

Figure1: Description du système pédologique étudié et évolution des principaux constituants le long de la toposéquence. En gris les horizons Ap et en blanc les horizons B. Les oxides de fer sont calculés par la différence entre le Fe obtenu par la méthode Merha Jackson (citrate-bicarbonate dithionite de Na à pH 9.7) et le Fe obtenu par la méthode Tamm (tampon oxalique à pH 3.0). L'aluminium amorphe correspond à l'aluminium extrait par la méthode Tamm.

Tableau 1 :	Principales	caractéristiques	des sols étudiés.
Tubicuu I.	1 morpules	ouraotoriotiques	

			Granul	ométrie sans car	bonatation, g k	_						
Abrév.	Horiz.	Argile (< 2 μm)	Limon fin (2 – 20 μm)	Limon grossier (20 – 50 μm)	Sable fin (50 – 200 μm)	Sable grossier (200 – 2000 μm)	Carbone Organique, g kg ⁻¹	рН _{н20}	CEC, me 100g ⁻¹	Fe_{ox} ⁽¹⁾, g 100g ⁻¹	Al_{Tamm}, g 100g ⁻¹	TS , %
AndP1	Ар	263	305	152	112	168	9,59	5,44	41,08	3,34	2,56	18,18
	В	61	192	233	383	131	5,27	5,23	20,29	4,12	4,43	3,76
And1	Ар	177	335	210	221	57	6,71	5,78	36,14	3,34	3,35	18,9
	В	71	208	260	396	65	4,34	5,26	33,06	3,54	4,38	5,51
And2	Ар	162	316	214	229	79	6,73	5,26	29,06	3,9	3,03	5,29
	В	52	189	184	421	154	3,54	4,96	33,06	5,26	4,1	0,83
And3	Ар	103	285	221	276	115	4,07	6,64	30,82	3,37	5,27	43,35
	В	70	254	206	337	133	3,2	5,51	33,14	3,47	5,33	8,24
And4	Ар	118	273	193	347	69	4,7	5,68	28,06	4,14	4,04	23,49
	В	46	162	201	459	132	1,99	5,2	33,44	3,81	5,9	5,44
BrAnd	Ар	289	298	180	168	65	3,41	5,89	29,26	3,58	2,67	43,26
	В	47	210	227	392	124	1,45	5,93	37,52	2,84	5,75	22,29
BrHa	Ар	825	108	18	27	22	1,71	5,01	35,2	6,06	0,47	16,37
	В	878	65	24	16	17	0,74	5,73	18,75	5,95	0,42	41,65
AndP2	Ар	517	345	78	39	21	6,89	5,56	27,39	3,13	0,71	47,24
	В	529	312	107	46	6	1,84	5,18	30,42	3,33	1,09	7,35
AndP3	Ар	211	335	193	169	92	8,84	6,35	39,68	2,63	3,42	50,39
	В	55	148	156	446	195	2,84	5,17	29,12	3,57	4,06	6,35
AndP4	Ар	232	351	177	139	101	9	6,81	37,5	2,5	3,75	73,03
	В	56	187	203	348	206	3,88	5,66	31,16	2,61	5,16	9,64
AndP5	Ар	217	289	179	175	140	10,26	6,51	46,3	1,83	3,86	60,34
	В	42	154	165	468	171	2,76	5,7	27,41	3,76	4,43	13
AndP6	Ар	146	274	183	235	162	7,16	5,35	33,4	3,45	3,91	9,84
AndP7	Ар	471	278	91	93	67	2,82	6,2	17,1	4,37	0,60	48,35

(1) Fe_{ox}, oxides de fer, valeurs calculées par la différence entre le Fe obtenu par la méthode Merha Jackson (citrate-bicarbonate dithionite de Na à pH 9.7) et le Fe obtenu par la méthode Tamm (tampon oxalique à pH 3.0).
(2) Al_{Tamm}, obtenu par la méthode Tamm.

