
Streaming of Plants in Distributed Virtual Environments

Sebastien Mondet
University of Toulouse, France

Wei Cheng
NUS, Singapore

Geraldine Morin
University of Toulouse, France

Romulus Grigoras
University of Toulouse, France

Frederic Boudon
CIRAD, Montpellier, France

Wei Tsang Ooi
NUS, Singapore

ABSTRACT
Just as in the real world, plants are important objects in virtual
world for creating pleasant and realistic environments, especially
those involving natural scenes. As such, much effort has been
made in realistic modeling of plants. As the trend moves towards
networked and distributed virtual environment, however, the cur-
rent models are inadequate as they are not designed for progressive
transmissions. In this paper, we fill in this gap by proposing a pro-
gressive representation for plants based on generalized cylinders.
To facilitate the transmission of the plants, we quantify the visual
contribution of each branch and use this weight in packet schedul-
ing. We show the efficiency of our representations and effective-
ness of our packet scheduler through simulations.

Categories and Subject Descriptors
I.3.2a [Graphics Systems]: Distributed/Network Graphics; C.2.4b
[Distributed Systems]: Distributed Applications

General Terms
Design, Performance, Experimentation

Keywords
Streaming, Plant models, Multiresolution, Progressive coding, Pro-
gressive transmission, Networked Virtual Environment

1. INTRODUCTION
Networked virtual environment (NVE) is one of a few truly

multi-media applications that involves many media types – 3D
models, animation, images, audio, and video. These media data
are typically stored on a server, collectively describing a virtual en-
vironment. A client connects to the server to navigate through the
environment, requesting a subset of the media data based on its
current viewpoint. The server transmits the requested media data
to the client, which receives it and creates a partial/local 3D scene
that is further rendered into a virtual environment at the client.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’08, October 27–November 1, 2008, Vancouver, Canada.
Copyright 2008 ACM 1-59593-447-2/07/0010 ...$5.00.

The multimedia research community have made much progress
on audio and video transmissions, enabling high quality audio com-
munications and video streaming within the NVE. The quality of
3D objects in NVEs, however, is still primitive and not realistic
in general. Simplified models or image-based representations are
commonly used in NVE to reduce both computational and band-
width requirements. While Moore’s Law and advances in GPU
technology have made concerns on computational requirements
less relevant, network bandwidth still remains a bottleneck. For
instance, current generation of GPU is capable of rendering the
Stanford’s Thai Statue model with 10 millions triangles but the
model, with a size of 122MB after compression, needs 1.6 min-
utes to download even on a fast 10 Mbps link. The latency induced
by downloading completely such an object during a client naviga-
tion is unacceptable for interactive use. Thus, to enable realistic,
high resolution 3D object in NVE, it is not feasible to render a 3D
object only after it is completely received.

The technique of progressive streaming should be used to trade
off between waiting time and quality. With progressive stream-
ing, a low resolution version of the 3D object is first received and
rendered. Subsequent received data, called refinements, further im-
prove the quality of the 3D object. Progressive streaming is the
key to enabling high quality and realistic 3D objects in NVE under
bandwidth constraints. There are much on-going research on pro-
gressive streaming, focusing on mesh-based and point-based repre-
sentations. These representations, however, are inadequate in rep-
resenting plants.

Plants are important and common objects in a virtual world. Just
as in the real world, plants help create a pleasant and realistic vir-
tual environment, especially those involving natural scene. Realis-
tic modeling of plants are crucial in NVE applications such as vir-
tual forests or virtual botanical gardens, where users are expected
to inspect a plant closely and possibly interact with plants. Previ-
ous work has focused on how to accurately model a plant [27, 4,
25, 24, 21] or making it easy to create a plant1 within the virtual
environment. Realistic and detailed plant models can require up to
hundreds of thousands of polygons. Remolar et al. [27] estimated
that a plant generated by XFrog, a well known plant modeling plat-
form, can consist of 50,000 polygons to represent the branches.
The plants can have 20,000 or more leaves, which themselves con-
sist of polygons. Neubert et al. [21] reported the plant models that
they used consist of up to 555,000 polygons. These numbers are
for a single plant. In natural scenes, such as forests, one would
expect the scene to contain tens to hundreds of plants. The size
of these plants motivates the need to stream progressively, rather
than to wait until the complete plant model is received before being
displayed.

