

Resistance to Bt

Indian Helicoverpa armigera

111

Keshav Kranthi¹ Derek Russell²

¹Central Institute for Cotton Research, India ²Natural Resources Institute, UK

Bt cotton targets

Cotton bollworm *Helicoverpa armigera*

181 host plants - 69 crop species losses - US \$ 540 mill annually

- Spiny bollworms *Earias insulana* and *E. vitella*
- Pink bollworm *Pectinophora gossypiella*

Bt cotton in India

- Total cotton area 8 mill ha (70% G.hirsutum)
- Farmers planted illegal Bt cotton over large areas up to 2001
- 2002 Bt Cry1Ac hybrids commercialised in a joint venture Mhyco-Monsanto. Now several other companies.
- Registered hybrids suitable for the centre and south, not irrigated north
- Hybrid cotton 40% of the cotton area

BT cotton area

- 2003 c.1.2% of total cotton
- 2004 c.6% of total cotton (11% of hybrids)
- Still as much unregulated Bt (inc F2 and F3) as 'official' cotton

Tissue expression in plants

In-season changes in Cry1Ac expression (µg/g fresh weight) in the upper canopy leaves of Bt-cotton hybrids -2003

Bt Bollgard [®] hybrids																	
DAS	R	CH-2	RC	CH-20	RCI	I-134	RCI	I-138	RC	H-144	MEC	C H-12	MEC	CH-162	MEC	CH-184	LSD
		<u>+</u>				<u>+</u>		<u>+</u>		<u>+</u>		<u>+</u>		+		<u>+</u>	1.37
30	5.15	0.9abc	6.61	<u>+</u> 1.1d	4.67	0.7a	4.42	0.3a	5.56	0.5abcd	6.20	1.0ab	4.97	0.7bcd	6.47	1.6cd	
		<u>+</u>		<u>+</u>		<u>+</u>		<u>+</u>				<u>+</u>				<u>+</u>	0.64
58	3.43	0.3bc	3.60	0.3bc	2.33	0.4a	3.91	0.4c	2.96	<u>+</u> 0.5ab	4.05	0.4c	2.68	<u>+</u> 0.5a	3.57	0.6bc	
		<u>+</u>		<u>+</u>		+		<u>+</u>		<u>+</u>		<u>+</u>		+		<u>+</u>	0.94
70	2.23	0.9bcd	1.94	0.8abc	1.26	0.5a	2.91	0.5de	1.87	0.2abc	3.32	0.8e	1.35	0.6ab	2.51	0.5cde	
85	1.46	<u>+</u> 0.8	2.40	<u>+</u> 1.1	1.53	<u>+</u> 0.9	2.62	<u>+</u> 1.2	1.63	<u>+</u> 0.3	2.31	<u>+</u> 1.2	1.16	<u>+</u> 0.3	2.60	<u>+</u> 0.8	NS
95	0.58	<u>+</u> 0.9	0.77	<u>+</u> 0.5	1.66	<u>+</u> 0.1	0.97	<u>+</u> 1.2	1.11	<u>+</u> 1.0	1.07	<u>+</u> 0.4	0.55	<u>+</u> 0.4	0.89	<u>+</u> 0.7	NS
		<u>+</u>		<u>+</u>		<u>+</u>		<u>+</u>				<u>+</u>					0.21
110	0.21	0.1ab	0.41	0.2bc	0.22	0.1ab	0.14	0.1a	0.44	<u>+</u> 0.2c	0.38	0.2bc	0.16	<u>+</u> 0.1a	0.47	<u>+</u> 0.2c	
124	0.09	<u>+</u> 0.1	0.03	± 0.0	0.07	<u>+</u> 0.1	0.15	<u>+</u> 0.1	0.13	<u>+</u> 0.2	0.32	<u>+</u> 0.3	0.02	<u>+</u> 0.0	0.26	<u>+</u> 0.2	NS
						<u>+</u>		<u>+</u>				<u>+</u>					0.20
138	0.02	<u>+</u> 0.0a	0.01	<u>+</u> 0.0a	0.01	0.0a	0.42	0.2b	0.49	<u>+</u> 0.3b	0.21	0.1a	0.01	<u>+</u> 0.0a	0.71	$\pm 0.1c$	
148	0.01	± 0.0	0.01	± 0.0	0.10	<u>+</u> 0.2	0.03	<u>+</u> 0.0	0.02	<u>+</u> 0.0	0.08	± 0.0	0.01	± 0.0	0.12	<u>+</u> 0.1	NS

Abbreviations: DAS = Days after sowing; LSD = Least Significant Difference. Numbers followed by different letters within a row are significantly different at P = >0.05.

