

INCO COTONBIOMAT - WP5

Characterization of films obtained by dry technologies

Joël Grevellec, <u>Laurent Ferry</u>, *Ecole des Mines d'Alès* Alain Crespy, *Université de Toulon et du Var* Christian Aymard, Jérôme Lecomte, Catherine Marquié, *CIRAD Montpellier*

Outlines

- **1. Introduction**
- 2. Methodology
- 3. Processing
- 4. Study of plasticization
- 5. Hygroscopicity
- 6. Permeability
- 7. Mechanical properties
- 8. Conclusions

Introduction

Objectives

- Manufacturing of biodegradable materials from cottonseed cakes
 - Using dry technologies : extrusion, injection-moulding
 - Applications :
 - Films (mulching, silage,greenhouse)
 - Bags
 - Pots or other containers...
- Understanding of molecular mechanisms governing processing, structure and properties of the materials

According to S. Guilbert GFP Volume 13, Chapître 8

Introduction

Protein processing

Methodology

→ Delipidated flours / Delipidated flours + shells

→ Delipidated flours / Partially delipidated flours

→Glandless delipidated flours / glanded delipidated flours

Processing

Cakes or flours preparation

- Grinding
- Sieving at 400 µm
- Plasticization
 - 3 plasticizers
 - Glycerol (C₃H₈O₃)
 - Triethanol amine (C₆H₁₅NO₃)
 - Polyethylene glycol (HO-(CH₂CH₂O)₄-H)
 - 0, 10, 20% w/w
 - Internal mixer
 - Incorporation of plasticizers at room temperature
 - Progressive heating up to 90°C
- Film processing
 - Thermocompression
 - P = 50 bars
 - T = 120°C

92 g/mol 149 g/mol 194 g/mol

Processing

Processing

• Raw matter

Flours

Thermocompressed films

Results on cotton protein isolate

 Plasticization is necessary to obtain a large processing range

10

Study of plasticization

Influence of plasticizer content

- Plasticizing effect increases in the sense PEG, TEA, glycerol
- Evolution of glass transition well described by Couchman-Karasz relation

$$Tg = \frac{x_1 \Delta Cp_1 Tg_1 + x_2 \Delta Cp_2 Tg_2}{x_1 \Delta Cp_1 + x_2 \Delta Cp_2}$$

Influence of the plasticizer type

- Plasticization is directly related to the number of hydroxyl groups supplied by the plasticizer
- The native structure of proteins being stabilized by hydrogen bonds, its disorganization implies OH groups

Influence of lipids

unplasticized

Plasticized by 20% glycerol

No noticeable plasticizing effect related to the presence of lipids

Influence of humidity

- Presence of water
 - Due the polar feature of cottonseed protein
 - Contributes to plasticization
 - Non ideal plasticizer because water content varies with RH and T

- Experimental Set up
 - Films are ground and dried
 - Conditioning in humidity-controlled hermetic container
 - Saturated solution of LiCl 13% HR
 - Saturated solution of MgCl₂ 33% HR
 - Saturated solution of SrCl₂ 73% HR
 - Weighing of samples versus time

Influence of plasticizer

- Hygroscopicity increases with increasing plasticizer content
- Hygroscopicity increases in the sense PEG, TEA, glycerol

• Influence of plasticizer

- Hygroscopicity is directly related to the amount of hydroxyl groups supplied by the plasticizer
- Use of another family of plasticizers ?

Influence of lipids

Hygroscopicity decreases when lipid content increases

Permeability to water vapor

Permeability=

$\Delta W(g) \times e(m)$ A(m²) x t(s) x $\Delta P(Pa)$

Permeability to water vapor

Influence of lipids

Film from non delipidated flours (35%lipids)

Influence of plasticizers

DMTA

Tensile test

- Tensile strength decreases
- Elongation at break increases

Influence of plasticizers

Conditioning RH= 56%

- When plasticizer content increases
 - E decreases
 - Tensile strength decreases
 - Elongation at break increases

- When RH increases :
 - E decreases
 - Tensile strength decreases
 - Elongation at break is not strongly affected but remains lower than 30%

Influence of lipids

- In the presence of lipids
 - Low value of elasticity modulus → Poor cohesion

- Influence of lipids
 - ESEM observations

- Films are porous due to a phase separation (lipid-protein) induced by T and P during processing
 - Low elastic modulus
 - High permeability

Influence of shells

 Above 2%, shells cause a decrease of mechanical properties

Influence of shells

- Shells induce weak points where the fracture is initiated
- Mechanism similar to that observed with mineral fillers in synthetic polymers

Influence of processing conditions

P = 50 bars

- Above 90°C, cohesion of films is better
- At 140°C; elongation at break decreases

Evolution of protein structure during processing

- Temperature and Pressure play a role in protein unfolding
- IR spectroscopy may highlight protein structure changes
 - Amide I band is sensitive to globule-coil transition

Smeller L. Biochimica et Biophysica Acta, 1595 (2002) 11-29

Torrent J., Rubens P., Ribo M. Heremans K., Vilanova M., Protein Science Vol. 10, (2001)725–734 **28**

Relation structure-processability

Results

 Necessity to combine pressure and temperature to obtain films with a good cohesion

Conclusion

- Processing cotton protein films using dry technologies
 - Destructuration of proteins using plasticizers
 - Efficiency of plasticizers depends on the number of OH groups supplied by the plasticizer
 - Glycérol > TEA > PEG 200
 - No evident plasticizing effect of lipids
 - Necessity to combine pressure and temperature

Functional properties

- Hygroscopicity
 - Increases with the amount of OH groups supplied by the plasticizer
 - Glycérol > TEA > PEG 200
 - Is reduced in the presence of lipids
- Mechanical properties
 - When plasticizing efficiency increases, E decreases and Ar decreases
 - The presence of lipids induces a poor cohesion in films
 - Elongation at break remains low compared to LDPE