Figure 2 : Formule développée du cadusafos (S,S-di-sec-butyl O-éthyl phosphorodithioate, IUPAC).

Figure 3 : Isothermes d'adsorption (●) et de désorption (○) du cadusafos dans les horizons Ap et B de l'andosol perhydraté (AndP1), de l'andosol (And1), du sol brun andique (BrAnd) et du sol brun-rouille à halloysite (BrHa). Les courbes correspondent aux ajustements du modèle de Freundlich.

Tableau 2 : Paramètres des isothermes d'adsorption selon le modèle de Freundlich: x/m = $Kf_aC_e^{na}$ et selon le modèle linéaire: x/m = Kd C_e pour les horizons Ap et B de l'andosol perhydraté (AndP1), de l'andosol (And1), du sol brun andique (BrAnd) et du sol brunrouille à halloysite (BrHa).

Sol	Horizon –	Mod	èle de Freu	ndlich	Modèle linéaire		
		Kf _a	na	r²	Kd	۲ ²	
AndP1	Ар	26,5	0,90	1	29,6	0,99	
	В	5,2	0,84	0,99	4,5	0,94	
And1	Ар	14,3	0,85	0,98	15,5	0,99	
	В	4,9	0,92	0,97	5,2	0,92	
BrAnd	Ар	6,1	0,81	1	5,6	0,97	
	В	1,2	0,78	0,96	0,85	0,7	
BrHa	Ар	3,1	0,79	1	2,6	0,96	
	В	0,81	0,65	0,88	0,57	0,83	

Figure 4 : Variation du Kd entre les horizons Ap et B des différents sols du lot 1.

Sols	Horizon	Kd, I kg ⁻¹ ± $\sigma^{(1)}$
AndP1	Ар	29,6 ± 0,4
	В	4,5 ± 0,5
And1	Ар	15,5 ± 0,3
	В	5,2 ± 1,0
BrAnd	Ар	$5,6 \pm 0,3$
	В	$0,8 \pm 0,4$
BrHa	Ар	$2,6 \pm 0,3$
	В	$0,5 \pm 0,1$
AndP2	Ар	37,6 ± 1,6
	В	3,1 ± 0,5
AndP3	Ар	31,9 ± 0,4
	В	6,1 ± 0,1
AndP4	Ар	37 ± 1,0
	В	9,2 ± 0,4
AndP5	Ар	53,5 ± 1,5
	В	$12,1 \pm 0,6$
AndP6	Ар	23 ± 0.8
AndP7	Ар	$8,3 \pm 0,6$

Tableau 3 : Coefficients d'adsorption linéaire (Kd) pour l'ensemble des sols étudiés.

⁽¹⁾ Moyenne \pm écart type.

Tableau 4 : Paramètres des isothermes de désorption selon le modèle de Freundlich (x/m = $Kf_dC_e^{nd}$) pour les horizons Ap et B de l'andosol perhydraté (AndP1), de l'andosol (And1), du sol brun andique (BrAnd) et du sol brun-rouille à halloysite (BrHa).

Sol	Horizon	Kf _d	nd	r²	H ⁽¹⁾	% Non désorbé ⁽²⁾ $\pm \sigma^{(3)}$ (de la quantité totale initiale)
AndP1	Ар	20,98	0,36	0,96	0,40	63,0 ± 1,1
	В	6,65	0,41	0,99	0,49	19,3 ± 1,0
And1	Ар	14,68	0,09	0,96	0,11	$60,5 \pm 0,7$
	В	8,97	0,28	0,85	0,30	$29,8 \pm 3,3$
BrAnd	Ар	7,86	0,33	0,99	0,41	$20,7 \pm 0,2$
	В	2,26	0,06	0,44	0,08	9,7 ± 1,4
BrHa	Ар	5,29	0,21	0,83	0,27	15,9 ± 3,2
	B	1,27	0,06	0,08	0,09	$5,6 \pm 3,7$

⁽¹⁾H, indice d'hystérésis (H = nd/na). ⁽²⁾ Après la 5^{eme} désorption. ⁽³⁾ Moyenne ±écart type.

