Assistance for Capacity Building Through Enhancing
Operation of the
National Agricultural Policy Center
FAO Projects GCP/SYR/006/ITA
and
TCP/SYR/29006 (A)

Guideline for using a PAM spreadsheet template

Frédéric Lançon
Centre de coopération internationale en recherche agronomique pour le développement. (CIRAD)
Annual Crop Department
Ave Agropolis
34398 Montpellier Codex 5
France

CIRAD-DIST
Unité bibliothèque
Lavalette

Table of content

Introduction 3

1. Spreadsheet content 4
1.1. Spreadsheet global structure and modeling capacity 4
1.2. Data organization and results presentation. 5
1.2.1. Data organization: 5
1.2.2. Results presentation 12
2. Computation rationale 15
2.1. Computation sequence at the budget level 15
2.1.1. PAM Budget computation at market price 15
2.1.2. PAM Budget computation at social price: 20
2.1.3. Computation sequence at the representative system level 25
2.2. Complementary computations 28
2.2.1. Computation of the decomposition coefficients 28
2.2.2. Computation of the main output parity price 31
3. Using the spreadsheet. 32
3.1. Basic principle 32
3.2. Setting the Calculation options in Excel 32
3.3. Browsing through the spreadsheet 33
3.4. Adding or erasing budget cost item rows. 34
3.5. Using the PAM spreadsheet with less than four budgets 35
4. Possible development of the basic template 36
4.1. Spreadsheet adjustment for network irrigation costs management 36
4.2. Using multiple PAM spreadsheets 37
4.3. Sensitivity analysis with Excel table function 37
4.4. Introducing @Risk software for sensitivity analysis scenario simulation 38
4.4.1. Launching @risk 38
4.4.2. Selecting input and output variables 38
4.4.3. Selecting the probability distribution 38
4.4.4. Linking the input and the output value in the PAM spreadsheet. 39
4.4.5. Running the simulation 39
4.5. Establishment of a database of PAM results 44
Appendix A. PAM Spreadsheet 54
Appendix B. Complementary and detailed explanations on PAM spreadsheet computations. 60
5. Estimation of fixed cost annual value 60
6. Breakdown of the cost of fixed inputs between tradable and domestic factors 62
7. PAM spreadsheet formula for fixed cost computation. 63
8. Break-down of cost items into domestic factors and tradable inputs component 66
9. The Cost of revolving fund for the case of variable costs 67

Introduction:

This guideline presents a spreadsheet template under Excel initially developed by Tom Randolph at the West African Rice Development Association in collaboration with the former Food Research Institute at Stanford. This template has been extensively used to compute the comparative advantages of the rice subsector in West Africa countries in the late nineties and early year of the 2000 decade. It has also been used in the framework of the Comparative Advantages Study (CAS) of selected Syrian agro-food commodity chains implemented by the staff of the National Agricultural Policy Centre of the Syrian Ministry of Agriculture and Agrarian reform with the support of the FAO.

This document presents how to use the template to compute Policy Analysis Matrix. Readers who are not familiar with this methodology for computing indicators of comparative advantages can refer to the seminal manual of E.A Monke and S.R. Pearson ${ }^{1}$ to get insight into the analytical foundations of the method. Another guideline derived from the CAS's experience outlines the major steps followed for implementing the method ${ }^{2}$.

The document is organized around 4 sections:

- Section 1 introduces the structure of the spreadsheet and presents its different parts in details. A copy of the spreadsheet is provided in Appendix A if the reader cannot access to the Excel file while reading the document. If the reader whish to open the $<\mathrm{PAM}$ model.xls> file he should read before section 3.2 page 32 .
- Section 2 explains how the PAM is computed from the data keyed in. Additional and more detailed explanations are given on the computation rationale in Appendix B.
- Section 3 provides information on how to handle the spreadsheet.
- Section 4 provides examples of possible adjustments and additional functionalities to the basic PAM template.

[^0]
1. Spreadsheet content

1.1. Spreadsheet global structure and modeling capacity.

The file <PAM model.xls> contains two spreadsheets entitled "PAM" and "Parity price"; additional spreadsheets can be added taking advantage of software functionalities to make additional computations (sensitivity analysis in particular see section 4.3and 4.4). The PAM spreadsheet is the core of the template while the Parity Price spreadsheet just assists the user in organizing the data to compute the parity price for the main final output of the representative systems analyzed.

The user should characterize the commodity chain to be analyzed along a configuration that fit along the structure of the PAM spreadsheet which can handle four budgets corresponding to commodity chain agents or steps (Figure 1):

- Farm level budget
- Farm to processor budget,
- Processing
- Processing to wholesale

While the spreadsheet can easily manage less than four agents - by leaving empty a budget that is not corresponding to any observed agent or step - the incorporation of additional budget would require a significant investment in terms of time and resources and a certain level of expertise in spreadsheet development. These four budgets encompass the major steps of agro-food chains and correspond to the standard commodity chain structure proposed by Monke and Pearson.

If the user wants to add additional agents without entering investing time into major modifications of the current template, he should considered aggregating operations of the same nature performed by two different agents into the same budget. For instance one budget can cover assembling and wholesale trade of for farm outputs downward to the processing unit. It should also be noted that the three post-farm budgets, following the farm level budget, can handle processing activities. Eventually, the analyst should also considered that certain processing activities performed as a service for a fee basis to another agent can be incorporated into the budget as an intermediate input, and do not necessarily call for a specific budget.

The PAM spreadsheet computes a Budget Summary by extracting the corresponding aggregated figures from each Budget. The Budget Summary is computed either in a volume basis or on a hectare basis by applying the appropriate conversion coefficients.

Two PAMs are computed from the budgets summary, one on a volume basis and another one on a hectare basis, while a table of indicators (FCB, DRC...) is computed from the PAM computed in volume. Breakeven points for various variables are computed from the Budget Summary in volume and reported in the Sensitive Analysis table

The following section presents in detail how the information is compiled and how outputs are reported in each of these tables.

Figure 1: PAM spreadsheet organization

1.2. Data organization and results presentation.

The spreadsheet has two zones:

- one for data entry corresponding to the four budgets plus the block for entering the coefficient of distortions (shaded blocks in Figure 1). Data are keyed in the shaded cell (grey color), while the "white" cells contain formula and should not be modified.
- one area providing a range of outputs in different tables (non shaded areas in Figure 1).

1.2.1. Data organization:

1.1.1.1.General information

System Characteristics - At the top left part of the spreadsheet four fields are allocated for entering information on the system characteristics (Figure 2): the main output, system name, the reference year for the computation and the version of the spreadsheet.

Tip: In addition to this information it is also advised to include the date and hours in the printing output configuration commands of Excel, to clearly distinguish the different version of the PAM computation.

Figure 2: Data entry block for system feature.

	A	B	C	D	E	F	G
1	Follcy Analysis Matrix for representative system						
2							
3							
4	MAIN FINAL OUTPUT	lint cotton					
5	SYSTEM	network irrig	co	ginery			
6	REFERENCE YEAR	2001-2002					
7	VERSION:	July 2004					
8							

Coefficients of macro-economic distortion. On the top right side of the PAM spreadsheet four fields are allocated for indicating prevailing distortions affecting several factor and financial markets:

- Distortion between the observed wage level (market wage) and the one that would prevail without any policy or market induced distortions (social wage). The value keyed in is the ratio of the social wage to the private wage.
- Distortion between qualified and non-qualified labor wages. The value entered is the value of the social contribution as a percentage of the salary without contribution.
- Distortion on the capital cost induced by tax (or subsidy) on capital investment; the value is entered as a percentage.
- Distortion between the market exchange rate and the real exchange rate; the value is entered as the ratio the Social Exchange Rate above the Nominal Exchange Rate.

Figure 3 Coefficients for macro-economic distortions

	R	5	T	U	V	W	x	Y	4	AA	AB	AC	$A D$	AE	AF	AG	AH
1																	
2		1	Wages D	ancies MO	kille	r): [a	,	et	wage a	ket p						
3		25.8\%	Takes MO	on skilledla	ont	n an	er t	on	o	in the	nal 5						
4		0\%	Takes on	pital): [\% su	\%;	$=*$											
5			Takes su	5 tradables	at												
6				ad valorem	alue												
7				fixed: [am	it of	uct]											
8		1.0	Discrepa	change ra	ium	ange	ref			nomin	chan	mar	chang				

The values of the interest rate at market (private) price and at social prices are keyed in at the top of the Farm budget (Figure 4).

Figure 4 Interest rates date entry areas:

	A	B	C	D	E
9	BUDGET \# - FARM LEVEL				
10					
11	FARM MAIN OUTPUT	raw cotton			
12	LENGTH OF PRDDUCTION CYCLE:	8months			
13	Budget \#1 computed in:	sp by Ha o	raw cotton		
14		----..-- TDT	L ANNUAL	APIT	T-...
15		Life-	Used up		ost
16	B1. FIXED IN.	Time	V alue	Man	Soc
17	2.5% 1 5.0%				
18					
19					

1.1.1.2.Budgets

Following the format applied in the Monke and Pearson manual each Budget includes horizontally a block of data for fixed costs, labor, inputs, raw material (or commodity in process), products (or sales) 1 and taxes (Figure 5). Vertically each budget is divided into five areas.

- The first area on the left is used to register each cost items, quantity and unit price.
- The following one is used to indicate the time along which the money used to purchase an input is immobilized in order to compute the opportunity cost of the financial capital invested in the operation.
- The third vertical area is devoted to the computation of the budget at market price, each cost being decomposed into qualified and non qualified labor, capital and tradable input, on the basis of coefficients applied to the total value of the cost item.
- The fourth column provides the budget in social price terms, based on the market prices adjusted values. The adjustments are based on the coefficients of distortion inputted at the top of the spreadsheet (divergence for wages, exchange rate...) for the domestic factors and fixed and ad valorem duty (or subsidy) for tradable inputs. While distortions for wages and capital are uniform for all budgets, custom duty can be entered separately for each cost item.
- The fifth column is devoted to the entry of custom duties for each cost item and repeats the value entered to account for the divergence on domestic factors market and currency market.

Figure 5: Budget organization in the spread sheet.

Budget' units and indication:
At the top of the farm budget, there is a data entry area to indicate

- The form of the output produced
- Length of the production cycle
- Currency unit
- Volume unit
- Area measurement unit
- Size of the reference plot.

Figure 6 Farm budget information and units

	A	日	c	\square	E	F	G	H	1	\rfloor	K	1	L	M	N	1	0
9	BUDGET \#1 - FARM LEVEL																
10																	
11	FARM MAIN OUTPUT	raw cotton						CURRENCY:	sp			AREA	MEA	MENT UNIT:		Ha	
12	LENGTH OF PRODUCTIONCYCLE:	Amonths					PRO	UCTION UNIT:	ton					PLOT SIZE:		1	
13	Budger \#1 computed in:	sp by Ha of	co														

At the top of the post-harvest budgets the user should indicate.

- The form of the main output
- Length of the production cycle
- Volume unit
- Conversion rate from the raw input (or commodity in process) to the main output
- Conversion rate from the raw input (or commodity in process) to the by-product
- Conversion rate from the raw input (or commodity in process) to losses.

Remark: currency unit is entered only at the farm budget level and reported to the other Budgets.

