Effect of freezing on fish microbial flora

Effect of freezing on food process

Objectives of freezing process:
- Bring the thermal centre of food < -10°C asap
- Delay the consumption (storage < -20°C)

Cryogenic cold: spray or immersion in LIN
- Small quantities
- High added value food (IQF)

Mechanical cold: air blast freezing, plate freezing, and fluidized bed.
- Big quantities, high initial investment.
Effect of freezing on food

4 steps:

a. 1st T°. fall
b. Ice formation
c. 2nd T°. fall
d. Thermal equilibrium
Effect of freezing on food

Ice crystallization

-5°C: 80% of water frozen as pure water ice

-20°C: 90%

High increase in solutes concentration: osmolarity and ionic strength increase

Ice border moving from outside toward core
Effect of freezing on food degradation

⇒ Increase of ice crystals size, enhanced by time, increase and fluctuations in temperature (« Ostwald » maturation)
⇒ Disruption of cell walls (plants) and membranes (meat) under mechanic stress
⇒ Dehydration
⇒ Lipids oxidation: rancidity
⇒ Proteins denaturation (drip loss, freeze burn)
Impact of Temperature drop on bacteria in fish

Bacteria growth temperature domains

<table>
<thead>
<tr>
<th>Thermo philic</th>
<th>mesophilic</th>
<th>Psychrophilic</th>
<th>Psychrotrophic</th>
<th>cryophilic</th>
<th>pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65</td>
<td>40</td>
<td>37</td>
<td>33</td>
<td>20</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
</tbody>
</table>

Prevention of most pathogens

No growth
Impact of Temperature fall on bacteria in food

- **Survival of lactic flora**, > optimisation of industrial process for cheesemaking (lactic starters)

- **Little interest in food safety**:
 No bacteria totally killed by freezing (1% – 90%)
 The remaining flora will quickly grow during thawing

- **Arrhenius**:
 \[\text{degradation rate} = a(T-To)^2 \]
 Fall of rate of all chemical and enzymatic reactions
Impact of Temperature fall on bacteria in food

Mechanisms of freeze damage

Accumulation of cellular damages leading to stress and death, due to:

• Extracellular ice formation
• Intracellular ice formation
• Concentration of extracellular solutes
• Concentration of intracellular solutes
• Low temperature
Effet of freezing on bacteria: influential factors

1. Bacterial type and strain
2. Cell age
3. Growth conditions before freezing
4. Nature of suspending medium (fish/meat/vegetables)
5. Freezing and thawing conditions
6. Storage conditions
7. Culture medium
Effet of freezing on bacteria: influent factors

1. Bacterial type and strains
 Cell Envelope composition

- Gram +: thinner envelope: more permeability at low temperatures
- Gram -: the more resistant strains show OMPF porin protein, responsible of big pores in cell wall whereas less resistant show OMPC proteins (narrow pores) = less permeability

- Gram +: thiner envelope: more permeability at low temperatures
Effet of freezing on bacteria: influential factors

1. Bacterial type and strains

Cryophilic and psychrophilic more resistant, because of adaptation mechanisms (membrane fluidity and permeability)

Spores much more resistant than vegetative form

Salmonella spp. resistant among G-, but very susceptible to repeated freeze/thaw cycles.

C. Jejuni susceptible to freeze/thaw cycle. In Danemark and Iceland, freeze thaw use to reduce the risk in positive tested poultry carcasses (25 fold)
Effet of freezing on bacteria: influential factors

1. Bacterial type and strains

Vibrio spp. known for sensitivity to freezing.

V. Vulnificus in oysters: counts reduced by 2-5 log

By freezing

V. para. In oyster homogenate: 5 log reduction

Pseudomonas, Micrococci, Staphylococci and *Streptococci* known to be resistant to freeze/thaw and storage.

High variability in susceptibility to cold injury between strains.

Understanding high sensitivity to freezing would be helpful in dealing with resistant microorganisms.
Effet of freezing on bacteria: influential factors

2. Cell age

Stationary phase: greater resistance to freezing than exponential phase.
3. Growth conditions before freezing

Cold storage before freezing > increased resistance

Vibrio spp. : non culturable state induced by storage (VNC) at 4°C > enhanced resistance to lethality caused by freezing.

Cold shock adaptation mechanisms:

- Membrane **lipids** modifications:
 - maintain membrane fluidity for nutrient uptake

 E.coli : C16:0 ➖ C18:1 ➕
 L. monocytogenes : C17:0 ➖ C15:0 ➕
3. Growth conditions before freezing

Production of cold-shock proteins/polypeptides
Production of new specific proteins, of activation of the production of existing proteins in the cytoplasm or in the membrane. (16 in E.coli for a T° shift of 13°C or more.
Supposed to aid to resist to very low temperature (protection against recrystallisation?).