Tableau 5 : Durées de demi-vies (DT50) de la dissipation du cadusafos, constantes des vitesses de dissipation (k) et coefficients de détermination (r²) de l'équation de premier ordre de la cinétique de dissipation des deux horizons des sols incubés.

Sols	Horizons	DT50, jours	k, jours ⁻¹	r²	k _B /k _{Ap}
AndP1	Ар	16	0,0428	0,92	0.67
	В	24	0,0285	-	0,07
And1	Ар	26	0,0270	0,98	0.94
	В	31	0,0226	-	0,64
And3	Ар	14	0,0502	0,93	0.46
	В	30	0,0233	- 0,40	
And2	Ар	15	0,0457	0,88	0.44
	В	35	0,0200	-	0,44
And4	Ар	16	0,0440	0,97	0.24
	В	47	0,0149	-	0,34
BrAnd	Ар	35	0,0199	0,97	0.77
	В	45	0,0153	-	0,77
BrHa	Ар	32	0,0220	0,93	0.65
	В	49	0,0142	-	0,05

Figure 5: Evolution au cours de l'incubation du ¹⁴C-cadusafos (en % de la radioactivité apportée) des extraits aqueux (a) et totaux (b) (extraits aqueux + méthanoliques) dans les sols du lot 1. L'évolution de la quantité totale extractible représente la cinétique de dissipation du cadusafos. Les barres d'erreurs, visibles quand elles sont supérieures à la taille des points, représentent l'écart type.

Figure 6 : Comparaison des quantités de ¹⁴Ccadusafos extractibles à la fin de l'incubation des horizons Ap et B des sols du lot1. Les barres d'erreurs représentent l'écart type.

Figure 7 : Variation au cours de l'incubation du taux des résidus non extractibles dans les horizons Ap des sols du lot1. Exprimés par rapport à la quantité initiale apportée. Les barres d'erreurs, visibles quand elles sont supérieures à la taille des points, représentent l'écart type.

Figure 8 : Cinétiques (a et b) et vitesses (c et d) de minéralisation du ¹⁴C-cadusafos dans les horizons Ap (a et c) et B (b et d) des sols du lot 1.

Figure 9 : Variation au cours de l'incubation des coefficients de distribution apparents Kapp_M (a) et Kapp_{MR} (b) dans les sols du lot 1. Kapp_M et Kapp_{MR} sont calculés en considérant la quantité adsorbée respectivement égale à la quantité extraite au méthanol (Kapp_M) et à la somme de la quantité extraite au méthanol avec la quantité non extractible (Kapp_{MR}). Les barres d'erreurs représentent l'écart type.

Tableau 6 : Coefficients de corrélation (r) calculés entre le paramètre d'adsorption Kd et les propriétés des sols pour lesquelles sont obtenues des valeurs de r significatives au seuil $\alpha = 0.05$.

	Limon fin, g kg ⁻¹	Fe _{ox} , g 100g ⁻¹	рН _{н20}	Corg, g kg ⁻¹	Ca éch g kg ⁻¹	Mg éch g kg⁻¹	CEC, cmolc kg ⁻¹	Taux de saturation	P Olsen, g kg ⁻¹
Kd, I kg ⁻¹	0,62	- 0,62	0,57	0,90	0,787	0,733	0,58	0,61	0,84

Tableau 7 : Coefficients d'adsorption linéaire Koc normalisés par la teneur en carbone organique des sols des deux lots étudiés.