Figure 7: Post-harvest budgets information, units and conversion rate.

Fixed input data entry area:
For fixed input the user should indicate the life time of the equipment, used up value (share of the equipment used for the production of the selected output), initial cost and salvage value.

Figure 8 Fixed inputs data entry area for cost item

14		------- TOTAL ANNUAL CAPITAL COST-------					
15		Life-	Used up	Capital Cost		Initial	Salvage
16	B1. FIMEDINPUT	Time	Value	Market	Sacial	Cost	Value
17				5.5\%	3.0\%		0
18				0.0\%	0.0\%		0
19	TOTAL						

At the far right end side of the budget, the user should key in

- The ad-valorem and fixed duty applied on the importation of the fixed input.
- The salvage value of the fixed input without accounting for custom duty
- The share of non-qualified labor, qualified labor, capital and tradable in the total value of the fixed input; the share are entered as a coefficients.

Figure 9: Fixed input data entry area for duties and coefficient of decomposition into tradables and nontradables.

Variable inputs data entry area

For variable input the user should indicate, unit price, quantity and frequency of use (for input that are used at different time of the production cycle). The duration of the working capital immobilized for each input is entered into a specific column entitled Revolving fund as a coefficient indicating the share of the total duration of the process during which the corresponding expenditures will be immobilized before the agent can get a return to its investment. For instance land preparation will have a coefficient of 1 while harvesting will have a coefficient of 0 if the usual practice is to sell the production at harvest time.

Four columns re earmarked for keying in coefficients of decomposition of each cost item into domestic factors including non qualified labor (L-NQ), qualified labor (L-Q) and capital (K) and tradable input (TI)

Remark: For post-farm budgets the value of the commodity in process (the output from the previous agents) is automatically computed using the appropriate conversion coefficient keyed in at the top of the budget.

Figure 10: Variable cost. Data entry areas

115	BUDGET \#3-PDST-HARVEST ACTIVITY PROCESSIING						Revalving				
116		---.-.-.--Budget information -...-.-.-...			Freq	TOTAL		---- Disaggregation at market price-			
117	B3. DIRECT LABOR	Unit	Price	Quantity			Fund	L-NQ	L-Q	K	TI
118	permanent labour	spiton	145.4	1	1	145	1.00		100		
119	casuallabour	splton	780.9	1	1	781	1.00	100			
120			0	0	1	0	1.00		100		
121	TOTALS							781	145	0	0
122	BUDGET \#3 - POST-HARVEST ACTIVITY PROCESSIING						Revalving				
123		--.-....-. Budget information --.-....----				TOTAL		---- Disaggregation at markel price -.---			
124	B3. INTERMEDIATE INPUT	Unit	Price	Quantity	Freg		Fund	L-NQ	L-Q	K	TI
125	packing and wrapping materials for speds	splton	140	1	1	140	0.50	0.05	0.05	0.10	0.30
126	energy and water	splton	400	1	- 1	400	0.50	0.01	0.03	0.04	0.92
127	spare parts	splton	200	1	1	200	0.50	0.05	0.05	0.10	0.80
128			0	0	1	0	1.00				1.00
129	Interest: on Revolving Fund	Itmakter	5.5\%	70011^{7}	0.25	963				1.00	
130		af racid	3.0\%	59448	0.25	446				0.00	
131	TOTAL		rate	amoun	year			21	29	1013	570
132	BUDGET \#3 - POST-HARVEST ACTIVITY PROCESSING										
133	B2. COMM	Unit	Price	Quant		TOTAL					
134	raw cotton at ginnery gate	ton	22000	3.125		68750	1.00				
135							0.00				

The right hand side of the variable costs budget is used to key in custom duties - as a positive value, or any subsidy (direct or implicit) as a negative value - to compute the value of input at social prices from their corresponding value at private prices. Two types of duty can be keyed in: ad valorem duty or fixed duty.
Figure 11: Date entry area for custom duties or subsidy on tradable input.

W	X
.-. TI -	
ad	
valorem.	fixed
0%	0
0%	0
0%	0
0\%,	0
0%	0
-.- T	
ad	
valorem	fixed
1.7%	0
1.7\%	0
1.7\%	0
1.7\%	0
-18.0\%	0
0.0\%	0
0.0\%	0
0.0\%	0
0\%\%	0
0%	0
0\%	0

Revenue and direct tax on profit.
The volume and value of the main output (yield in the case of the Farm level budget and any by-products is keyed in at the bottom of each budget. An additional line is earmarked to enter tax on profit.

Figure 12 Data entry area for revenue and direct tax.

132	BUDGET \#3-POST-HARVEST ACTIVITY PROCESSING										TOTAL
133	B2. COMMMODITY IN PROCESS	Unit	Price	Quant	TOTAL						Market
134	raw cotton at ginnery gate	ton	22000	3.125	68750	100					68750
135						0.00					
136	TOTAL										68750
137	BUDGET \#3-POST-HARVEST ACTIVITY PROCESSING										TOTAL
138	B3. REVENUES	Unit	Price	Quant	TOTAL						Market
139	lint cottan semd wastel	ton	80000	1	60000						60000
140		lon	6000	1.96875	11813						11813
141		ton	10000	0.1	1080						1080
142			0	0	0						0
143	TOTAL REVENUES										72893
144	TOTAL COST						819	183	1184	658	71594
145	PROFIT (BEFORE TAXES)										1298

Subsidy or taxes levying on output are inputted in the Budget summary table (Figure 13).

1.2.2. Results presentation

1.1.1.3.Summary budget

The first types of outputs provided by the PAM spreadsheet are the two summary budgets, one on volume basis and one on hectare basis. Budget summary tables are divided in there blocks, one on the left hand side indicating the values at private price, the central one for the budget value at social price and the right hand side indicating the divergence. Each block contains columns summarizing the value for the Farm level budget and the other post-farm budgets, aggregated value for the post farm operations and the last column of each block giving the aggregated value for the whole system.

The aggregated budget items are:
-Total Revenues, broke down into:

- Main Final Output
- By-Products
-Total Cost, broke down into:
- Commodity In Process
- Tradables
- Domestic Factors
- Unskilled Labor
- Skilled Labor
- Capital
-Profit Before-Taxes:
- Direct Taxes:
-Profit After-Taxes:

Figure 13 Budget summary tables.

1.1.1.4.PAM

The second type of output is the two PAMs computed on a volume basis and on a per hectare basis.

Figure 14 PAM tables

	BK	BL	BM	BN	BO	BP	BQ	BR	BS	BT	BU		
193													
194													
195													
196		TABLE 3A: POLICY AllAL YSIS MATRX											
197													
198		network irrigated cotton large ginery							Yersion	July 2004			
199		UNIT: Sp par $\mathrm{Ha}^{\text {a }}$											
200													
201					COSTS								
202			REVENUES		TRADABLES		OOMESTIC		PRofits				
203					INPUTS		FACTORS						
204			A		B		C		0				
205		PRIVATE		89853		22212		55308		12333			
206		PFICES											
207			E		F		G		H				
208		SOCIAL		74045		27664		88294		41913			
209		PRICES											
210			1		J		K		L				
211		DIVERGENCES		15808		- 5462		-32 986		54246			
212													
213													
214		TABLE 3A: POLICY AHAL YSIS MATRIX											
215													
216		network inigated cotton large ginery											
217		UNIT:	sp by ton of lint cour		otton				Yersion	July 2004			
218													
219					Costs								
220			REVENUES		TRADABLES INPUTS		DOMESTIC FACTORS		PROFITS				
221													
222			A		B				C		0		
223		PRIVATE		73893		18286		45484		10443			
224		PRICES											
225			E		F		G		H				
226		SOCIAL		60893		22750		72610		-34468			
227		PRICES											
228			1		J		K		L				
229		OIVERGENCES		13000		-4 484		-27126		44610			
230													
231													
232													

1.1.1.5.Indicators

The third type of outputs provided by the spreadsheet is an array of indicators. The formula used for the computation of each indicator is recall in a specific column.

Beyond the usual list of indicators derived from the PAM as proposed by Monke and Pearson, the table also includes the computation of the Nominal Protection Coefficients without taking into account the value of the by-product at the processing stage. As a matter of fact, if the byproduct represents a large share of the total revenue of the system the impact of any policy affecting the value of the main output would not be adequately represented by an indicator that do not distinguish between the main output and the other ones.

The table of indicator also computes the Social Benefit Cost ratio, another indicator of the comparative advantage less sensitive to the share of tradable in the cost structure. It is recommended to use this indicator when the analyst want to rank the respective positions in terms of comparative advantage of commodity chains that have different cost structures ${ }^{3}$.

[^1]Figure 15 The table of indicators

	BC	BD	B6BF	BG	BH	Bl	BJ
193							
194							
195							
196		TABLE 2A: POLICY AHALYSIS HDICA					
197							
198		1. FINANCIAL PROFITAEILITY			$[D=A \cdot B \cdot C]$		10143
199							
200		2. FINANCIAL COST-BENEFIT RATIO			$[C](A-B)]$		0.818
201							
202		3. SOCIAL PROFITABILITY			$[H=E \cdot F \cdot G]$		-34468
203							
204		4. DOMESTIC RESOURCE COST			[G](E-F]]		1.904
205							
206		5. SOCIAL COST-BENEFIT RATIO			$[(F \cdot G) / E]$		1.566
207							
208		6. TRANSFERS			$[L=1+J+K]$		44610
209							
210		7. NOMINALPROTECTION COEFFICIENT			[AIE]		1.213
211		(Inoluding by-product)					
212		7A. NOMMNAL PROTECTION COEFFICIENT			[A^{*} ' E^{\prime}]		1.271
213		(Main final output only)					
214		8. EFFECTIVE PROTECTION COEFFICIENT			$[(A-B)](E \cdot F)]$		1.588
215							
216		3. PROFIT ABILTY COEFFICIENT			[D/H]		-0.294
217							
218		10. PRODUCERS SUBSIDY RATIO			[LIE]		0.733
219							
220		11. EQUYY, PRODUCER SUBSIDY			[1818		0.604

1.1.1.6.Break even point.

The last outputs provided by the PAM spreadsheet are breakeven points for an array of cost variables and technical coefficients (Figure 16). On the bases of the ratio of the profit value to 0 , as reported in the Budget summary, the spreadsheet provide the yield level, the value of post-harvest cost and the value of domestic factors cost for which the representative system will break even at market price and at social price.
Figure 16 Breakeven points table

	BC	$\mathrm{BD} \times \mathrm{BEBF}$	BG	BH	Bl
223					
224		TABLE 2B: BREAK EVEN POINT			
225					
226			At Market		At Social
227			price		price
228				Fsictouren vatul	
229					
230		Yield:	3.34		6.05
231			व, 0^{18}		15.5
232					
233		FINAL OUTPUT PRICE:	50857.48		82467.6
234			0.83		$1{ }^{2}$
235					
236		POST HARVEST COSTS	11488.87		-31786.07
237			.259		- 10
238					
239		DOMESTIC FACTORS COSTS	55626.13		38142.40
240			623		0.57

2. Computation rationale

2.1. Computation sequence at the budget level.

2.1.1. PAM Budget computation at market price.

Fixed cost. The first block at the top of each Budget is devoted to the computation of the fixed cost. Following the method advocated by the Monke and Pearson, the depreciation of the capital invested is based on the Capital recovery rate (Crr) method (cf. Appendix B for additional details). Expected life time, initial value, salvage value and the shared of the equipment or investment used for the production of the main final output are inputted as basic information. The Crr is computed at private and social price with the corresponding interest rate.

