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Abstract.  

Today’s industries need more flexible scheduling systems able to produce new valid schedule in response to the 
modifications concerning orders, production processes and deliveries of materials. This paper introduces a 
multi-agent system applied to a job shop dynamic scheduling problem in which new production orders or 
deliveries arrive continuously and affect the already scheduled plan. We have solved the problem by: i) coupling 
reactive and pro-active agent behavior; and ii) implementing a stochastic method - simulated annealing - into 
agent’s behavior. The job shop scheduling system is implemented using various types of agents whose 
interactions make the global state of the system move from a solution to another by continuously adapting to the 
changes from the environment. In this perspective, the interactions between the agents representing the client 
job orders, the production centers and the material stocks result in the assignment of operations and the plan for 
stock movements. Our experimental results show that, by modifying the classical agent-based message scheme, 
the integration of stochastic approach and multi-agent based technology could improve dynamic scheduling 
problems for a small to medium size problem space. 
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Introduction 
Most current planning and scheduling systems in manufacturing industries rely on stationary properties of 

the production process but this assumption has been unrealistic, given the possibilities of machine faults, 
multiple delays and urgent incoming orders. After receiving the modifications concerning orders, production 
processes, material deliveries, the provisional plan rapidly becomes invalid. The responsible persons of 
production lines want to know the impacts of these changes on scheduling in order to take an immediate 
decision. In that context, today’s industries need more flexible scheduling systems which react dynamically. 

This paper introduces a multi-agent system applied to a job shop scheduling problem in a dynamic 
environment in which the above-mentioned changes arrive continuously and affect the existing production 
schedule. The problem has been solved by: 
• Coupling reactive and pro-active agent behaviors to solve the dynamic issues; 
• Emerging the schedule through the agent interactions; 
• applying a stochastic method - simulated annealing - as an optimization technique. 

This work has been carried out in collaboration with an industrial partner (TI-Informatique in Valais, 
Switzerland) which wanted to replace the scheduling module integrated in their software product [Visual Prod], 
and an academic institute [ICARE-IsNet] for integrating the two systems – VisualProd and the multi-agent 
system. 

This paper is organized as follows: In section 2, we outline a general definition of job shop scheduling and 
some problems which must be taken into consideration in a dynamic environment. And then we introduce our 
approach. Section 3 is devoted to detail the formulation of the optimization function and the technique of 
simulated annealing. The description of each agent is given in section 4. In section 5, we discuss our 
experimental results and general conclusions are given in section 6. 
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Problems of Job Shop scheduling in dynamic environment 

General definition 

A job shop is a manufacturing environment where a set of m jobs (or tasks) J={J1, …   Jm} have to be 
performed on a set of n centers R={R1, …, Rn}([Liu Sycara 96][Daouas 96][Laahoven et al. 92]). Each job Ji is 
composed of a set of partially ordered operations op(ij), i= 1, …, m, j=1, …, m(i), where i is the index of the job 
and j is the index of the step (or the sequential order), m(i) is the total number of elementary operations in a 
production process. Each operation op(ij) has a deterministic processing time l(ij) and pre-assigned materials 
M={M1, M2, .., Mk}. The job shop scheduling problem involves synchronization of the completion of m jobs J 
on n resources R in consuming k materials M, and is one of the most difficult NP complete combinatorial 
optimization problems. 

The problem constraint of job shop scheduling includes:  
1. operation temporal precedence, i.e., an operation must be started on after the previous operation in the job 
sequence (set of operations) should be finished. 
2. center capacity constraint, i.e., centers have only a single operation processing capacity.  
3. material quantity constraint, that is, corresponding materials must be supplied in stocks before the 
consumer operation starts.  

In principle, the job order has a deadline condition. This condition is considered as a preference rather than a 
constraint because it is possible to have non optimal solution which satisfies the deadline condition with the 
other constraints. A solution of a job shop scheduling problem is the set of operations to which is assigned a start 
time(st) and an end time(et) which satisfies all problem constraints and satisfies as well the possible the deadline 
preferences.  

