Resistance of Helicoverpa armigera to Bt in China

Yidong Wu, Yu Liangyin, Xu Xinjun
Nanjing Agricultural University, China

Presented by
J-M Vassal CIRAD

EC FPV project - Bt cotton in China 200-2004

Partners:

- Natural Resources Inst. UK
- D.Russell
- Nanjing Agricultural Univ. China
- CIRAD
- Y.Wu
- J.M.Vassal
- Danish Institute for Agricultural Research - G.Lovei
- CABI
- NATESC
- A Poswal
- Yang Puyun

Status of cotton production and adoption of transgenic Bt cotton in China

Total cotton area and lint yield of China from 1999 to 2002

Year	Cotton area (million hectare)	Total lint yield (million tonne)
2002	4.08	4.5
2001	4.76	5.32
2000	4.0	4.35
1999	3.7	3.83

Adoption of Bt cotton in China

Updated data in 2004

- The Yangtze river valley cotton zone

Objectives of our research on Bt resistance

-To assess the potential of Chinese H. armigera for resistance to B. Thuringiensis
-To develop efficient tools for the rapid detection of resistance as it develops
-To develop Bt transgenic cotton management options which reduce the risk of resistance development thereby maximising the useful lifetime of the technology.

Cross resistance pattern of Cry1Ac resistance in H. armigera

Cross resistance of the Cry1Ac-selected strain of Helicoverpa armigera (GYBT) compared with the control strain GY

Strain	Activated toxin	$\mathrm{LC}_{50}\left(\mu \mathrm{~g} / \mathrm{cm}^{2}\right)$	$95 \% \mathrm{CL}$	Slope	RR
GY	Cry1Aa	1.44	$0.80-2.38$	1.17 ± 0.24	1
	Cry1Ab	3.23	$2.15-5.28$	1.42 ± 0.31	1
	Cry1Ac	0.1	$0.08-0.12$	1.60 ± 0.17	1
	Cry2Aa	1.02	$0.57-1.67$	1.21 ± 0.30	1
	Btk HD-1	1247	$984-1535$	2.09 ± 0.25	1
GYBT	Cry1Aa	148	$88.6-459$	1.16 ± 0.32	103
	Cry1Ab	>150			>46
	Cry1Ac	56.4	$31.4-217$	1.0 ± 0.23	561
	Cry2Aa	1.41	$0.97-2.01$	1.61 ± 0.26	1.4
	Btk HD-1	6205		1.67 ± 0.23	5

Possible mechanisms?

Mode of action of Bt toxin Bt毒素的作用机理

Two putative receptors:

APNs

Cadherin

Cadherin disruption

Molecular diagnostics for Bt resistance gene (truncated cadherin)

Resistance frequency in the field in China (2004)

Cadherin mutation frequency:
About 0.005 (5/1000)

Resistance frequency in the field in China (2003)

Phenotype frequency:

About 0.001

(1/1000)

Genetic mapping of Bt resistance in Helicoverpa armigera with AFLP makers

Dr Yidong Wu, Nanjing Agricultural University (NAU), China Dr Jean-Michel Vassal, CIRAD, France Dr Monique Royer, CIRAD, France

Part A: Backcross analysis (Bioassay and genomic DNA extraction)

Susceptible strain of Helicoverpa armigera: Montpellier strain

BT-resistant strain of Helicoverpa armigera: BKBT strain

Bt resistance is inherited as one dominant autosomal gene.
susceptible

Part B: AFLP makers linkage analysis

(i) Identification of linkage groups and tests of their contribution to Bt resistance

Family BC1: untreated adults, survival adults under DD of toxin

It is very important to get enough informative AFLP markers which are present in BKBT strain but absent in MTP strain.

AFLP analysis of genomic DNA from Helicoverpa armigera
(ii) Mapping Bt resistance gene between two AFLP makers in one specific linkage group

Family BC2: untreated adults, survival adults under DD of toxin

148 informative AFLP markers were identified.

5 markers are associated with Bt resistance

5 markers are in the same linkage group

Thank you!