Figure 17 provides a simplified presentation of the fixed costs computation procedures on the spreadsheet (without distinction between qualified and non-qualified labor). The depreciated value at market price of the fixed cost is computed by multiplying the Crr and the initial value of the investment. For each fixed cost item the respective share of tradable and non tradable value is provided in the foremost right area of the fixed cost bloc (cf. Figure 9, p 9). The computation of the share of labor, capital and tradable content of the fixed cost is based on budgets established from primary or secondary data source or educated guess estimates if no data are available. The procedure followed to compute these coefficients are presented in section 2.2.1, page 28 . The rationale behind the formula used to compute the coefficient of decomposition at market and social prices is presented in detailed in Appendix B. The total value of labor, capital and tradable input at market price is computed by adding the depreciated values of each cost item weighted by each corresponding coefficients.

Direct labor cost. The second budget block records labor directly used/paid by the agent in the production process. By definition, the corresponding coefficients of decomposition for capital and tradable input are null, while the direct labor cost can be allocated either to qualified or non-qualified labor (Figure 18).

Intermediate input cost. All other inputs are recorded in the third bloc. In this case the value of each input can be decomposed into domestic factors and tradable input components. For instance, even the value of imported fertilizer purchase will bear a share of labor and capital corresponding to the importing, transportation and retailing operations within the national economy (Figure 18). Section 2.2.1, on page 28, present a method to compute these coefficients.

Interest on revolving funds. While the opportunity cost of the financial capital invested in fixed cost is taken into account by the Crr, for variable costs, the corresponding values are computed on the bases on (i) the total duration of the production process and take into account (ii) the period between the actual time of each expenditure and the end of the production when the agent can earn its return on the investment by selling the product (Figure 19). The spreadsheet computes the total opportunity cost of the funds invested by (i) adding the total value of the variable costs weighted by these coefficients and then multiplying this amount with the selected annual interest rate weighted by the ratio of the total duration of the process to one year.

Page 16 of 67

Figure 17: Fixed costs computation at market price

Figure 18: Variable costs computation at market price

Figure 19: Computation of interest on revolving funds

Page 19 of 67

Figure 20: PAM market prices value computation

Guideline for using a PAM spreadsheet template.
Assistance for Capacity Building Through Enhancing Operation of the National Agricultural Policy Centre FAO Projects GCP/SYR/006/ITA and TCP/SYR/2906(A)

Eventually the corresponding value is inputted as a capital cost at the bottom of the third block (detailed explanation on the rationale of the computation is given in Appendix B).

If the representative system include only one budget, the first row of the PAM is given by the simple addition of the share of the costs attributed to labor, capital and tradable input. In the case of the farm budget the revenue is straightforwardly given by the production and the unit price. Figure 20 indicates the flows of computation leading to the corresponding PAM accounting entities.

2.1.2. PAM Budget computation at social price:

The sequence of computation at social price (Figure 21, Figure 22, Figure 23,) follows a pattern similar to the sequence followed at private price. The adjustment from private to social prices are computed by modifying the coefficients applied to decompose cost items value into domestic factors and tradable inputs.

As already indicated above, adjustments for the value of the decomposition coefficient from market to social price changes are based on distortion parameters that are unique for the whole spreadsheet. For instance, if qualified labor incurred a given percentage of transfer, the decomposition coefficient for skilled labor at market price of each cost items will be adjusted on the bases of the same parameter that are repeated at each line of the budget on the fourth right hand column. Of course all the computation involving the interest rate (Crr, revolving funds...) will be carried out with the social interest rate.

For tradable input purchase the adjustment is done, cost item by cost item, on the bases of the custom duties pertaining to each type of intermediate goods. Once the appropriate custom duties is inputted in the fourth group of columns, the spreadsheet compute the corresponding parity price by adjusting the tradable input coefficient and taking into account any distortion for the exchange rate. If the input benefit from a direct or implicit subsidy, the corresponding value of the subsidy should be inputted in the "Duty" as a negative figure.

For a system with only one system, the second row of the PAM will be obtained by adding all labor, capital and tradable input value at social price from the three budget blocs. The parity price of the output, to compute the level of revenue, is computed on a separate spreadsheet and inputted at the bottom of the budget. Figure 24 indicates the flows of computation corresponding to the PAM accounting entities.

Page 22 of 67

Figure 22: Variable costs computations at social price

Page 23 of 67

Figure 23: Computation of interest on revolving funds at social price

Page 24 of 67

Figure 24: PAM social prices value computation

2.1.3. Computation sequence at the representative system level.

The spreadsheet allows handling four budgets, the first one corresponding to the farm level, while the next three one are used for post harvest operations. Figure 25 presents how the different types of budgets are combined to compute the PAM at the representative system level. For the sake of simplicity, the figure includes only one Farm level budget and two post-farm budgets.

Starting on the left hand side of the spreadsheet, at market price, the production of the first budget becomes a particular intermediate input for the following operation: the commodity in process. This transfer from one agent to another takes into consideration the conversion rate in order to get the final aggregated results in terms of unit of final main output. For instance in a system with two agents including a wheat producer and a miller, the PAM will be established in term of flour output at the mill level. The conversion rate of, 0.8 or 80%, inputted at the top of the miller's budget indicate that you can get 800 kg of flour from 1000 kg of wheat, which imply that the miller need to purchase 1250 kg of wheat to get 1000 kg of wheat flour. This amount is automatically put into the Commodity in Process row in the miller budget.

At market price, the value of the PAM at the system level is obtained by adding all the tradable and non-tradable computed for each budget, without, taking into account the value of the commodity in process, but taking into account the opportunity cost of the funds used to purchase it from the previous agents. The total revenue of the system is given by the revenue of the last agent of the system.

At social price, the computation of the second row of the PAM starts with the parity price for the main final output at the bottom of the last Budget. This parity price provides the level of revenue for a unit of main final output. By convention, the profit of the last agent at social price is null, therefore by deducting all the fixed, labor and intermediate inputs costs, which are computed independently the spreadsheet provides the value of the commodity in process at social price for the last budget of the system. In a commodity chain, by definition, the value of the commodity in process purchased by a given agent corresponds to the revenue of the upstream agent supplying the commodity in process, taking into account the adjustment related to the processing (conversion rate, losses). Using the same convention of social profit equal zero for this previous or immediate up-stream agent (the trader budget in Figure 25), the value of the commodity in process for this previous agents can be obtained by deduction of the total costs at social price.

This procedure allows computing the value at social price of the revenue earned by the first agent of the representative system, i.e. the farmer. The first agent is not purchasing any "commodity in process", it is, therefore, possible to compute the value of his profit at social price by deducting from its revenue the total value of costs at social price. In fact, the profit at social price computed in the first budget is profit for the whole representative system.

The dotted line indicates that the value of the opportunity cost of the commodity in process is obtained by applying the social interest rate to the social value of the commodity in process. The result is then included in the social cost, which reduced by a similar amount the value of the commodity in process. This circular computation is solved by an iterative process (cf. p 32).

Figure 25 : Computation sequence at the representative system level

2.2. Complementary computations

This section presents complementary computations and possible adjustments that have to be made to feed the required information into the PAM spreadsheet

2.2.1. Computation of the decomposition coefficients.

Two types of decomposition coefficients have to be inputted in the PAM spreadsheet, one for the decomposition of the fixed input, the other one for the decomposition of the intermediate inputs. In principle, these coefficients can de deducted from Input/Output tables produced for National Accounting, but they are rarely available and detailed enough to do so. It is, therefore, necessary to rely on primary or other secondary sources of information to establish a typical budget of the cost involved in the production of the input used in the PAM budget. Accordingly two spreadsheet formats have been developed to assist the user in computing the coefficients ($<$ Format for decomposition of coefficient.xls $>$).

Decomposition of fixed costs into tradable and non-tradable components. The first format (Figure 26) computes the share of tradable and non tradable before inputting custom duties. The different costs are listed on the left hand side of the table and are reported in the four columns on the right hand side of the table according to their category: labor, capital and tradable. For tradables, the values of ad valorem and fixed duties are deducted. Then, each category is summed up at the bottom of the table, and the corresponding coefficients are computed (display in red). These coefficients are keyed in the right hand side of the fixed cost budget block of the PAM spreadsheet (cf. Figure 9).

Decomposition of intermediate inputs into tradable and non-tradable components. The second format computes the coefficients for decomposing the intermediates inputs value into their tradable and non-tradable component (Figure 27). The format combines two tables, one for the fixed costs and the second one for the variable costs related to the production of the intermediate inputs. The rationale of the computation follows the one of the PAM spreadsheet.

The fixed cost block compute the annual value for fixed cost split into its tradable cost component and financial costs components (see Appendix B for complementary details). The values are reported at the top of the second table and directly allocated to the capital cost and tradable input components.

The bottom part of the second table is used to key in the variable cost. The value of the variable cost inputted should be consistent with the quantity of output indicated in the fixed cost table at the top of the format; for instance if the capacity keyed in the fixed cost table result in a used up value of 60% of the equipment annual capacity, the values keyed in for the variable cost should correspond to the same quantity.

For each variable cost, the user will indicate to which category of tradable and non-tradables the cost item belong by inputting the corresponding coefficient on the left hand side block (Heading: Coefficient). The format allows handling intermediates inputs combining tradables and non-tradables (like maintenance cost) which correspond to a second level of inputs decomposition into tradables and non tradables. The values of the tradables and non-tradables contents are then directly computed on the right hand side of the table (Heading: Values) for each cost item.

Figure 26 Decomposition of fixed costs into tradable and non-tradable content.

	A	B	c	0	E	F	a	H	1	J	K	1	M	N
1	Format for Fixed costs decomposition coefficients													
2	Type of fixed input	Vell												
3														
4	Cost items	Unit	Unit price	Quantity	Total cost	$\begin{gathered} \text { TI or mon } \\ \text { TI } \end{gathered}$	Ad valorem dut!	Fixed custom dutll	$\begin{gathered} \text { Duty free } \\ \text { walue } \end{gathered}$	Labor non- qualified	$\begin{array}{\|c\|} \hline \text { Labor } \\ \text { qualified } \end{array}$	Capital	Tradabl e input	Check
5	Drilling in soll of medium hardness Provision and instalation of sleeves Provision and installation of pipe of 8 mm and diametre c 1 E Geophysical measurements Testing of well (primary oleaning) Testing of well (72 h)	$\begin{aligned} & \text { lm } \\ & \mathrm{lm} \\ & \mathrm{~lm} \\ & \mathrm{~lm} \\ & \mathrm{~lm} \\ & u \\ & u \\ & \hline \end{aligned}$	50040019406001000080000	60	30000	$\begin{array}{\|l} \hline \text { non } \mathrm{TI} \\ \mathrm{TI} \\ \mathrm{TI} \\ \text { non } \mathrm{TI} \\ \text { non } \mathrm{TI} \\ \text { non } \mathrm{TI} \\ \hline \end{array}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	1000	30000	30000		$\begin{array}{\|c\|} \hline 30000 \\ 10000 \\ 80000 \\ \hline \end{array}$	$\begin{aligned} & 16143 \\ & 63286 \end{aligned}$	0
6				60	24000				16143					0
7				50	97000				69286					0
8				50	30000				30000					0
9					10000				10000					0
10					80000				80000					0
11	Total				271000				235428	30000	0	120000	85429	0
12	Decomopsoition coefficients									0.13	0.00	0.51	0.36	1
13														

Guideline for using a PAM spreadsheet template.
Assistance for Capacity Buitaing Through Enhancing Operation of the National Agricultural Policy Centre AO Projects GCP/SYR/006/ITA and TCP/SYR/2906(A)

Page 30 of 67

Figure 27Decomposition of variable costs into tradable and non-tradable content.