Sols	Horizon	Koc ⁽¹⁾ , I kg ⁻¹ ± $\sigma^{(2)}$
AndP1	Ар	309 ± 4
	В	86 ± 11
And1	Ар	232 ± 5
	В	120 ± 24
BrAnd	Ар	164 ± 9
	В	59 ± 30
BrHa	Ар	154 ± 17
	В	77 ± 22
AndP2	Ар	546 ± 24
	В	167 ± 30
AndP3	Ар	361 ± 4
	В	214 ± 5
AndP4	Ар	412 ± 11
	В	238 ± 12
AndP5	Ар	521 ± 15
	В	440 ± 21
AndP6	Ар	321 ± 11
AndP7	Ар	296 ± 22

⁽¹⁾ Koc calculés à partir des Kd obtenus après ajustement linéaire sur les isothermes d'adsorption pour les sols du lot1 et à partir des Kd moyens obtenus par mesure après adsorption avec une concentration et deux répétitions pour les sols du lot2. ⁽²⁾ Moyenne ±écart type.

Figure 10 : Relation entre le coefficient de distributior (Kd, $| kg^{-1} \rangle$ et la teneur en carbone organique (Corg, g kg⁻¹) dans les horizons Ap et B confondus (droite discontinue) et considérés séparément Ap (O et droite fine) et B (\bullet et droite épaisse). Les coefficients de détermination (r^2) de la régression linéaire sur les mesures des deux horizons confondues, sur les mesures de l'horizons Ap et sur les mesures de l'horizon B séparés sont respectivement présentés de haut en bas.

Figure 11 : Relations entre le coefficient de distribution (Kd, $| kg^{-1})$ et la teneur en sable grossier (Sg, g kg⁻¹) dans les horizons B.

Figure 12 : Relations entre le coefficient de distribution (Kd, l kg⁻¹) et la teneur en Oxydes de Fer (a) (Fe_{ox}, g 100g⁻¹) dans les horizons Ap et B confondus (droite discontinue) et considérés séparément Ap (O et droite fine) et B (• et droite épaisse) et relation entre Fe_{ox} et la teneur en carbone organique (Corg g kg⁻¹) (b). Les coefficients de détermination (r²) de la régression linéaire sur les mesures des deux horizons confondues, sur les mesures de l'horizons Ap et sur les mesures de l'horizon B séparés sont respectivement présentés de haut en bas.

Figure 13 : Relations entre la durée de demi vie (DT50, jours) et la teneur en carbone organique (Corg g kg⁻¹) dans les horizons Ap et B confondus (droite discontinue) et considérés séparément Ap (\circ et droite fine) et B (\bullet et droite épaisse). Les coefficients de détermination (r^2) de la régression linéaire sur les mesures de l'horizon B, sur les mesure des deux horizons confondus, et sur les mesures des horizons Ap sont respectivement présentés de haut en bas.

Figure 14 : Evolution au cours de l'incubation des coefficients de distribution apparents Kapp_{MR} (triangles vides), Kapp_M (triangles noirs) et du coefficient de distribution théorique Kd_{th} (cercles noirs) dans l'andosol perhydraté (a), l'andosol (b), le sol brun andique (c) et le sol brun-rouille à halloysite (d).

Figure 15 : Evolution au cours de l'incubation des valeurs de l'indice GUS dans les horizons Ap (lignes continues) et B (lignes discontinues) de l'andosol perhydraté (AndP1), l'andosol (And1), le sol brun andique (BrAnd) et le sol brun rouille à halloysite (BrHa). Les Koc servant au calcul des valeurs de l'indice GUS ont été calculées à partir des Kapp_{MR}.

Variables (axes F1 et F2 : 93,44 %)

-- axe F1 (59,07 %) ->

Figure 16 : Analyse en composantes principales réalisée avec les résultats d'adsorption (Kd, Koc) et d'incubation (DT50) et les résultats d'analyses des sols : teneur en oxydes de fer (Fe_{ox}), teneur en argiles, teneur en carbone organique (Corg) et teneur en aluminium amorphe (Al tamm) pour les horizons Ap (\bigcirc) et B (\bigcirc) des sols du lot 1. Le sens des flèches pour les horizons Ap (\ldots) et B ($_$) correspond à l'organisation des sols dans la toposéquence du haut vers le bas.