Dynamic characteristics and using agents 

One of the important dynamic characteristics of the manufacturing is its environmental changes. The system 
should respond to a sudden change like a new job order, a canceling of a scheduled order or materials’ arrival 
not respecting the scheduled supply time. Another kind of dynamic issue concerns the fact that operations’ real 
finishing time sometimes differ from the scheduled time. In the case of a job shop floor, these dynamic 
characteristics are not so easy to take into account because of tightly coupled problem constraints (see section 
2.1). As was noted in [Sauter Parunak 99], early scheduling software products were too limited to handle such 
dynamics or now the software becomes too complex to handle it successfully. 

By the characteristics of constructing decentralized complex systems, multi-agent based approaches are often 
applied to solve the planning and production scheduling problems in industries ([Muller Parunak 
98][SauterParunak 99][Liu Sycara 96]. Actually there exist many approaches to tackle the dynamic issues in 
scheduling systems ([Daouas 96][Bussman 98]) or to solve efficient scheduling problems in job shop ([Liu 
Sycara 96][Laahoven et al.93]). To follow some existing technologies for our application, we have noticed 
certain limitations. 
First of all, the existing researches were carried out with a limited size which is very often not the case of a real 
industrial application. (less than or equal to 30 job orders In [Daouas 96], [Laarhoven et als. 92]). 
The implementation of a system was based on a simplified context. In [Daouas, 96][Liu Sycara 96], the authors 
tackled some dynamic issues in scheduling, or in [Laarhoven et als 92] an efficient job shop scheduling problem 
was addressed, but the supply chain problem was often ignored. Even though some researchers have underlined 
the importance of the integration of entire dynamic issues in production lines ([Sauter Parunak 99]), few 
applications have realized it in a real context. 
The integration of legacy systems is hardly considered. It is certain that some technical constraints due to the 
integration may affect the application of a theoretical knowledge and the real implementation. But other 
experiments rarely mentioned the integration aspect. 

Thus we attempted, in our approach,: 
• To realize a combined agent behavior, that is, goal-directed and reactive agent behavior for solving a 

dynamic scheduling problem for production centers and stocks; 
• To use a stochastic optimization technique like simulated annealing studied by other researchers ([Laahoven 

et al. 92]) but in the context of different types of agents; 
• To solve the integration problem between a legacy software and the multi-agent system; 
• To test the prototype in an integrated environment with a significant example size. 
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Dynamic system and optimization problem 
 
In the context of a job shop scheduling problem, a problem state is represented by an allocation of operations 

associated to production orders in respecting the constraints related to the operations (temporal precedence, 
center capacity and material constraints). Dynamic scheduling means finding, starting from the initial state, a 
new next state (i.e., allocation of operations) which satisfies the newly given constraints. For the purpose of 
comparing a new state with the current state, a cost function is used which represents the value of a given state. 
In this section, we explain the formalization of the cost function and the algorithm of simulated annealing. How 
these functions are integrated within the agents’ model is detailed in section 5. 

Optimization problem and cost function 

The cost function is defined over the problem space in which each state represents a complete schedule. The 
optimization criteria to minimize considered in our system are listed below. 
• the number of lately placed roders with a weight parameter (client priority): tardy cost, 
• the total tardiness with a weight parameter, 
• the mean value of each command’s tardiness. 
 

Given: 
• nc: the total number of job orders entered into the system, 
• fj: end time of production of a job order j in schedule, 
• dj: given deadline for the order j, 
• Lj: lateness of the job order j (Lj = fj – dj), 
• Tj: effective tardiness of the job order j (Tj = max (0, Lj)), 
• Uj: indicator of lateness of the job order j (0 or 1), 
• Wj: weight parameter for a job order j which depends on the client priority, 

four optimization criteria have been formulated as follows: 
Number of job order which are scheduled lately : Σj(1,nc) Wj * Uj  (f1)   
Tardiness : Σj(1,nc) Wj * Tj,       (f2) 
Mean tardiness : 1/nc * Σj(1,nc) Tj      (f3) 
Number of non-placed job orders: np (np <= nc in a certain state) (f4) 

Being based on these formulas, the cost function to minimize is given as follows :  
F = c1 * (f1) + c2 * (f2) + c3* (f3) + c4*(f4)    (f5) 

where c1, c2, c3, c4 are the associated coefficients. In our system, there is a global view point which 
supervises the cost function. 