Each category of cost component is then summed up at the bottom of the table and the coefficients are computed at the bottom at the coefficient block.

The left hand side of the table is used to enter the duty applied to each type of tradable cost (negative value in case of direct or implicit subsidy) in order to compute a weighted custom duty to be inputted in the PAM spreadsheet for the corresponding intermediate input (cf. Figure 11).

2.2.2. Computation of the main output parity price

The second spreadsheet included in the PAM model.xls file is the Parity price spreadsheet used to compute the parity price for the main output (Figure 28). The principle is to build on the left column the value of main output at market price, adding the different components from the FOB value to the CIF and the custom duties and handling costs. Then the parity price of the main output is computed without including duties and using the Social Exchange Rate. The Parity price spreadsheet has two links to the PAM spreadsheet:

- The social exchange rate to compute the parity price (Cell E14 in Figure 28) is computed by applying the coefficient of divergence inputted at the top of the PAM spreadsheet to the market price exchange rate keyed in the left hand column of the table (Cell D14).
- The PAM spreadsheet cell for keying in the parity price value (at the bottom left of budget 4 - Cell S218) is linked to the parity price obtained in the Parity price spreadsheet at Cell E33.
Figure 28 Spreadsheet for computing the parity price of the main output

This format has to be adjusted by the user to fit to the different elements and type of duties that are applied to the main final output import or export. While it is not recommended to add too many spreadsheets to <PAM model.xls> file to limit the size and volume of computation, it is important to have this additional spreadsheet for parity price to facilitate sensitivity analysis.

3. Using the spreadsheet.

3.1. Basic principle

As already indicated before, the shaded cells are earmarked for keying in the required data while the other "white" cells should not be altered as they contain formulas. The PAM spreadsheets use the Excel protection function that can be activated to protect the "white" cells if the Spreadsheet has to be used by a wider audience. The activation of the Protection will allow the users to modify the value of the shaded cells only.

3.2. Setting the Calculation options in Excel.

In order to keep a consistent pattern between the computation at private and social price, the computation of the interest on revolving funds at social price also take into account the value of the commodity in process at social price. This lead in spreadsheet technique terms to a circular reference represented by dotted lines in Figure 25 and therefore to an error in the formula output.

The activation of the iteration feature in the Calculation Option panel of the spreadsheet allows solving this problem, and to complete the whole set of computations; to do so open the Tool/Option... menu and activate the Iteration and Manual Calculation option. (Figure 29)

Figure 29 Spreadsheet computation configuration

The activation of the iteration option require also to put the level of macro security at the medium level; to do so open the Tools/Macro/Security... command and select the medium level.

However, the activation of this feature, make the spreadsheet more sensitive to any mistake while entering the data, in particular at the very beginning when budgets have not been totally keyed in. Any interruption of the spreadsheet computation during the iteration process by entering a new data may result in error messages on the row allocated to revolving funds. This errors message cannot be eliminated by the cancel command.

In order to minimize the risk of having to restart the data entry on a new spreadsheet, it is recommended to turn off the automatic computation option in the option panel of the spreadsheet and the automatic saving option alike. Accordingly the user should take care of saving his work on a regular basis while entering the data.

3.3. Browsing through the spreadsheet

The size of the spreadsheet makes browsing from one cell to another rather lengthy and time consuming. In order to facilitate the access and display of important cells or range of cell, the Name box Excel feature is used. By clicking the Name box located at the left top corner of the spreadsheet, the user can directly select and display a cell or a range of cells for keying in data or reading PAM outputs (Figure 30). The list of cells' Names, corresponding, cells' references and contents are given in Table 1.

Figure 30 Name box facility for browsing.

Table 1 List of cells names.

Cells Names	Cells references	Content
a.Budget.summary	$=\$$ AJ $\$ 240: \$ B B \$ 280$	Budget summary tables
a.Indicators	$=\$$ BD $\$ 240: \$ B J \$ 264$	Indicators table
a.PAM	$=\$ B L \$ 259: \$ B T \$ 274$	Pam table
a.parity.price	$=$ 'Parity price' $\$ \$ E \$ 33$	Parity price cell in the Parity price spreadsheet
a.price.out.b1	$=\$ D \$ 48$	price of the output budget 1 (Farm level)
a.price.out.b2	$=\$ D \$ 104$	price of the output budget 2
a.price.out.b3	$=\$ D \$ 160$	price of the output budget 3
a.price.out.b4	$=\$ D \$ 218$	price of the output budget 4
area.unit	$=\$ N \$ 11$	Area unit (Farm level budget)
cr.byprod.b2	$=\$ O \$ 63$	Conversion rate from raw material to by-product budget 2
cr.byprod.b3	$=\$ M \$ 119$	Conversion rate from raw material to by-product budget 3
cr.byprod.b4	$=\$ N \$ 177$	Conversion rate from raw material to by-product budget 4

Cells Names	Cells references	Content
cr.output.b2	=\$O\$62	Conversion rate from raw material to main output budget 2
cr.output.b3	=\$M\$118	Conversion rate from raw material to main output budget 3
cr.output.b4	=\$N\$176	Conversion rate from raw material to main output budget 4
currency	=\$1\$11	currency unit
div.e	=\$S\$8	Coefficient of distortion for the exchange rate
div.L.NQ	=\$S\$2	Coefficient of distortion for the labor market
product. 1	=\$B\$11	Name of the output of budget 1
product. 2	=\$B\$62	Name of the output of budget 2
product. 3	=\$B\$118	Name of the output of budget 3
product. 4	=\$B\$176	Name of the output of budget 4
r.market	=\$D\$17	Interest rate at market price
r.social	=\$E\$17	Interest rate at social price
system.name	=\$B\$5	Name of the system
t.K	=\$S\$4	\% tax/subsidy on the Capital market
t.losses. 2	=\$O\$64	Rate of waste from the raw material processing budget 2
t.losses. 3	=\$M\$120	Rate of waste from the raw material processing budget 3
t.losses. 4	=\$N\$178	Rate of waste from the raw material processing budget 4
t.LQ	=\$S\$3	\% of social contribution on qualified labor
unit. 1	=\$1\$12	Unit of production for budget 1
unit. 2	=\$1\$63	Unit of production for budget 2
unit. 3	=\$1\$119	Unit of production for budget 3
unit. 4	=\$1\$177	Unit of production for budget 4
world.price.FOB	='Parity price'!\$D\$9	World price in parity price spreadsheet
yield	=\$E\$48	Yield in budget 1 (Farm level)

3.4. Adding or erasing budget cost item rows.

The configuration of the PAM spreadsheet allows adjusting the size of the budgets by adding or deleting the cost item rows. To keep the integrity of the formula it is important to keep the first and last rows of the budget blocks as shown in Figure 31.

To add a new row the user should select a whole row in the budget block that should be extended apart from the first and the last line of the block. The selection should be then copy and duplicated using the Insert Copied Cell of the Insert menu (or using the menu display by right clicking the mouse) If the user insert directly a new row, the formula included in the cells on the right side of the spreadsheet (like the formula for computing the coefficients of decomposition at social price) will not be copied, thus the data keyed in the new row will not be taken into account in the spreadsheet computation.

To erase a cost item row, the user selects the whole row and uses the Delete command. To remove the data in the first or last row the user should apply the Clear Content command to the shaded cell.

Figure 31 Adding and removing cost items lines

3.5. Using the PAM spreadsheet with less than four budgets

If the representation of the selected system requires using less than four budgets, the user should link the price of the main output in each empty budget to the price of the commodity in process. Similarly, all conversion ratios in each empty budget should be put to 1 .

Figure 32 Linking output price to the Commodity in process price for unused budget.

4. Possible development of the basic template.

The developments of PAM spreadsheet template on standard software allows to easily adjust the template to the specific needs of the user and allows to further develop the analysis using additional and complementary computations and functions. This section will present several modifications/ adjustments and complementary computations that have been made in the context of the Comparative Advantage Study.

4.1. Spreadsheet adjustment for network irrigation costs management.

Subsidy or tax on tradable output have to be included in the Budget summary table at the bottom of the spread sheet, while subsidy on tradable input are keyed in by changing the sign of the ad-valorem and fixed tax on tradable input (i.e. a subsidy is managed by the spreadsheet as negative tax). The institutional setting along which farmers financially contribute to network irrigation operations has required adding a new feature to the spreadsheet. Farmers paid their contribution on a hectare basis and the value does not cover the entire irrigation costs (fixed cost and operation and maintenance cost).

On the private price budget side, the level of the fee paid by the farmer (3000 SP per hectare) is keyed in and adjusted to the share of the selected crop/commodity into the cropping pattern. The social value of network irrigation cost should take into account the total cost (fixed and variable) thus incorporating the subsidy component of the irrigation cost that it not bear by the farmer. The cost of network irrigation cost has been estimated at 9000 SP per hectare on the basis of information collected through NAPC studies on water.

To facilitate data entering and further modification, a specific data entry area has been added at the top of the Farm budget in order to derive the ratio between the farmer's fee value and the total irrigation cost; thus using this ratio the cost inputted in the budget at social price is adjust automatically if the level of the fee is changed. This feature is included in the model file $<$ PAM model with irrigation cost.xls $>$. The farmers fee is keyed in as intermediate input cost item. The total value of the irrigation cost is keyed in a specific box at the top of the "PAM spreadsheet under the Total cost heading (Figure 35). The user can then adjust by iteration the Applied ratio in the corresponding cell to equalize the cost of irrigation reported in the Social price side of the budget reported under the Social in PAM heading to the Total cost. The applied ration is used as an additional coefficient in the formula computing the social cost from the market price value of the irrigation fee value. The last adjustment is made by entering the tax paid on tradable input used in for irrigation.

Figure 33 Additional data entry area for managing irrigation fee.

	H	1	J	K	L	M	N	0	P
1									
2									
3				-----------	-------------	igation----	$\cdots-$	--------	
4				Total	Share of	Ratio to	Applied	Sacial in	
5				cost	Tot cost	nominal	ratio	PAM	
6					0	0.000		0	
7									

4.2. Using multiple PAM spreadsheets

It is possible to integrate into a Commodity chain PAM the result of different PAM spreadsheets corresponding to different representative systems (irrigated, rainfed...) producing the same main final outputs. The PAM for each representative system should be developed and computed separately beforehand. Then, they can be combined into the same file, and an integrated PAM can be build by adding an additional spreadsheet containing only the Summary budget and the PAMs for the whole Commodity chain. The integration is made by adding the value of each representative system summary budget weighted by a scale parameter, indicating the relative importance of each system. In the integrated PAM file, only one Parity price is used, to which each PAM spreadsheet is linked to. The integrated PAM for the cotton commodity chain is given as an example (01 Int PAM lint cotton large ginery.xls).