- Expression quite variable amongst hybrids
- Toxin expression in leaves>buds>bolls>flowers
- Late season and old tissue low expression
- *H.armigera* survival increases below 1.8µg/g tissue
- Toxin in boll rind, buds and flowers inadequate in late season (>110 days)

Quantitative ELISA

Cry1Ac: Cry2Ab: Pyrethroids: Endosulfan: Detection sensitivity: 10 ppb Detection sensitivity: 20 ppb Detection sensitivity: 2 ppb Detection sensitivity: 5 ppb

Bt-Quant

Cry 1Ac Bt-Quant

- 1. The Cry1AC Bt-Quant is an ELISA kit, which facilitates a precise quantification of Cry1Ab or Cry1Ac, expressed in transgenic plants.
- 2. The kit is simple, cost effective and very reliable.
- 3. It takes about 2hrs for completion of one set of ELISA assay.
- 4. Each ELISA plate can be used for 96 samples (including four wells for standards and two for blank). Depending on the capabilities of a laboratory, hundreds of samples can be processed in a single day.
- 5. ELISA plate reader is a requirement for use of the kit.
- 6. Additionally the ELISA kit can also be used for the quantification of Bt-toxins in Bt(Bacillus thuringiensis) insecticide formulations. Separate standards will be provided on request.

Bt-Express

Bt-Express

- 1. This is a dipstick format and can be used by even a layman.
- 2. Bt-Express has been designed for instiantaneous detection of Bt-Toxin in either seeds or plant tissues.
- 3. It takes about 10 minutes for the test to be completed.
- 4. The test can be used in fields and does not require any additional facilities for use.
- 5. All material required for the testing is provided with the kit.
- 6. The kit is rapid, reliable and ready to use.

Is there field resistance to Bt? (field collections from around the country)

	LC50 µgCry1Ac/ml diet
2001 Baseline*	0.01 - 0.67
2003-4	0.04 - 0.38

Chinese baseline⁺ 0.091 - 9.093

 Regional variability in resistance within India 2001-2 67 fold 2002-3 32 fold 2003-4 10 fold

- Not yet

*(Kranthi et al 2001) +(Wu et al 1999)

Inheritance of Cry 1Ac resistance

Bioassay of 2 resistant strains (RF 93 and 205) selected from Bt field survivors and susceptible strain using semi-synthetic diet and Bt plants (Mech 184-Bt).

Inheritance of Cry1Ac resistance in H. armigera

$\stackrel{\circ}{\downarrow} \mathbf{x} \stackrel{\circ}{\circ}$	n	LD50	95%FL	SLOPE+ SE	RF	D	DLC	ηE
RES-Ac (R)	120	3.35	1.42-17.70	0.8 <u>+</u> 0.2	93			
SUS-G (S)	144	0.036	0.02-0.06	1.8 <u>+</u> 0.3				
SxR	360	0.24	0.17-0.34	1.1 <u>+</u> 0.1		-0.16	0.42	0.53
RxS	120	0.25	0.15-0.42	1.2 <u>+</u> 0.2		-0.14	0.43	
(RS)xR	120	1.30	0.65-3.20	0.9 <u>+</u> 0.1				
(SR)xS	120	0.19	0.09-0.36	0.9 + 0.1				
RES-Bt (R)	240	15.02	10.0-26.7	1.4 <u>+</u> 0.2	205			
SUS-G (S)	268	0.073	0.05-0.10	2.2 <u>+</u> 0.3				
SxR	180	1.53	0.6-5.3	0.9 + 0.1		0.14	0.57	1.11
RxS	144	1.35	0.78-2.48	1.0 + 0.1		0.09	0.54	
(SR)xR	120	3.96	2.0-8.89	1.0 + 0.2				
Rx(SR)	120	5.53	2.3-20.66	1.0 ± 0.2				
Rx(RS)	120	5.58	2.2-29.0	0.9 + 0.2				
(RS)xR	160	2.58	1.3-6.22	0.8 + 0.1				
Sx(SR)	120	0.89	0.18-3.00	1.1 ± 0.2				
(SR)xS	144	1.07	0.62-1.92	1.0 ± 0.1				
Sx(RS)	120	1.16	0.5-2.58	1.1 ± 0.2				
(RS)xS	144	1.29	0.72-2.16	1.2 + 0.2				