Simulated annealing 

Being based on statistical physics, simulated annealing technique allows to avoid local optima traps which 
often occur with greedy algorithms. Let F be a cost function to minimize, simulated annealing consists in: 
• allowing local cost function deterioration, hoping to improve the global cost function, 
• controlling this possibility with a stochastic process which is guided by a parameter, called the temperature or 

tolerance. Initially, there is a high tolerance to local cost function deterioration, and progressively this 
tolerance decreases until the system reaches the equilibrium state ([Daouas et al. 95]). 
The algorithm of simulated annealing is relatively simple to implement but the efficiency of processing time 

and the quality of solution are high [Laahoven et al. 92]. More formally, the probability to accept the state g 
once generated from the current state c (Acg) is defined by the following formula. 
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where T is the temperature at the current state c, F(c) is the cost function value of current state, F(g) is that of 
a generated state. This formula means that if the newly generated state is better than the old one, the system 
accepts the new state. If it is not the case, the system accepts the new state with a certain probability. Once the 
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system decides to accept the new state g, the system decreases the temperature to adjust it for the new state g. 
Having drawn on the result of [Daouas 96], the following formula was used to decrease the temperature. 

T(n+1) = Tn – (0.07 * T(init)), 
where T(init) is the initial temperature, T(n) is the current temperature and T(n+1) is the modified 

temperature.  
 
Modeling with agents 

 
The following list shows our model matching between the real world job shop model and the model based on 

agent. 
• Production order from client  command agent 
• Production center  center agent 
• Stock for materials  stock agent 
• Operation  interaction element between command agents and center agents, managed by command 

agents 
• Stock movement  interaction element between command agents and stock agents, managed by stock 

agents 
In this model, the assignment of operations results from the interactions between agents which represent the 

client job orders and production centers, and the plan for stock movements arises from the interactions between 
agents representing the client job orders and stocks (see figure 1). The center agents and the stock agents are 
created at the moment of the platform initialization and exist until the platform receives the deletion 
perturbation of a center or of a stock.   

In subsection 5.1 and 5.2, we introduce “Operation” and “Stock movement” as interaction elements and after 
that we detail our agents with their proactive and reactive behavior.  

 Command
agentStock agent Center agent

demand_placement
of operationsdemand_supply

confirmation,
re-proposition

accept,
reject,

placement

création des
mouvements

stocks

creation of
stock

movement
décision de
début et fin
d'opérations

decision of
start and end

time of
operation

 
Fig. 1. The schedule emerges from the agent interaction. 

Operation 

The “Operation” element represents a elementary operation. The following information is associated with 
each operation. 
• Center id : identification of the center on which the operation is executed, 
• materials : composed of {stock identifier, quantity, duration for new supply}, 
• order relation between operations : previous and next operation, 
• Processing time : duration of execution dependent on the quantity to produce, 
• Temporal information : the earliest, latest and scheduled start time (see below). 

Using processing time l(ij) and the deadline Dl , the earliest start time (es) and latest start time (ls) are 
calculated as: 

es(ij) = i) equal to the current time unit, if op(ij) is the first operation in production,  
 ii) es(i, j-1) + l(i, j-1) otherwise, where l(i, j-1) is the precedent operation of op(ij).  

 ls(ij) =  i) equal to the deadline Dl, if op(ij) is the last operation in production,  
   ii) ls(i, j+1) + l(i, j+1) otherwise, where l(i, j+1) is the next operation of op(ij).  
The interval marked by the earliest and the latest start time mean that if an operation can be started between 

this time interval, the system guarantees the production deadline. And finally, the real start time is defined by 
the center agent, in our case, and this means that an operation is scheduled.  
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 Stock movement 

In industrial production, the supply chain problem concerns the stock management. Materials are stocked in 
stocks and consumed at the start time of operations. We call it stock movement. There are two kinds of stock 
movement: material entry into the stock (due to the delivery from suppliers) and material exit from the stock (to 
supply production processes). We used “Movement” element to model these aspects with the information: 
movement identifier, date of stock movement, quantity, stock quantity after movement. 