4.3. Sensitivity analysis with Excel table function.

Beyond breakeven values computed within the PAM spreadsheet, the sensitivity of the PAM results to any variable can be further assessed using the Table command of the Data menu (Figure 34).

Figure 34 Using the Table command for sensitivity analysis.

4.4. Introducing @Risk software for sensitivity analysis scenario simulation.

@Risk is software developed by Palisade Corporation ${ }^{4}$ runs as an add-in to Excel and allows simulating spreadsheet formulas results for different values of input cells that varies along a selected probability distribution. This section will only provide a brief summary of its application in the context of the CAS study.

4.4.1. Launching @risk.

The software should be started first, from the Window Start menu, and it will call and open automatically Excel, while adding two additional bar of Icons on the menu area. One entitled Decisions tools could be closed (left button of the mouse on the menu bar), the second one entitled @Risk will be use to run the simulation. The file <01 Risk PAM lint cotton netw irr large ginery.xls> can be refer to as an example.

4.4.2. Selecting input and output variables

The application of @risk requires a set of input and output variables in the Excel file that will be call by the add-in for the simulation. To the sake of easiness and safety, the selected PAM spreadsheet is saved as a new spreadsheet. An additional spreadsheet is then created in the new file called @Risk parameters (Figure 35). The selected input variables are listed at the top of this spreadsheet; these are the variables that the analyst would like to include in the @risk analysis. Likewise the output variables are listed at the bottom of the spreadsheet; these are variables for which @risk will provide a series of possible results. In the case of the PAM, macro-prices variables, output and input value or prices and technical coefficients are selected as input variables for the @Risk analysis, while the whole set of Indicators were included in the list of output.

4.4.3. Selecting the probability distribution

The following step consist in defining which probability distribution will be used to represent the values that each input variables could take in the simulation. If the purpose of the analysis is to only assess the sensitivity of PAMs' indicators to a whole set of variables varying simultaneously, a basic, simple distribution can be selected for whole set of input variables. The result will indicate which variables have a major impact on each output variable on a pure computational basis. If the purpose is to simulate to what extent the variation of a set of variables will affect the representative systems' economic performance, then it is important to select a probability distribution that corresponds to the actual observed variation of each input variables. Three type of distribution can be easily applied ${ }^{5}$:

Triang: This function allows characterizing the variation of input variables along a triangle shape distribution providing the minimum, most likely and maximum value. This function can be used to assess the sensitivity.

[^2]Betasubj: This function allows characterizing the variation of variables along an asymmetric pattern providing the minimum, most likely, mean and maximum value.

General: This function allows characterizing the variation of the variables along the pattern provided by a histogram from the observed values of the selected variable. This is the best option when it is difficult to match the actual or observed patterns of variations of the variable to a specific distribution probability.

When the appropriate distributions have been selected, the corresponding value required (i.e. maximum, minimum, most likely value...) are inputted in a specific column of the parameter spreadsheet for each input variables while the corresponding function are inputted at the end of the raw using the specific @risk function.

4.4.4. Linking the input and the output value in the PAM spreadsheet.

The last stage consists in establishing the relevant link with the PAM spreadsheet. Each cells of the PAMs spreadsheet corresponding to the value of a variable that has been included in the @risk analysis should call the corresponding cell in the @risk parameter spreadsheet. The same applies, but the other way round, for output variables.

Figure $35 @$ Risk parameters sheet organization.

4.4.5. Running the simulation:

The first step is to indicate to @Risk the output cells in the @,Risk parameters spreadsheet. Once these are selected, they are transfers to @Risk by clic \ddagger. Then, @Risk will
identify automatically the input variables, the one that contains @Risk functions, by clicking

This action launch the @Risk screen with the list of output variable on the left and the input variables on right hand side of screen (Figure 36). At this stage before launching the simulation, the users can specify how input variables are correlated by clicking Correlate in order to make the simulation behaving as much as possible close to the reality (Figure 37).
Figure 36 @Risk input and output variable data screen

Figure 37 @Risk correlation matrix screen.

Using the correlation matrix, the analyst can specify for instance that the price of transportation is positively correlated with the price of fuel. Thus, when @Risk will generate the different input variables values within the probability distribution, it will take care to respect the coefficient of correlation keyed in.

The following step consists in launching the simulation by clicking . During the simulation @Risk computes the PAM spreadsheet for at least 100 times (the number can be set under the setting menu) with a different set of input variables for each iteration. The results are displayed for each output variable (Figure 38).

Figure 38 : @Risk simulation output screen.

By selecting one output variable and clicking a histogram of the distribution of the values obtained for the output variable throughout the simulations is displayed (Figure 39). A cumulated graph presents the probability to get a value above, or below a critical level. For instance in the case presented in the Figure 39, @Risk computed that there is a probability of 0.8 to get a DRC below one.

One of the interesting feature of the software is the sensitivity analysis performed simultaneously on the whole set of input variables selected. Clicking on the Sensitivity button in the result panel will generate a new set of results for each output variable (Figure 40).

Figure 39 @Risk screen of the graph presenting the probability distribution for an output.

Figure 40 : @Risk screen - sensitivity analysis.

In this case also, the interpretation of the results is facilitated by the production of graphs, such as the one displayed in Figure 41 where the relative importance of the input variables on the DRC are clearly shown. It is important to underline that with @Risk the indicator of sensitivity to a given variable take into consideration the influence of other variables, whereas in the other methods proposed above such as the break even point, or the one using the Table command, the sensitivity to a given variable is measured every other input variables being equal.

Figure 41 @Risk screen - Tornado graph for sensitivity analysis.

4.5. Establishment of a database of PAM results.

The computation of a PAM for only one representative systems would be a rather limited input into the policy dialogue and the decision making process for agricultural policy formulation, apart from the benefit of the information collected and analyzed to build the matrix. One of the strong points of the CAS was that it dealt with a large range of products allowing comparing not only the performance at market and social price of a given representative system but also the relative performances among systems.

To facilitate the compilation of the results computed a specific file has been designed and linked ${ }^{6}$ to the respective PAMs files to compile the different categories of result (Indicators, PAMs, Summary budget, and selected technical coefficients) in an organized and systematic form.

[^3]The file entitled <00 PAM data summary.xls> is composed of 5 spreadsheets including:

1. PAM datasheet: -compiling all the results coming from the PAM computed in volume of main final output or on a hectare basis
2. Indicators: -listing al the different indicators from the financial profitability to Equivalent producers' subsidy.
3. Budget in ton: -list all the data from the summary budget computed in unit of main final output.
4. Budget_ha: -list all the data from the summary budget computed on a hectare basis
5. Tech coef and margin:- list the major technical coefficient such as yield, conversion rate, private price for the main final output and by products

The first cells at the beginning of each record recall the main features of each representative systems including:

1. N : the number of the PAMs
2. Product: the raw commodity (wheat, cotton, olive...)
3. System: A label specific to the system
4. Main output: the main final output of the representative system (flour, pasta, cotton lint, olive oil...)
5. Parity: the market targeted by the system (export or import)
6. Processing: characteristics of the post-harvest system technology and institutional status: large scale, small scale, public, private
7. Ecology: the type of cropping systems in which the product is grown: network irrigated rainfed...)

Samples of the spreadsheets included in the <00 PAM data Summary.xls> file are presented in Table 2 to Table 5.

Table 2 Summary spreadsheet - PAM data sheet sample

N	Product	System	Main output	Parity	\|Processing	Ecology	Unit	Price syst	Revenue	Tradable inpu	Domes	rofit
01	Cotton	Lint cotton export large ginery network	Lint cotton	export	large ginery	network	Ton main output	Private price	113619	22924 !	45385	45316
01	Cotton	Lint cotton export large ginery network	Lint cotton	export	large ginery	network	Ton main output	Social price	62883	28299	77332	-42748
01	Cotton	Lint cotton export large ginery network	Lint cotton	export	large ginery	network	Ton main outout	Divergence	50736	-5 376	-31.947.	88058
01	Cotton	Lint cotton export large ginery network	Lint cotton	export	large ginery	network	Hectare	Private price	138160	27875	55188	55097
01	Cotton	Lint cotton export large ginery network	Lint cotton	export	large ginery	network	Hectare	Social price	76466	34412	94036	-51982
01	Cotton	Lint cotton export large ginery network	Lint cotton	export	large ginery	network	Hectare	Divergence	61694	-6537	-38848	107079
02	Cotton	Lint cotton export large ginery well	Lint cotton	export	large ginery	well	Ton main output	Private price	109543	234831	58341	27719
02	Cotton	Lint cotton export large ginery well	Lint cotton	export	large ginery	well	Ton main output	Social price	62870	30318	91535	-58982
02	Cotton	Lint cotton export large ginery well	Lint cotton	export	large ginery	well	Ton main output	Divergence	46673	-6835	-33194	86701
02	Cotton	Lint cotton export large ginery well	Lint cotton	export	large ginery	well	Hectare	Private price	140215	300581	74677	35480
02	Cotton	Lint cotton export large ginery well	Lint cotton	export	large ginery	well	Hectare	Social price	80474	38807	117165	-75497
02	Cotton	Lint cotton export large ginery well	Lint cotton	export	large ginery	well	Hectare	Divergence	59741	-8748	-42488	110978
03	Wheat	Flour soft import public large network	Flour soft	import	public large	network	Ton main output	Private price	13697 \|	4724	6527 ,	2446
03	Wheat	Flour soft import public large network	Flour soft	import	public large	network	Ton main output	Social price	10609	5850	9366	-4607
03	Wheat	Flour soft import public large network	Flour soft	import	public large	network	Ton main output	Divergence	3089	-1 125	-2840	7054
03	Wheat	Flour soft import public large network	Flour soft	import	public large	network	Hectare	Private price	38353	13228	18275	6850
03	Wheat	Flour soft import public large network	Flour soft	import	public large	network	Hectare	Social price	29704	16379	26226	-12900
03	Wheat	Flour soft import public large network	Flour soft	import	public large	network	Hectare	Divergence	8648	-3151	-7951	19750

Guideline for using a PAM spreadsheet template.
Assistance for Capacity Building Through Enhancing Operation of the National Agricultural Policy Centre FAO Projects GCP/SYR/006/ITA and TCP/SYR/2906(A)