1Dyrad (http://dyrad.stanford.edu)

Figure 1: Mesh simplification on a Walnut model. The original
model consists of 278632 triangles. From left to right: models
consisting of 1%, 0.2% and 0.1% of the original model.

Progressive representation for general 3D objects, such as pro-
gressive meshes [16] are well studied. These representations, how-
ever, are not suitable for plants due to the topology structure of the
branches. It is difficult to remove triangles above a certain level,
and as a result, representation of plants by progressive meshes does
not give satisfactory results [27]. Figure 1 illustrates that simplifi-
cation of a mesh tree does not preserve the topology, in particular
the connectivity, of the tree. Hence, progressive representations
suited to the topology of plants are needed.

In this paper, we propose a progressive representation of plants
that preserves the branching structure of a plant, even at a very low
resolution. We focus on representing branches of a plant, and do
not explicitly consider leaves in this paper. Our proposal is based
on a skeletal representation of the tree, organized hierarchically into
a data structure called n-tree and rendered as a set of generalized
cylinders. Our representation can be coded efficiently, using differ-
ential coding.

The branching structure and differential coding introduce depen-
dencies among the data representing a plant. These dependencies
need to be accounted for when streaming our plant representation
in a lossy environment. If a packet that a branch depends on is
lost, the branch cannot be decoded even if it is received until the
lost packet is retransmitted. This situation causes delay in render-
ing, and should be avoided especially in interactive applications.
The other issue to consider for streaming of a plant is that not all
branches contribute the same amount to the visual quality of the
rendered plants. The branches that are more visually prevalent,
then, should be sent first with higher priority.

In this paper, we adopted our previously proposed framework for
progressive mesh streaming [9] to streaming of plants. Our frame-
work considers the characteristics of the 3D model (dependencies
and visual contributions) as well as characteristics of the network
(retransmission delay, packet loss rate), and allows us to estimate
the quality of the rendered 3D model at a given time. From this
information, a packetization strategy and a sending order is deter-
mined in order to maximize the quality of the decodable model on
the client side. A key to adopting our previous framework to our
new representation of plants is quantifying the importance of each
component of the progressive representation. In this paper, we use
the size of the branch and distance from the viewpoint as metrics to
determine its importance.

We evaluate our method using a complex digitized walnut tree
[29] and an apple tree [10] containing irregularities of a real natu-
ral branching shape, as well as using more regular trees generated
using L-systems [24].

In summary, our major contributions in this paper are (i) an ef-
ficient and effective new progressive representation for branching
structures in a plant, and (ii) an effective method for streaming this
new representation over lossy network for applications such as net-
worked virtual environments.

The rest of this paper is structured as follows. Section 2 reviews
the state-of-the-art in 3D model streaming and plant representation.
Section 3 describes our proposed representation. We evaluate the
suitability of our proposed scheme in Section 4, and finally, we
conclude in Section 5.

2. STATE OF THE ART
Before we present our work on progressive streaming of plants,

we first review the existing literature on progressive streaming of
3D models and representation of plants.

2.1 Streaming of 3D Models
Previous research in streaming of 3D models have considered

many different 3D representations and different aspects of the prob-
lem. A common theme of these work is how to improve the quality
of the rendered mesh, given that the network is lossy.

One way to improve the quality is to encode the 3D models in
a way that is resilient to losses. Park et al. and Yan et al. propose
error resilient compression of progressive meshes to accomplish
this goal [22, 33] through appropriate segmentation of the mesh to
prevent error propagation. Point based representation of an object
is inherently loss resilient, and is used by Rusinkiewicz and Levoy
[28] and Tarin et al. [30]. Others have considered error control
mechanisms for improving the rendered mesh quality [1, 6].

Using the right transport protocols can appropriately trade off
between delay and robustness. This issue is considered by Li et al.
[18], Al-Regib and Altunbasak [2], Harris III and Karvets [15].

Packet scheduling can affect the rendered quality of the 3D mod-
els as well. Ramanathan et al. [26] extended rate- distortion frame-
work to streaming of light fields. Cheng et al. [9] proposed a greedy
heuristic in deciding which vertex splits to send first when stream-
ing a progressive mesh. Yang et al. [34] allocates bandwidth be-
tween mesh data and textures appropriately to improve the rendered
quality.