There are also specialized information for each entry and exit type stock movement: 
• Identifier of supplier for material entry: external supplier if the material must be purchased, or another 

production process if the material is an intermediate product. 
• Identifier of consumer for material exit: the customer if it is a final product, or another production process, 

i.e., a command agent identifier, which manages the consumer operation. 

Command Agent 

A command agent represents a production order entered into the scheduling system. It is created when a new 
job order is entered and works for placing all of its operations on centers respecting the earliest & latest start 
time range. The necessary information for a command agent is: the production deadline, the priority of the 
client, a set of “Operations” (see section 5.1composing the production process. 
• Proactive behavior: A command agent is responsible for calculating temporal information (es, ls) of its 

operations. Before launching the production planning, a command agent verifies operation by operation 
the availability of their materials, that is, if the necessary materials can be ready at the “earliest start 
time”. Afterward, it constantly asks to place its operations on centers.  

• Reactive behavior: Various perturbations (modification of the production deadline, insertion/deletion of 
an operation into/from the production process, receiving a reject notice from a center, or modification of 
materials) sent from the environment are transmitted to a command agent. These invoke the associated 
reactive behavior.  

Center agent 

The center agents represent the machines or production centers and work to allocate execution start time of 
all requested operations without overload. Each center agent keeps: (i) the planned operations in the center, (ii) 
the available free places to be occupied by operations, (iii) the current simulated annealing temperature. 

The experimental results of [Daouas 96] shows that, by having a separated temperature for each center – 
distribution of the simulated annealing mechanism – we can speed up significantly the processing time. By the 
nature of job shop problem, all centers don’t have equal occupancy rate for the production of the articles. So it 
is possible that there are some centers frequently requested for production while other centers are rarely asked 
for. This characteristic naturally leads us to conceive distributed simulated annealing value for each center.  
• Proactive behaviour: none. 
• Reactive behavior: When a center agent receives a ‘demand place-operation’ message with an operation 

from a command agent, it searches a free place within his schedule to satisfy the execution of the 
operation. If there is no more free place, the center agent is obliged to decide whether : i) it rejects 
another operation to make a place for the new one, or ii) it places the new operation regardless of the 
temporal values. To take a decision, the center agent uses its simulated annealing temperature to get the 
acceptance probability presented in section 3.2.  

Stock agent 

The stock agents are managing materials by maintaining the minimum stock level. The behavior of stock 
agents generates the stock movement plan including: purchase order, stock movement plan for operation supply:  
• Proactive behavior: During the planning process, it is possible that the remaining stock quantity after 

movement becomes too short (below the minimum). If a stock agent encounters such a case, it generates a 
supplying order. If the material must be supplied by an external supplier, the stock agent creates a 
purchase order and then considers it will arrive at the planed time. If the material is produced by internal 
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production, the stock agent creates an internal production order, which must be included in the schedule 
as a new job order. 

• Reactive behavior: responding to the demand of command agents, the stock agents verify whether the 
stock will be sufficient to supply the necessary quantity of materials. It returns a positive confirmation if 
it is the case otherwise it re-activates itself  for its pro-active behavior.  

 
Experimentation 

 
We have experimented the multi-agent system with randomly generated examples. The purpose of the 

experimentation was: 
• To justify the application of simulated annealing method in complex job shop environment, 
• To verify whether the processing time is acceptable in real world execution. 

The original database that we used has been supplied by the industrial participant (TI Informatique). It 
contains the necessary information concerning the production processes and materials of each unit operation. 
We have used only one type of final product which is composed of 10 elementary operations and which needs 
an intermediary article composed of 6 elementary operations. The number of production centers is fixed to 6.  

We have considered only the production job orders. Other dynamic aspects of the system, for example, the 
comparison of processing time of different types of perturbations, is excluded from this experimentation. 

Parameter used in random generation 

Being based on [Daouas 96], we have varied: (i) the number of production job orders, (ii) the difficulty of the 
generated problem. 