Page 47 of 67

Table 3 : Summary spreadsheet Indicator sheet sample

Page 48 of 67

System	Main output	Parity	Processing	Ecology	Indicator	Value
01 PAM Lint cotton export large ginery network	Lint cotton	export	large ginery	network	a. FINANCIAL PROFTTABILITY	45310.1
01 PAM Lint cotton export large ginery network	Lint cotton	export	large ginery	network	b. FINANCIAL COST-BENEFIT RATIO	0.50
01 PAM Lint cotton export large ginery network	Lint cotton	export	large ginery	network	c. SOCIAL PROFITABILTY	-42748.1
01 PAM Lint cotton export large ginery network	Lint cotton	export	large ginery	network	d. DOMESTIC RESOURCE COST	2.24
01 PAM Lint cotton export large ginery network	Lint cotton	export	large ginery	network	e. SOCIAL COST-BENEFIT RATIO	1.68
01 PAM Lint cotton export large ginery network	Lint cotton	export	large ginery	network	f. TRANSFERS	88058.36
01 PAM Lint cotton export large ginery network	Lint cotton	export	large ginery	network	g. NOMINAL PROTECTION COEFFICIENT	1.8
01 PAM Lint cotton export large ginery network	Lint cotton	export	large ginery	network	h. NOMINAL PROTECTION COEFFICIENT	2.04
01 PAM Lint cotton export large ginery network	Lint cotton	export	large ginery	network	i. EFFECTIVE PROTECTION COEFFICIENT	2.62
01 PAM Lint cotton export large ginery network	Lint cotton	export	large ginery	network	PROFITABILTY COEFFICIENT	-1.06
01 PAM Lint cotton export large ginery network	Lint cotton	export	large ginery	network	k. PRODUCERS SUBSIDYRATIO	1.40
01 PAM Lint cotton export large ginery network	Lint cotton	export	large ginery	network	I. EQUIV. PRODUCER SUBSIDY	0.76
02 PAM Lint cotton export large ginery well	Lint cotton	export	large ginery	well	a. FINANCIAL PROFTABILITY	27718.99
02 PAM Lint cotton export large ginery well	Lint cotton	export	large ginery	well	b. FINANCIAL COST-BENEFIT RATIO	0.68
02 PAM Lint cotton export large ginery well	Lint cotton	export	large ginery	well	c. SOCIAL PROFITABILTY	-58982.23
02 PAM Lint cotton export large ginery well	Lint cotton	export	large ginery	well	d. DOMESTIC RESOURCE COST	2.81
02 PAM Lint cotton export large ginery well	Lint cotton	export	large ginery	well	e. SOCIAL COST-BENEFIT RATIO	1.94
02 PAM Lint cotton export large ginery well	Lint cotton	export	large ginery	well	If. TRANSFERS	86701.21
02 PAM Lint cotton export large ginery well	Lint cotton	export	large ginery	well	19. NOMINAL PROTECTION COEFFICIENT	1.74
02 PAM Lint cotton export large ginery well	Lint cotton	export	large ginery	well	Ih. NOMINAL PROTECTION COEFFICIENT	1.96
02 PAM Lint cotton export large ginery well	Lint cotton	export	large ginery	well	I. EFFECTIVEPROTECTION COEFFICIENT	2.64
02 PAM Lint cotton export large ginery well	Lint cotton	export	large ginery	well	1j. PROFITABILTY COEFFICIENT	-0.47
02 PAM Lint cotton export large ginery well	Lint cotton	export	large ginery	well	K. PRODUCERS SUBSIDYRATIO	1.38
02 PAM Lint cotton export large ginery well	Lint cotton	export	large ginery	well	I. EQUIV. PRODUCER SUBSIDY	0.79
03 PAM Flour soft import public large network	Flour soft	import	public large	network	a. FINANCIAL PROFTABILITY	2446.42
03 PAM Flour soft import public large network	Flour soft	import	public large	network	b. FINANCIAL COST-BENEFIT RATIO	0.73
03 PAM Flour soft import public large network	Flour soft	import	public large	network	c. SOCIAL PROFITABILTY	-4607.27
03 PAM Flour soft import public large network	Flour soft	import	public large	network	d. DOMESTIC RESOURCE COST	1.97
03 PAM Flour soft import public large network	Flour soft	import	public large	network	e. SOCIAL COST-BENEFIT RATIO	1.43
03 PAM Flour soft import public large network	Flour soft	import	public large	network	f. TRANSFERS	7053.69
03 PAM Flour soft import public large network	Flour soft	import	public large	network	19. NOMINAL PROTECTION COEFFICIENT	1.29
03 PAM Flour soft import public large network	Flour soft	import	public large	network	h. NOMINAL PROTECTION COEFFICIENT	1.33
03 PAM Flour soft import public large network	Flour soft	import	public large	network	1. EFFECTIVE PROTECTION COEFFICIENT	1.89
03 PAM Flour soft import public large network	Flour soft	import	public large	network	1. PROFITABILTY COEFFICIENT	-0.53
03 PAM Flour soft import public large network	Flour soft	import	public large	network	k. PRODUCERS SUBSIDY RATIO	0.66
03 PAM Flour soft import public large network	Flour soft	import	public large	network	I. EQUIV. PRODUCER SUBSIDY	0.51

Guideline for using a PAM spreadsheet template.
Assistance for Capacity Building Through Enhancing Operation of the National Agricultural Policy Centre FAO Projects GCP/SYR/006/ITA and TCP/SYR/2906(A)

Table 4: Summary spreadsheet Budget_Ton sheet sample

	Proaluct	Systen	Man outpur	paty	procesting	\|Ecolory	Hem	meatam	4	4 H	\|			Sof Aray	Sont	Sog3		$\begin{gathered} \text { So pasal } \\ \text { Buceal } \end{gathered}$	$\begin{array}{r} \text { sol } \\ \hline \end{array}$					Dimara	
	Coton 0	01 PAM Limt collon ermon large giner nemark	Unctoton	Expon	lame ginen	fnemath	1 TOTM REVENUES	86851	41281	68009:	54075	68049	113619;	59957	59		5	62.625	62 293]	95:			23.		
01	caron 0	01 PAN Uni cotion expon large giner nemotk	Unt cotyon	expon	laroe giney	nemoik	1 10 Malin fnal ouput	(1)281	41281	54075	54075	51075	56075	59699	59599	48196	48652	18.552	18652	181818	18818.	5879	5423.	423.	
01	conon	01 PAM Lint conon erpon large giner nemork	Lint cotion	expon	lagoeginay	inamoik	16 er products	258		13974		13974	14231	258		13974		13974	14231		0		0	-	
	conon	01 PAM Lin conon expon lape ginay nemoma	Unt caton	expon	large ginen	namork	2 total cost	85321	${ }^{1} 281$	${ }^{43} 850$;	54668	4269	${ }^{68} 308$	102684	59699	82170	18652	${ }^{\text {92 }}$ 明 9	105631	37343	-18448	-18320	5814	8399	
	conon	01 PAM Lnt coton apporl arge amer namork	Uni coton	mpan	lage onen	jnamotk	2a Commortrin in		41281	41281;	54075	1.281			59689]	58699	18196	59699.			148	819	19	1718:	
	conon	01 PAM Lnt coton buponiarge dinar namolk	Unicotion	axpon	lopasamer	nempoik	20 (lax.subsior)	45313					155313	0				0	-	0.	O				
01	conon	01 PAM LInt coton ampon large ginar namolk	Unicotion	mpan	Leroe sinar	namots	26 Tragabies	21990	0	621.	313.	936	. 22924	27126.	0	192	381	174	28299	5136			69.	- 2200	
	coton	01 PAM Linl coton ampor large giner nemork	Unc cotion	aroan	large ginar	nalwalk	20 Domasst Faction	43331	0	1975	78	2054	45385	15538:	0	178	7.	1796.	17332	32207		256		- 260	
	collon	01 PAM LInt cotion erpon large ginar nemolk	Umicoton	axpan	large sinay	namak	2 2iUnstillad Labor	28987	0	${ }^{837}$;	20.	857	29804	29860	0	835.	20.	855	30815 .	1013					
	conon	019 PAM Linl cotion axconlarge ginar nawatk	Lum cotion	expar	largesinay	:	20il Shillad Labor	1933	0.	268	$20:$	287	2220.	1720	0	212.	16.	228.	1988.	213		55		59.	
	cor	O1 PAM LIIC Cotion appon latge giner nework	Lni cotion	axpor	largeginay	namom	2dil Caplal	12451	0	870	39.	910	13361	43859	0	672	39.	71.	44569	31408		99.	0	99.	
	Coton	019 PAM Lin collon arronlarge ginaly nemork	Lint colton	mean	large ginan	namalk	Ca Profit eefore. TAAES	21530	0	24199.	391.	23780	15310	42 208	0	0	0		12788	61238 :		18	. 391	3820 ;	
	cotton		Lnicotion	mpon	İRrgeginay	namalk	Sb Dirat laxes		0																
	cotuon	01 PAM Unt conon arport latge giner nemmork	Unt coton	arpor	Herraginar	nemork	Cc Profit After-taves	. 23182	0	24199:	391.	23808	15310	0	0	0		0	0	(00)	0				
	Cotoon io	O2 PAM Unt colton amon large ainay wall	Ume coton	empon	laroe ginay	mall	1 TOTN REVENUES	868007	15313	68009	51075	68049	09	59986	59	62200	4865	62626	62 日r0	26821	1429	5840	5423	42	
	coron	02 PAM LInt coton ermon large ginar wall	Um coton	:exan	laroeginay	well	Tamain mal oupin	45313	15313	51075	50075	54075	54075	59741	5974	48226	48652	48552	18652	1428	1429	5899	5423	12	
	coton	02 PAM Unt coton amon lara enner wall	Unicotion	amon	laroeamay	[mal	76 er products	245		13974		1397	14218.	245		13974		13974	14218						
	coton	02 PM Un coton amon lare ainar well	Ini cotaon	eepor	liarge ginen	[mel	2 TOTAL COST	19189	15313	17952	S4466.	48363	81828	9111	59741	62200	48652	62824	21859?	39929:	14629	14248	5814		
	conon	O2 PAM Lin cotion axpor latga anay wel	Unicomon	proon	larag ginay	[mel	2a commodition pro		15313	45313:	54075	15313	\bigcirc		14	1.	48226	11			11429	4429	5898	. 14.429	
	Conon 0	02 PAM LInt cosor enton lagag aneowall	Luncotion	expon	larpe piney	wall	20 (axesubsior)	11250	c		\%		11250	- 0							0			- 0	
	conon	O2 PAM LIn Coton axconlaga Pinen wail	Lnitcoton	apgon	largeginay	mel	2 zc Tratables	22617	0	690	176	868	23463	2921	0	833	215	1047	30.319.	6853.	0	1123	39.	1	
	coton	O2 PAM LInt cobon erpon large ginay well	Unt coton	:mpoon	largeginar	well	20 Domesstc factiors	56177	0	1949.	215	2164	58341	89899		1.525	211	836 :	91535	522.		325		29.	
	coton	O2 PAM Lnl coton expon lage amer well	Lint cotoon	ampon	large pinex	well	2201 Unstillad Labor	30537	0	837.	129:	966.	31.504	30.537	0	834	129	$963{ }^{\text {9, }}$	31501.						
	cobon		UMICotion	erpon	lageainar	mell	[zali Shilled Labor	865	0	214		233	1098	588.		169		185	872.	171		45		49.	
	cotan	O2 PAM Um colon emporlarge giner well	Lunt cotion	: eppor	larpe dinex	mall	2 LIIIC Capra	24714	0	898:	86	965	25739:	58174	0	621.	86	689	59162.	33700 -		277		217	
	conon	02 PaM Linl covon apon large qiner well	Lumicotion	expon	large giney	mell	Ca Profit before TANES	7618		20.93:	391	19706	27719	59131	-	0			59982	68789		097	91.	19709	
	Cotan :		Unitcoton	Proon	lare ginay	mal	An Dirallaxis		0		0			- . -	0	0.		0		0.					
	Coman	02 PAM Linl colon eriont arga pinar wall	Unicoton	expor	largapinar	:mal	at Proft After-takes	33632:	0.	20087	391	19706	$27719:$	0	0	0	0	0 :	0	(100)	0		0	\bigcirc	
		03 PAM Flour fonimmon mublic largen nework	Flout son	impor	jpublic large	namork	HTOTNL REVENUES.	13204	13125:	13618:	7200	8450	13697	10172	10092	10528:	${ }^{\text {9279 }}$	0.529 :	10.509:	$033:$	3033	${ }^{30989}$	2078.	2019	
	wneat		Flout son	amport	:punile lape	inpmotk	1 man nnal ouput	131225	13125	7209:	7200	7200	7200	10082	10092	9278		8279.	9278.	33.		207e			
	mmat	03 PAM Flour son impon public large nemork	flour son	impor	pubiliclage	nemork	10.9 Prposues			1250		1250	13229	78.		1250		1250	13229						
	wnal :	O3 PAM Fiour sof imoon public lerae nempoik	fiour son	Impon	public lere	nemoik	2 TOTAL COST	19759:	13125	13619	7200	${ }^{13818 .}$	11251	14780	10092	10529	9279:	10.529.	15219:	-022:	3033.	30093.	2079	3000	
	umasa	03 PMM Flour son impor oublic are nemoik	flour son	Impon	public large	namoik	22 commodyy in pro	0°	13125	${ }^{13125}$	1200;	13125		- $\quad 0$	-092	10.092	92799:9	10002:	0	0	3033.	3033	2079	3033	
	meat	03 PAM FIoul son mpon public arga nemolk	flour som	impon	public large	namoik	22 n (2ars subsior)		0	-5169:	O:	5198	${ }^{5} 168$	- 0	0.	0	0	0	-	0				-	
	nmeal	03 PAM Flout Son mpon publit arge namolk	flour son	mpon	public large	nompin	26 Tradables	4597	0	127	0	127	1724	5887	0	163	0	163	5 saso	1089		38		36.	
	Whas	03 PAM Flour son mpon oublit large nemolm	flour son	mpon	jpublic larga	inmoik	20 Domastc factios	${ }^{8150}$	0	$366:$	0	368.	6.527 \%	9093	0	273		273:	${ }^{9} 388 \mathrm{~F}$	29333		93.	0	93	
	Wmaza	03 PAM FIOur Son mpon public arge nemolk	flour son	Impon	puolit later	nomork	291 Unstillad Labot	2050.	0.	$95:$	0	95.	2198	2341		93		93:-	2437.	293		2	0		
03	Wheat	03 PAM Floul 6 Son mpon public lage nemotk	Flour son	imoon	pubilic lata	nomate	2all Salliad Labor	371	0	153	0	153	524	348	0	121		121	469.	23.	0	32.	0	-	
	Mmaat	03 Pam fiour son mpon pubile lerge namoik	Flour son	1 mpon	:public larae	namoik	2gill Capla	3738	0	119	0	119	3857	6801	0	60		60.	6461	2663		59	0	59.	- 26504
	umast	:O3PAM FIour son impon oubir arge network	flout son	:mpon	public larae	inemork	40 PROFIT BEFORE TAXES	2417	0		0	5168		4609		0		0	4607.	1055			0	169	
	maat	03 PAM Fiour son mpon nublic lage namork.	Fiour son	impon	fubliclarge	nemoik	48 Direliames		0					- 0						0			0.	0	
	me	03 A	Fio	mpo	put	nompor	${ }^{46}$ PROFTI AFTER-TAES			5168		5168													

