowveld	Tetra	30/11	70000	Tetra	30/11	30000	
	HS44	30/11	70000	Sabie	30/11	30000	
Natal	Sicala	30/11	70000	Sicala	10/12	30000	
	Delta Opal	30/11	70000	Delta Opal	10/12	30000	
	Ca 223	30/11	70000	Ca 223	10/12	30000	
	Nucotn 37B	30/11	70000	Nucotn 37B	10/12	30000	

En ce qui concerne les statistiques des variétés réellement semées, les informations sont difficilement accessibles et parfois même contradictoires selon la source consultée. Le tableau 2 présente les résultats de l'enquête menée auprès du Tcri, Clark Cotton et Cotton Sa.

Tableau 2 : évolution du paysage variétal en Afrique du Sud depuis 1997

	1997/9	8	1998/99	9	1999/00		
Zone	Cultivar	%	Cultivar	%	Cultivar	%	
Orange river							
Nothern Cape	Acala OR3	99	Acala OR3	86	Acala OR3	85	
	L Same		Nucot 35B	8	Nucotn 35B	5	
			Delta Opal	5	Delta Opal	9	
			CS189+	<1			
			Sicala	<1			
		1.5	Tetra	<1			
Nothern Cape	Tetra	100	Tetra	95	7		
(Modder river)			Sicala	2.5			
		1	CS83	2.5			
Northern Province	Acala	61	Acala	60			
Normern Province	Sicala	31	HS44	17			
	Albacala	5	Sicala	8		××	
	Acala OR3	3	DP Acala 90	2			
	Acaia OK3	3	OR3	2			
Mpumalanga	Sicala	81	Sicala	87			
Lowveld	DP Acala 90	12	Siokra	6			
	Tetra	6	Tetra	3.5			
	Acala	1	DP Acala 90	3.5			
Natal	DP Acala 90	75	DP Acala 90	60	Delta Opal	40	
	Sicala	25	Ca 223	30	Nucotn 37B	40	
			Sicala	10	Ca 223	20	

1998/99 a été une saison où un grand nombre de variétés différentes ont été semées. Malgré le manque de données pour la dernière saison, on peut observer l'avancée des variétés Delta Pine et des cultivars transgéniques. Le cultivar Ca 223 a reculé de 10 % entre 1998 et 1999.

1.4 Essais d'introduction variétale à l'Université de Pretoria

Les mauvaises conditions climatiques de la campagne 1999/2000 n'ont pas permis de réaliser les observations sur l'adaptation des 38 cultivars semés. Un plant mapping final a été réalisé pour apprécier le comportement des cotonniers en conditions adverses (températures nocturnes relativement basses et manque d'ensoleillement).

Pavlikeni, C433, CD401, Acala 1517 et les CA boliviens présentent un développement peu «élongué » et une production supérieure aux autres cultivars (shedding moins important).

2. Zimbabwe

Les variétés de cotonnier cultivées au Zimbabwe

Le Cri a créé de nombreuses variétés (tableau 3) ciblant à la fois les zones agro-climatiques (basse altitude, lowveld et moyenne altitude, middelveld) et les différentes possibilités de marché (medium staple et long staple).

Tableau 3: séquence des variétés diffusées par le Cri depuis 1972

Année de diffusion	Middelveld	Lowveld	Long-staple
1972/73			Delmac
1974/75	Albar 72B		
1975/76		Albar 72B	
1981/82	Albar G501		
1983/84		Albar K602	
1988/89	Albar K502	Albar K603	
1992/93			LS 797
1993/94	Albar BB8714	Albar AG4869	
1994/95	Albar EU 883		CY 889
	Albar BC853		
Depuis 1996	Albar HAP1	Albar DF885	
	Albar SZ9314	Albar SZ9314	

Il existe également une classification des variétés selon le mode de culture en pluvial ou en irrigué.

Ces variétés ont été sélectionnées de façon à satisfaire toute la majorité des contraintes et techniques de culture. Le tableau 3 présente les principales caractéristiques agronomiques des variétés cultivées depuis les années 1970.

Tableau 4 : les principales caractéristiques agronomiques des variétés cultivées depuis les années 1970

cultivar	préco.	Feuil-	dévelop	lodging	résist.	résist.	résist.	tolérent	tolérent	tolérant	Taille
		lage	lateral	%	au	Aux		aphides	vertici-	manque	de la
					stress	Jassides	bactério	-	lium	en K	capsule
Medium	staple										
AG4869	Moyenne	Ouvert	Moyen	Faible	Moyenne	Moyen	Bon	Moyen	Faible	?	Grosse +
BB8714	Tardive	Fermé	Fort	Faible	Bon	Moyen	Moyen	Moyen	Moyen	Bon	Moyenne
BC853	Précoce	Ouvert	Moyen	Fort	Bon	Bon	Bon	Moyen	Bon	?	Moyenne
DF885	Moyenne	Ouvert	Moyen	Faible	Bon	Bon	Bon	?	Faible	?	Grosse
EU883	Tardive	Dense	Fort	Faible	Bon	Bon	Bon	Bon	Moyen	Bon	Petite
FQ902	Précoce	Ouvert	Moyen	Faible	Bon	Bon	Bon	Bon	Faible	Bon	Moyenne
FQ904	Précoce	Ouvert	Moyen	Faible	Bon	Bon	Bon	Bon	Faible	Bon	Petite
K502	Précoce	Moyen	Fort	Faible	Moyen	Moyen	Bon	Moyen	Faible	Bon	Grosse
HAP1	Précoce+	Moyen	Moyen	Faible	Moyen	Bon	Bon	Bon	Faible	Faible	Moyenne
SZ9314	Tardive	?	-	-	Bon	Bon	Bon	Moyen	Faible	?	Grosse +
Long sta	ple										
CY889	précoce	Ouvert	Moyen	Fort	faible	Moyen	Bon	?	Moyen	Faible	Grosse

En ce qui concerne la qualité de la fibre, les variétés ont de bons niveaux surtout en longueur et maturité. Les rendements à l'égrenage sont très moyens sauf pour Albar SZ9314 qui dépasse de 7 points la moyenne des autres variétés (tableau 5).

Tableau 5 : caractéristiques technologiques des variétés récemment diffusées

Cultivar	%fibre	Longueur	Uniform.	Ténacité	Mic	% maturité	Filabilité
HAP1	37	1 1/32	48	Moyenne	3.6	95	Moyenne
CY889	36	1 7/32	47	Forte	4.0	95	Bonne
AG4869	36	1 3/16	48	Moy/forte	4.1	95	Très bonne
BC853	37	1 1/8	48	Moy/forte	4.1	97	Très bonne
DF885	37	1 5/32	49	Moyenne	4.1	97	Bonne
SZ9314	44	1 5/32	48	Moyenne	4.2	98	Bonne
BB8714	38	1 3/32	48	Faible/moy.	4.0	90	Bonne