One can send only segments of the 3D models that is visible to
the viewers. Such view-dependent streaming has been explicitly or
implicitly considered in these previous work. For instance, Meng
and Zha [19] use user’s gaze to guide the transmissions of point-
based models. Cheng and Ooi [8] consider how to estimate the
visibility and visual contributions of vertex splits at the receiver.

An important issue to consider is how to model the quality of the
3D model. Quantifying the visual contribution of a data unit can
help deciding which data unit to send. Cheng and Ooi [8] estimate
the quality of a vertex split in a progressive mesh using the screen-
space area of the faces around the vertex split. In [26], authors
measure the distortions of images in light fields. Tian and Al-Regib
[31] and Cheng et al. [7] propose metrics to quantify the quality of
a simplified mesh with textures.

As presented above, the literature on streaming of 3D models
mainly concentrate on mesh-based, point-based or image-based
representation of 3D objects. While each of these representations
can be optimized to represent different types of objects within a vir-
tual environment, none of them can effectively and progressively
represent plants. In the next section, we briefly introduce the cur-
rent state-of-the-art in plants representation.

2.2 Representation of Plants
Plant geometry is particularly complex and thus motivated a

variety of representations dedicated to its specific needs [13, 5].
Branches and foliage are usually treated separately. From a model-
ing point of view, a string representation of the branching structure
is coupled with rewriting rules, called L-systems [24], to simulate
the growth of the plant, and with a LOGO style turtle that interprets

the symbols of the string as geometric commands [23]. In this sys-
tem, the geometry of a symbol is built according to the geometry
of previous elements. This idea inspired our work to propose a
standardized representation of branches. In this case, leaves are
instances at different places of the same geometric symbol. More
generally, some high level representations for branches have been
proposed based on parametric [4] or implicit surfaces [14]. They
rely on a branching skeleton which is extended with radius (given
by cross sections or implicit functions). Skeleton is defined as a
set of connected parametric curves. These branching structure rep-
resentations have the advantage to be compact compared to more
discrete representations such as mesh and provide support for ani-
mation (which is not the case of the simplified models whose con-
nectivity is lost in Figure 1). By default, however, they are not
adapted for progressive description. The goal of this paper is pre-
cisely to fill this gap.

From a rendering point of view, some representations based on
images [20, 11, 3], points [32, 12] or polygons [27] proposed adap-
tive schemes for displaying trees. These representations mainly
focus on foliage (leaves) and thus can be seen as complementary to
ours since they are usually complemented with polygonal represen-
tations of trunk and branches. If these representations offer some
interesting results, they usually require a large amount of data, in
particular with points and images. Polygonal representations on
sparse geometry such as foliage are not totally convincing. These
representations can be streamed with classic methods since they use
classic primitives with low-level abstraction. By default, however,
they seem more dedicated to static representations. They have to
be attached to a skeleton representation to support animation.

3. STREAMABLE REPRESENTATION OF
PLANTS

The lack of suitable, progressive, and dynamic representation of
plants that allow plants to be streamed and rendered at multiple
level of details motivates our work in this paper. In this section, we
present our proposed representation of plants. We discuss how we
code, compress, and stream our plant representation.

Figure 2 outlines the steps from encoding to streaming of our
representation, and guide the presentation of this section. Our start-
ing point is a natural scene using a plant model based on skeletal
representation (Section 3.1). This representation served as the ba-
sis for our proposed compressed, progressive representation that
decorrelates information into three components called branch mod-
els, instances, and detail vectors. The detail vectors are compressed
with entropy coding (Section 3.2). We then convert the plant model
into binary chunks. Each chunk is assigned an importance value,
which is then used in packetizing and scheduling the chunks for
streaming (Section 3.3).

3.1 Initial Plant Model
Our representation is focused on the branching structure of a

plant and is thus based on a skeletal representation. A branch is
represented by an axis curve, which is a Bézier of degree d and a
radius along the branches. Such generic high level representation
can then be displayed as generalized cylinders [4, 25], which is the
case in this paper, or implicit surface [14] and is much more com-
pact than a mesh representation. For example, the Walnut at full
resolution only requires 6872 control points using our representa-
tion compared to 278632 triangles using a mesh model. Addition-
ally, it can possibly be extended with kinetic informations for ani-
mation (not done in this paper). The branches are organized inside
a n-ary tree data structure giving the structure of the plant. We call

Figure 2: The encoding process for a model based on skeletal
representation.

such a data structure a n-tree, to avoid confusion with the concrete
plant object we model.