To decide the number of production order, we have referred the statistical analysis results carried out among 
the users of VisualProd system. The result shows that there are 44 production orders entered into the system and 
10 productions finished daily. Approximately, we have tested the system with maximum number of 100 
commands. This already overpasses the number of job orders tested by other researchers.  

We randomly generated the production deadline using the following formula to vary the problem complexity 
by controlling the deadline. 

Dl(j) = Du(j) + Du(mean) * g(α) * nd,  
where Dl(j) is the production deadline of the job order j, Du(j) is an approximate duration of the job order j, 

Du(mean) is an approximate duration to produce 50 final products (see 5.2), nd is the number of job orders, 
g(α) is a randomly generated number between (α-0.1, α+0.1).   

We have randomly generated the quantity of product, for each production order between, 1 and 100 
(according to a uniform distribution) and measured the scheduling time in millisecond. We varied certain 
parameters: (i) the number of production order varies between {10, 20, 30, 40, 50, 100}, (i) α: {0.5, 1}. We 
have executed 5 times with the same example - that is, same number of command, same degree of difficulty, 
randomly generated quantity of product - to get an average value. 

Results and Discussion 

We have tested the first implementation version of our system with the number of production orders 10, 30, 
and 50, and the initial stock level set to zero. Unfortunately, the result has been away from our expectation (see 
table1) in measuring the processing time.  

One of the benefits of applying simulated annealing method is its linear increase concerning the processing 
time ([Daouas 96][Laahoven et al.92]). But in our case, the processing time has increased exponentially in 
proportion to the number of job order. We have analyzed the reason like follows: 
• The problem context becomes much more complex by integrating the stock management which was not 

the case in [Daouas 96][Laahoven et al.92]. By the result, the interaction between command agents and 
stock agents becomes complex. 

• In our case, the problem size is more important that the others. Most of the experimentation has been 
executed over smaller problem space composed in more or less than 30 job orders. If we reduce our 
problem size like those, we show no more serious growth of  processing time but the exponential increase 
is remarkable after processing of 30 job orders.  

After our first trial, we have modified certain system properties, in reserving the important principals, so as 
to reduce the exponential growth curve. The modifications are:  
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• Limitation of the maximum number of rejection per operation in centers; 
• Modification of agent communication scheme. We have limited the pure agent message send/ receive. 

Some party of agent communication were replaced by a blocked transaction using direct message passing 
between agent. For example, the interaction between command agents and center agents for “demand 
place-operation”. 

• For concentrating on the processing time evaluation between center agents and command agents, we have 
taken a sufficiently high initial stock level. 

The table2 show the result after the modification: 
• the growth of processing time is in linear increase, and 
• the processing time of a hard problem (α = 0.5) is superior to the less difficult one (α = 1). 

Table 1. First experimentation                                       Table 2. After some modifications 

Conclusions 
As was mentioned in [Parunak 99], an industrial system is a mean to an end and will be accepted only if the 

firm can justify the project cost against expected benefits. Although the characteristics of multi-agent and 
distributed agent systems promise their applicability for modular, decentralized, complex  and changeable 
enterprise systems, there are always the problems of legacy system integration and of performance.  

We have succeeded to replace the existing scheduling module using agents’ interaction to integrate  dynamic 
scheduling. Now, the users can consult the impact of their input concerning new job orders, modifications of  
certain conditions, information for stock movements. The solution shows the new production schedule on the 
centers, what materials must be purchased, what production orders are retained, etc., which was exactly what the 
industries wanted. With our case example in the previous section, the processing time for re-scheduling after 
receiving a perturbation is taken about 5 –10 minutes. Meanwhile, if the system is used in a complex problem 
space, that is, scheduling of operations with the stock movement planing like in our system, it is possible that 
the processing time increases exponentially in proportion to the number of job orders and the stock state.  

Now TI-Informatique continues to integrate the prototype into the other parties of VisualProd so as to get a 
new upgraded version. One of major duties during this integration phase is to adjust  simulated annealing 
parameters which will pertinent with different size and characteristics of database because simulated annealing 
is a parameter-sensitive algorithm. 

This project has been financed by the CTI-HES project no 4544.1. 
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