Uptake of compatible solutes (i.e. betaine, proline and carnitine –osmoprotective / cold adaptation)
Effet of freezing on bacteria: influential factors

4. **Nature of food matrix**

Fat content:
antagonisms between free fatty acids (antimicrobial, more active on Gram+) vs. glycerol/glycerides (protective)

<table>
<thead>
<tr>
<th>Fat level (%) (beef mince)</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>% surv.*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salm. kent.</td>
<td>13</td>
<td>18</td>
<td>20</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>S. aureus</td>
<td>22</td>
<td>24</td>
<td>75</td>
<td>55</td>
<td>28</td>
</tr>
</tbody>
</table>

(storage 10 wks at -35°C)
4. Nature of food matrix

Meat type:

<table>
<thead>
<tr>
<th>Salmonella</th>
<th>chicken</th>
<th>bacon</th>
<th>lean beef</th>
</tr>
</thead>
<tbody>
<tr>
<td>survival in:</td>
<td>26%</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. Aureus</th>
<th>beef mince</th>
<th>bacon</th>
<th>pork mince</th>
</tr>
</thead>
<tbody>
<tr>
<td>96%</td>
<td>42%</td>
<td>79%</td>
<td></td>
</tr>
</tbody>
</table>

Cold adaptation (E.coli 0157:H7): non effect on beef and pork, but induces enhanced protection on milk, whole egg, sausage.

pH:

Susceptibility to freezing injury enhanced by acidity of food matrix. (*L. monocytogenes* for instance)

Not easy to compare (temperature, time, growth phase, strain...
Effet of freezing on bacteria: influential factors

5. Freezing and thawing rates

Freezing rate:
fast rate > small crystals > increased survival

Thawing rate:
fast rate > small crystals > increased survival

large ice crystals formation > bacteria injured

But!!!
Once the product has been thawed, bacteria begin to reproduce again
Effet of freezing on bacteria: influent factors

6. Storage conditions

Time:
Slow or no decrease with time at constant temperature. In some cases most of the lethality occurs in the first 7 days of storage, then constant count. (C. jejuni, beef trimmings, -18°C)
In most cases, 0 – 99% destruction during 1 year.

Temperature:
Low storage temperature aid microbial survival.
Low survival between –5 and –10°C.
Counts virtually constant < -30°C
(Salmonella found to decrease more at -20° than -35°C on salmon)
6. Storage conditions

Temperature fluctuations:
Slow decrease with time because of Ostwald maturation. May occur in case of open display cabinets: slight decrease or constant.

Freezing/thawing cycles:
Slight decrease (1-2 log.) with cycles is a function of initial count. But quality of the food is degraded a lot before sanitation effect is significant.
SELECTIVE MEDIA: UNDER-ESTIMATION OF COUNT

- 3 E. coli strains in beef trimmings, -18°C, 12 wks
 - Constant count on non-selective media (TSA)
 - 2 log. Decrease on Mc Conkey (selective)
- Bacteria highly stressed, viable, but not culturable state (between death and life = VNC)
- Necessity of resuscitation step before culture, or detection techniques based on DNA/RNA (PCR-DGGE)
Example on enterobacteria (XLD medium)

Effect of frozen conditions on enteric bacteria (/XLD)

- Daily
- Fluctuations -5 to -20°C
- 1 to 5 months

- Initial count
- After process

Time duration 1 to 5 months

Repetition of freezing/thawing cycles
CONCLUSION

Bacteria are not totally killed by freezing, whatever the strain, the type, etc…

- Outstanding initial quality of fish is essential
- Freezing cannot be considered separately of thawing
- Thawing and storage conditions may lead to high loads within a short while
- Food must be processed as soon as possible after thawing

Reduction of pathogens and spoilage bacteria in fish by freezing is not of practical importance
CONCLUSION

Future research needs

- Better understanding of interactions food - microorganisms
- Optimal conditions for major pathogens destruction
- Relationship growth phase – freeze/susceptibility
- Understanding VNC state and adaptation proteins formation
- Understanding the genetics of stress response
- Extracellular sensing components and intercellular signaling molecules

BEAL C, FONSECA F. et CORRIEU G. (2001), Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition, J Dairy Sci. 84 (11), 2347-2356.

FORSYTHE S. J. (2000), The microbiology of safe food, 2.7 Microbial response to stress (36-42), Blackwell Science Ltd, Malden, USA.