The root of the n-tree is the trunk of the plant and branches borne
by the trunk are the n-tree children of this trunk. Each child branch
contains a parameter u (0 ≤ u ≤ 1) giving the position of the
attachment point on its bearing parent branch [25]. The parameter
u defines the first control point of the Bézier curve of the child
branch. The d remaining control points are encoded in the child
branch by their three coordinates in space (c.f. Figure 3).

3.2 Compact Progressive Models for Plants

3.2.1 Multi-resolution model
To encode a plant as a compressed multi-resolution representa-

tion, we exploit the similarity of branches. The idea of the com-
pression algorithm is to replace the absolute coding of a branch

Figure 3: The Bézier curve and the u parameter.

Figure 4: The standardization of a Bézier curves.

control points by differences compared to an average Bézier curve
for a chosen set of branches. Due to the similarity of the group
of branches, these differences are small. Therefore they may be
quantized with a fewer bits, leading to a compact coding. In this
paper, we group the branches according to the underlying degree d
of the Bézier curve. Other, more accurate, grouping policies could
improve the similarity between branches, but that is part of our
forthcoming work (c.f. section 5). We elaborate on this process in
this section.

Instance. In order to compare and to code differences between
two branches, a so called standard representation of the skeletal
representation is necessary. An affine transformation converts back
and forth between an original branch and its standard form. The
affine transformation is defined so that P0 and PN , the first and
last control points of the original Bézier curve b, map to the ori-
gin (0, 0, 0) and the point (0, 0, 1) respectively (c.f. Figure 4). We
characterize this first mapping by two rotation angles, and a uni-
form scaling factor. Since we choose to apply a uniform scaling,
there is a degree of freedom remaining, which corresponds to the
rotation around the z, to completely define the affine transforma-
tion. We fix the rotation around the z axis so that the center of
gravity (or average) of the control points, P b, lies in the xz plane.

More specifically, the affine transformation mapping a branch to
its standard representation is characterized by

• a translation of vector t = −
−→
P0,

• a scaling factor s = 1

‖−−−−→P0PN‖ ,

• three rotation angles such that

−−−−−−−−−→
T (P0)T (PN) = ~z and

−−−−−−−−→
T (P0)T (P b) · ~y = 0,

where T (P) denotes the image of P by the affine transfor-
mation.

We call the set of transformation parameters the instance of the
branch.

Branch Model. After obtaining the standard representation for
each branch in the group, we can now calculate the average branch:
the curve of the average branch is a Bézier curve of the same com-
mon degree, such that its i-th control point Pi is the barycenter
of the i-th control points of the standard curves, mapped from the
curves of degree d. We call this average branch the branch model.

Detail Vectors. For each branch, we now code in differential
form the corresponding Bézier curve relatively to the branch model,
storing, instead of the coordinates of the control points, its differ-
ences to the corresponding control point of the branch model (Pi)
(c.f. Figure 5). We call the differences detail vectors. It is thus pos-
sible to encode these detail vectors using a limited number of bits.

Figure 5: In regular dash, a standard representation of a
branch, and in irregular dash, its model, an average Bézier
curve of control points Pi. The details vectors are the differ-
ence vectors between the control point of the standard repre-
sentation, and its corresponding control point on the average
curve.

Figure 6: One level in the plant progressive representation.

It should be noted that since the curves are in standard form, the
first and last control points do not need to be coded. For example,
Bézier curves of degree 3 only need two intermediate points to be
defined. The encoding of a branch is now defined by a set of in-
stantiation parameters (transformation to standard form) and a set
of differential data (from the branch model).

Our representation allows branches of a plant to be displayed
progressively in two ways. First, parent branches are displayed
before their children branches and descendants. Second, the branch
instances are displayed first, showing an approximate shape of the
branch. The detail vectors may refine the shape of the branch later.

3.2.2 Dependencies in the progressive representa-
tion

In order to efficiently handle a large model (e.g. load it into
memory or transmit it over the network) with a progressive rep-
resentation of the branch system, we need to express the depen-
dencies between pieces of data: A depends on B meaning that the
decodability of A requires that B has already been decoded.