- Autosomal
- Monogenic
- Semi-dominant

Implications of resistance inheritance

• Survival on Mech 184 - Bt plants (75-85 days old)

RR	75%
RS	33%
SS	5% (susceptible strain)

- Semi-dominance
 - Also applies to effective dominance on plants
 - Undermines the high dose strategy

Note – Australian H.armigera resistance is incompletely recessive (0.26)

Resistance gene frequency (using F2 screens on field material)

	Iso-female lines	Frequency of resistance alleles
North	180	0.0013
Centre	195	0.0025
South	210	0.0023

- At least one resistance allele in each group
- Frequency is worryingly high for a semi-dominant resistance

Better bioassay systems

• Inhibition Concentration 99

concentration which prevents 99% of larvae from reaching 3^{rd} instar in 5 days $0.091 - 0.109 \ \mu g/ml$

• Bt seed flour-based diet

160g Bt seed in 1.3L diet is equivalent to 0.2 Cry 1Ac/ml
Advantages: Seeds have a very stable toxin content
Seeds keep for >2yrs
Bt Cotton has Cry1Ac <u>and</u> 1Ab
MPVII has inly 20% Cry1Ac and is not available

Mechanisms

- *Chinese H.armigera* cadherin truncation (Wu et al 2004)
- Australian H.armigera not cadherin mediated
- *Indian H.armigera* suggestions of an aminopeptidase involvement
 - Binding affinity reduced in 6 fold in trypsin activated toxins and 10 fold in protease activated toxins
 - Major portion of APN-1 cDNA of Cry1Ac resistant strain sequenced
 - 16 base substitutions, 6 additions in 2766 nucleotides leading to 17 a.a. differences
 - One of the these is related to glycosylation (Ser⁹¹¹ to Phe⁹¹¹)

Refugia

Current requirement 20% sprayed border

- 400m² replicated blocks.
- 1 larva per plant at 75 and 85 days after sowing.

				Yield
				sig. diff
Pure	e Bt	a		
19:1	rows	and	mixes	a,b
9:1	66	66	"	b
4:1	66	66	66	c

- Recovery: 82-93% on non-Bt 2-10% on Bt
- Plant to plant movement: little (hybrid spacing)
- Survival on Bt flowers and bolls: some extra
- Resistance in survivors: no enhancement detected

'BT-Adapt' - Modelling the course of resistance development

• Simulation model - genetic and ecological parameters

Genetic	Ecological	Control
Dominance	District cropping pattern	Efficacy in Bt crop
RRsurvival on Bt	Emmigration per generation	Efficacy in non-Bt
SS survival on Bt	Oviposition preferences	
	Natural egg-larval mort.	
	Natural pupal-adult mort.	

- Order of importance of parameters in time to field resistance
 - 1. Relative survival rate for SS, RS and RR (fitness)
 - 2. Proportion of area under Bt
 - 3. Dominance of resistance allele
 - 4. Initial frequency of resistance gene

Time to 0.5 resistance allele frequency

% Bt cotton	No additional pest management	50 % control in non-Bt only	50% in non- Bt 90% in Bt
40	11	7	23
30	16	10	32
20	25	13	45
10	51	31	70

• Emphasises the importance of additional mortality of survivors in the Bt crop – parasites, HaNPV, pesticides etc.

Acknowledgements

Funder: Department of Biotechnology, Ministry of Science and Technology, Government of India