MkFARM	: Summary budget market price values for Farm budget	So System	Summary budget social price values for the wholes representative system
Mk\#2	: Summary budget market price values for Farm to Processor budget		
Mk\#3	: Summary budget market price values for Processing budget	DiFARM	Summary budget social price - market price divergence values for Farm budget
Mk\#4	: Summary budget market price values for Processing to wholesale budget	Di\#2	Summary budget social price - market price divergence values for Farm to
Mk post FARM	Summary budget market price values for Post-Farm budget		Processor budget
Mk System	Summary budget market price values for the wholes representative system	Di\#3	: Summary budget social price - market price divergence values for Processing budget
SoFARM	: Summary budget social price values for Farm budget	Di\#4	Summary budget social price - market price divergence values for Processing to
So\#2	Summary budget social price values for Farm to Processor budget		wholesale budget
So\#3	Summary budget social price values for Processing budget	Di post FARM	Summary budget social price - market price divergence values for Post-Farm
So\#4	: Summary budget social price values for Processing to wholesale budget		budget (Di\#2+Di\#3+Di\#4)
So post FARM	Summary budget social price values for Post-Farm budget		

Guideline for using a PAM spreadsheet template.

Page 50 of 67

Guideline for using a PAM spreadsheet template.

Table 5 : Summary spreadsheet Tech coef and margin sheet sample

Nb Product	System	Main output	Parity	Processing	Ecology	Yleid	FB MO	FB by prod	\#2 MO	Conv.rate	Conv.rate BP	W ${ }^{\text {mo }}$	\#3 BP	Parity price
1 Cotton	Lint cotton export large ginery network	Lint cotton	export	large ginery	network	3.80	13210	80	13210	0.32	0.63	54075	6350	950
2 Cotton	Lint cotton export large ginery well	Lint cotton	export	large ginery	well	4.00	14500	80	14500	0.32	0.63	54075	6350	950
3 Wheat	Flour soft import public large network	Flour soft	import	public large	network	3.50	10500	66666	10500	0.80	0.20	7200	5000	171
4 Wheat	Flour soft import public large well	Flour soft	import	public large	well	4.30	10500	0	10500	0.80	0.20	7200	5000	171
5 Wheat	Flour soft import public large rainfed	Flour soft	import	public large	rainfed	2.30	10208	16667	10208	0.80	0.20	7200	5000	170
6 Wheat	Flour hard import public large network	Flour hard	import	public large	network	3.90	10706	137500	10706	0.80	0.20	7200	5000	198
7 Wheat	Flour hard import public large well	Flour hard	import	public large	well	4.10	10604	24643	10604	0.80	0.20	7200	5000	198
8 Wheat	Flour hand import public large rainfed	Flour hard	import	public large	rainfed	2.88	10604	12842	10500	0.80	0.20	7200	5000	198
9 Wheat	Flour soft import public small network	Flour soft	import	public small	network	3.50	10500	66667	10500	0.80	0.20	7200	5000	170
10 Wheat	Flour soft import private network	Flour soft	import	private	network	3.50	9500	66667	10500	0.70	0.28	14500	6000	187
11 Wheat	Pasta low export pasta factory network	Pasta low	export	pasta factory	network	4.18	10604		11500	0.68	0.30	25000	6000	400
12 Wheat	Pasta low export pasta factory well	Pasta low	export	pasta factory	well	3.99	10604	24643	11500	0.68	0.30	25000	6000	400
13 Wheat	Pasta low export pasta factory rainfed	Pasta low	export	pasta factory	rainfed	2.88	10604	12842	11500	0.68	0.30	25000	6000	400

Yield : yield imputed in the Farm budget
FB MO : Farm budget main output market price
FB by prod
\#2 MO
Conv.rate
: Farm Budget by product market price
: Budget \#2 (Farm to processor) Main Output market price
: Conversion rate from the selected commodity in raw form (Farm budget and Budget\#2) to processed form
Conv.rate BP
: Conversion rate for main by product ate Budget \#3 - Processing
: Budget \#3 (Processing) Main Output market price
: Budget \#3 (Processing) Main By-Product market price
: Main final output international price use to compute the parity price.

This data set of results can be further analyzed with the "filter" and "pivot" commands of the spreadsheet to extract a particular sample of results and build graphs that will assist in analyzing, comparing and presenting the results to a larger audience as display in Figure 42 in Figure 43.

Figure 42 : Example of Pivot Table Graph output for comparing DRCs level across representative systems.

Figure 43 : Example of Pivot Table Graph output for comparing DRCs level across representative systems.

Guideline for using a PAM spreadsheet template.

Appendix A. PAM Spreadsheet

Policy Analysis Matrix for representative system

Page 55 of 67

Guideline for using a PAM spreadsheet template.

Page 59 of 67

	10*h.exal	${ }^{24 \times 83}$
2. rewese coutarnervaris	Fsicher ${ }^{\text {a }}$	ose
2 mose zeartauer		
- -owesne mercuker cast		creses
5 Sosen costanicmatio	(fatary	criw
1. travartss		5* 5×2
12 noweet parteram corrmerw:	Mic]	esuma
	me9	*
	betmichin	*5\%4
	Dow	craser
TS Procasers Snagherato	1.68	crave
Lerexemcouresumaty	w	1 mc

		${ }_{3 \times 0}^{26 \times x}$
	detamat mix	
	${ }_{80}^{200}$	\%ower
mencoumitrace	$\max ^{\text {thenasa }}$	*was ${ }^{2}$
foctunevertccets	$\operatorname{coser}^{\text {lesace }}$	*sw ${ }^{302}$
soursne whromecoste	${ }^{180} 183 x^{2}$	case 0^{238}

Appendix B. Complementary and detailed explanations on PAM spreadsheet computations.

1. Estimation of fixed cost annual value.

1.1 Capital recovery rate:

Let A be the annual payment that will repay a Z amount in investment cost,
The value of the annual payments at the end of n years life-time will be:
$\mathbf{A}\left(1+(1+\mathrm{i})+(1+\mathrm{i})^{2}+\ldots+(1+\mathrm{i})^{\mathrm{n}-1}\right)=\mathbf{Z}$
With $\mathrm{A}(1+\mathrm{i})^{\mathrm{n}-1}$ as the value of the first annuity at the end of the period of utilization of the investment; $\mathrm{A}(1+\mathrm{i})^{\mathrm{n}-2}$, the value of the second annuity.

The investment must generate a return equals at least to the interest rate. The total value of the invested capital to be amortized is:
$\mathbf{Z}(1+i)^{n}$
The total value of the invested capital to be amortized is thus:
$\mathbf{A}\left(1+(1+\mathrm{i})+(1+\mathrm{i})^{2}+\ldots+(1+\mathrm{i})^{\mathrm{n}-1}\right)=\mathbf{Z}(1+\mathrm{i})^{\mathrm{n}}$
Or :
$A=Z\left[\frac{(1+i)^{n} i}{(1+i)^{n}-1}\right]$
with $\left[\frac{(1+i)^{n} i}{(1+i)^{n}-1}\right]$ as the Capital recovery rate (Crr).

1.2. Capita recovery rate formula in the PAM spreadsheet:

Excel formula: D17/(1-1/(1+D17)^B17)
With D17 = interest rate and B17 = useful life
This formula is equivalent to the basic formula with the following rearrangement:

$$
\frac{(1+i)^{n} i}{(1+i)^{n}-1}=\frac{\frac{(1+i)^{n} i}{(1+i)^{n}}}{\frac{(1+i)^{n}-1}{(1+i)^{n}}}=\frac{\frac{(1+i)^{n} i}{(1+i)^{n}}}{\frac{(1+i)^{n}}{(1+i)^{n}}-\frac{1}{(1+i)^{n}}}=\frac{i}{1-\frac{1}{(1+i)^{n}}}
$$

1.3. Computation of the annual value of the fixed cost

With:
Initial value of the fixed cost: $\quad \mathrm{Va}$
Residual (or salvage) value of the fixed cost: Vr
Useful life of the investment:
n
Interest rate:
i
Share of the investment used for the production of the main output. u

The annual value of the fixed cost is equal to:
$\mathrm{FXa}=\left(\frac{(1+i)^{n} i}{(1+i)^{n}-1}\right) \times\left(V a-\frac{V r}{(1+i)^{n}}\right) \times u$
This corresponds to the application of the Capital Recovery Rate to initial costs after deduction of actualized salvage value of the investment, weighted by the share used for the production of the main output.

Example :

Investment Cost for a motor cultivator
Purchase Price: $\quad 8000000$
Life-time : 5
Residual value : 800000
Used up part : $\quad 1$
Interest rate: 0.06
Capital recovery factor $=\frac{(1+0.6)^{5} \times 0.6}{(1+0.6)^{5}-1}=0.237$

Actualized residual value $=\frac{800000}{(1+0.6)^{5}}=597807$

Cost of durable capital $=0.237 \times(800000-597807) \times 1=1757254$

2. Breakdown of the cost of fixed inputs between tradable and domestic factors.

With:
Value to be depreciated: Va
Residual value: $\quad \mathrm{Vr}$
Interest rate: i
Life-time: n
Used up portion: u
Custom duty ad valorem: Tv
Fixed custom duty: Tf
Durable Capital: DC
And :

Fixed capital annual value:

$\mathrm{FXa}=\left(\frac{(1+i)^{n} i}{(1+i)^{n}-1}\right) \times\left(V a-\frac{V r}{(1+i)^{n}}\right) \times u$

Depreciation for one year.

$D P=\frac{\left(\frac{V a-T f}{(1+T v)}-\frac{V r}{(1+i)^{n}}\right)}{n} \times u$
DP is the annual value of domestic factor and tradable that will be used in the production process during each year of investment useful life

Import tax

$I T=\frac{T f+\left(\frac{(V a-T f)}{(1+T v)} \times T v\right)}{n} \times u$
The duties on import are considered as a capital cost at private price, while they are deducted at social price.

Financial capital cost

$\mathrm{FC}=\mathrm{FXa}-\mathrm{DP}-\mathrm{IT}$
The financial cost, which is here the share of the fixed cost annual value corresponding to the opportunity cost of putting money in a given fixed cost is computed as a residual. In another form, the fixed cost annual value include, a depreciation component, duties and financial costs.
$\mathrm{FXa}=\mathrm{DP}+\mathrm{IT}+\mathrm{FC}$

Example:
 Hand Tractor

Purchase Price : 8000000
Life-time: 5
Residual value: 800000
Used up portion: 1
Interest rate: $\quad 0.06$
ad valorem tax : 0.20
Fixed Taxe: 0
Depreciation $=\frac{\frac{(8000000-0)}{(1+0.20)}-\frac{800000}{(1+0.06)^{5}}}{5} \times 1=1213772$
Import tax $=\frac{0+\frac{8000000-0}{(1+0.20)} \times 0.20}{5}=266667$

Financial Capital Cost: $1757254-1213722-266667=276815$

3. PAM spreadsheet formula for fixed cost computation.

3.1. Formula for the computation of coefficients of decomposition at market price for fixed costs inputs.

3.1.1. Coefficient of decomposition for non-qualified labor for fixed cost input at market price.

Excel formula: AD17/(B17*H17)
With $\mathrm{AD} 17=$ share of non-qualified labor in cost item value
With B17 = useful life
With H17 = Capital Recovery Rate at market price.
Rationale: If "Va" the initial value of a fixed cost having , "Crr" being the recovery rate for an investment having a useful life of " n " years The total annualized value of the fixed cost will be: $V a \cdot C r r$; with $\frac{V a}{n}$ being the share of the annualized value corresponding the depreciation of the fixed cost. The difference $(V a \cdot C r r)-\left(\frac{V a}{n}\right)$ is the financial cost component of the fixed cost which is the opportunity cost of the investment and a part of the capital component of the fixed cost. Thus the share of the non-capital component of the investment is:

$$
\frac{\frac{V a}{n}}{V a \cdot C r r}=\frac{\frac{V a \cdot n}{n}}{V a \cdot C r r \cdot n}=\frac{V a}{V a \cdot C r r \cdot n}=\frac{1}{C r r \cdot n}
$$

Thus, if the " l " is the share of labor included in the fixed input, the corresponding coefficient for the annualized value will be $l \cdot \frac{1}{C r r \cdot n}$

3.1.2. Coefficient of decomposition for qualified labor for fixed cost input at market price.

Excel formula: AE17/(B17*H17)
With AE17= share of qualified labor in cost item value
With B17 = useful life
With H17 = Capital Recovery Rate at market price.
Rationale: similar to the one for non-qualified labor component.

3.1.3. Coefficient of decomposition for capital for fixed cost input at market price.

Excel formula:
$\left(1+(1 /(\mathrm{B} 17 * \mathrm{H} 17))^{*}(\mathrm{AF} 17-1)\right)+$ AGI (B1741179TI-II(I1 W17)

B17=useful life
H17=Capital Recovery Rate at market price
AF17= share in capital of the cost item
AG17=share of tradable input in the cost item

F17= value of the cost item at market price.
W17=ad valorem duty on tradable X17=fixed duty on tradable

Rationale: The formula deducts from the unit the share of non capital component computed by the second term of the formula: ($\left.\left.1 /\left(\mathrm{B} 17^{*} \mathrm{H} 17\right)\right)^{*}(\mathrm{AF} 17-1)\right)$. It, then, adds the share of the tradable component corresponding to the custom duties, because custom duties are capital

3.1.4. Coefficient of decomposition for tradable for fixed cost input at market price.

AG17: share of tradable input the cost item
B17=useful life
H17=Capital Recovery Rate at market price

F17= value of the cost item at market price.
W17=ad valorem duty on tradable X17=fixed duty on tradable

The Crr is applied on the value of the tradable: (AG17/(B17*H17)); without the share of the
 included in the coefficient of decomposition for the capital.

3.2. Formulas for the computation of coefficients of decomposition at social price

3.2.1. Coefficient of decomposition for non-qualified labor for fixed cost input at social price.

Excel formula: AD17/(B17*AC17)*T17
$\mathrm{AD} 17=$ share of non-qualified labor in cost item value
B17 = useful life
AC17 = Capital Recovery Rate at social price
T17 = coefficient of distortion between nominal or market wage level and social wage level
Rationale: Similar to one at market price but using the Crr computed with the social interest rate and applying the coefficient of distortion for wages.

3.2.2. Coefficient of decomposition for qualified labor for fixed cost input at social price.

Excel formula: AE17/(B17*AC17)/(1+U17)
AE17= share of qualified labor in cost item value
B17 = useful life
AC17 = Capital Recovery Rate at social price
U17= share of the employer contribution for insurance and other benefit attached to formal labor contract.

Rationale: similar to the computation for non-qualified labor.

3.2.3. Coefficient of decomposition for capital for fixed cost input at social price.

Excel formula: (1+(1/(B17*AC17))*(AF17-1))/(1+V17))
B17 = useful life
$\mathrm{AC17}=$ Capital Recovery Rate at social price
AF 17= share in capital of the cost item
V17 $=$ coefficient of distortion on the capital market.
Rationale: The formula deducts from the unit the share of non-capital cost, weighted by the prevailing distortion on the capital market.

3.2.4. Coefficient of decomposition for tradable for fixed cost input at social price.

Excel formula: AG17/(B17*AC17)*Y17
B17 = useful life
$\mathrm{AC17}=$ Capital Recovery Rate at social price
AG17 $=$ share in tradable of the cost item
Y17 = coefficient of distortion between the nominal exchange rate and the social exchange rate.

Rationale: The formula computes coefficient on the base of the share of tradable adjusted by the prevailing distortion on the currency market.

4. Break-down of cost items into domestic factors and tradable inputs component

Going further with the example of the hand tractor used in section 2 of this Appendix, the budget is completed with the inclusion of the variable cost related to the utilization of the equipment. Table A presents how the various budget items are combined to compute the coefficients indicating the labor, capital and tradable content of the input.

Example:

Hand tractor,
Fixed cost:
Purchase Price : 8000000
Life-time: 5
Residual value: 800000
Used up portion: 1
Interest rate: $\quad 0.06$
ad valorem tax : 0.20
Fixed Tax: 0
Depreciation $=\frac{\frac{(8000000-0)}{(1+0.20)}-\frac{800000}{(1+0.06)^{5}}}{5} \times 1=1213772$
Import tax $=\frac{0+\frac{8000000-0}{(1+0.20)} \times 0.20}{5}=266667$
Financial Capital Cost: $1757254-1213722-266667=276815$

Variable Cost:

Labor: 400000
Fuel and Oil: 2800000
Maintenance and miscellaneous: 700000

Table A. Format for computing the decomposition coefficients of an input.

		Coefficient			Values		
		Labor	Capital	Tradable inputs	Labor	Capital	Tradable inputs
Fixed Cost							
Amortization	1213772			$\rightarrow 1.00$	n	- 0	213772
Import tax	266667		1.00		0	266667	0
Financial capital cost	276815		1.00		0	276815	0
Variable Cost							
Labor	400000	1.00			400000	0	0
Fuel and oil	2800000			1.00	0	0	- 800000
Maintenance and miscellaneous	700000	0.40	0.20	0.40	280000	140000	$\checkmark 280000$
Total	5657254	0.12	0.12	0.76	680000	683482	4293772

5. The Cost of revolving fund for the case of variable costs

Length of cycle since operation (but not vegetative cycle): 6 months
Annual interest rate: 0.06

Operation	Amount	Number of months elapsed between operation and harvest (b)	Coefficient revolving fund: $=(b) / c y c l e$ (c)	Capital invested $=(a) \times(c)$ (d)
Seeding	28000	5	0.83	23333
BeginningWeeding	112000	4	0.67	74667
Guarding	34588	2	0.33	11529
Harvesting	65882	0	0.00	0
Treshing	19765	0	0.00	0
Total				109529

Cost of revolving fund $=$ annual interest rate \times (cycle $/ 12$ months) \times Total of revolving fund
Cost of revolving fund $=0.06 \times \frac{6}{12} \times 109529=3286$

CIRAD-DIS
Unité biblioti
Lavalette

[^0]: ${ }^{1}$ Monke E.A. and Pearson S.R., 1989, The Policy Analysis Matrix for Agricultural Development, Cornell University Press, Ithaca.
 ${ }^{2}$ F.Lançon, 2005, Methodological guidelines for PAM Analysis, FAO Project - GCP/SYR/006/ITA and TCP/SYR/2906(A), FAO, Damascus, Syria.

[^1]: ${ }^{3}$ Masters W.A and Winter-Nelson A, Measuring the Comparative Advantage of Agricultural Activities: Domestic Resources Costs and the Social Cost-Benefit Ratio, American Journal of Agricultural Economic, 77, may 1995, pp 243-250.

[^2]: ${ }^{4}$ @Risk at http://www.palisade-europe.com/html/risk.html.
 ${ }^{5}$ For further details one can refers to the detailed presentation of probability distribution included in the @risk manual.

[^3]: ${ }^{6}$ The results database file is linked to each "PAM spreadsheet using the "Past with" link feature of the "Special Paste" sub-menu of the Edit menu.