There are two main families of dependencies: topological de-
pendencies and those generated by the differential coding. The first
family is related to the n-tree structure of the plant: a branch de-
pends on the parent branch it attaches to. The second family in-
cludes the dependencies due to differential coding, that is, on one
hand the dependence between a branch and its branch model, and

on the other hand the dependence between a set of detail vectors
and its corresponding instance.

Figure 6 shows these three types of dependencies. Instance
A.1 depends on its parent branch instance x.n (topological depen-
dence). Note that a child branch is independent of the detail vec-
tors of its parent branch; Section 3.3.2 uses this independence and
shows how we prioritize between child branches and detail vectors.
Instance A.1 also depends on its model A. The set of detail vec-
tors A.1 depends on the instance A.1. These two last dependences
appear with differential coding.

The progressive representation created by the model, instance,
and detail vector nodes and their dependencies does not contain
cycles and therefore fits in a DAG (Direct Acyclic Graph).

3.2.3 Quantization of Detail Vectors
One advantage of multi-resolution differential coding is the abil-

ity to quantize small detail vectors with a small number of bits,
and to choose accurate binary representative symbols according to
their distribution. In this section, we first show that the evaluation
of our resulting detail vectors leads to a beneficial usage of an en-
tropy coder, and then, we present our quantization method followed
by our implementation of a Huffman coder for encoding the detail
vectors.

To evaluate the accuracy of using an entropy coder in our
method, we have computed, for a given quantization (i.e. a given
number of bits per floating point number), the induced error and the
theoretical entropy of the represented data. The maximal induced
error gives the accuracy of the quantization, while the computed
theoretical entropy gives the mean number of bits to expect after
Huffman coding.

The quantization is carried out in two steps. First we compute
the AABB (Axis-Aligned Bounding Box) of all detail vectors (by
finding the min and max of the x,y,z coordinates). Then, to quan-
tize each coordinate into c bits, we build a 3D grid corresponding
to 23c vectors uniformly distributed in the AABB. Each detail vec-
tor is then represented by the symbol of the nearest of the vectors
discretized on the grid. The quantization error is thus the distance
from the quantized vector to the original detail vector. To recon-
struct the quantized vectors, a header containing the AABB of the
vectors (6 floating point numbers) and the number of bits per coor-
dinate is sufficient.

The resulting error for a given number of bits per coordinate
could still be decreased by processing a few iterations of a clas-
sification algorithm such as k-means. However, the resulted gain
would be offset by increased header size, since transmission of the
actual values of the representing symbols chosen by the classifica-
tion would be necessary.

Once each detail vector is mapped to a symbol we can build the
entropy coder. First, we build an entropy histogram, giving the
number of detail vectors per symbol. We have summarized the
resulting plots for one sample tree (the Walnut, c.f. 4) in Figure
7. To improve plot readability, we sort the symbols in increasing
order of the number of detail vectors it represents, and we only
show effectively used symbols. The shape of each curve shows very
promising entropic coding capabilities – a few symbols represent
most of the detail vectors, and most symbols are linked to zero or
one vectors (e.g. for c = 6, only 997 symbols among the 262144
available are actually used).

From the built histograms we can compute the theoretical (Shan-
non) entropy with the formula:

H = −
∑

wi>0

wi log2 wi

used symbols: 20 / 64

bits per coord.: 3
used symbols: 53 / 512
error max: 0.10602

bits per coord.: 4
used symbols: 155 / 4096
error max: 0.05261

bits per coord.: 5
used symbols: 424 / 32768
error max: 0.02555

bits per coord.: 6
used symbols: 997 / 262144
error max: 0.01306

bits per coord.: 7
used symbols: 2033 / 2097152
error max: 0.00647

bits per coord.: 8
used symbols: 2851 / 16.10^6
error max: 0.00330

bits per coord.: 9
used symbols: 3049 / 134.10^6
error max: 0.00165

bits per coord.: 2
used symbols: 20 / 64
error max: 0.19914

used symbols: 53 / 512

used symbols: 424 / 32768used symbols: 155 / 4096

used symbols: 997 / 262144 used symbols: 2033 / 2097152

used symbols: 2851 / 16.10^6 used symbols: 3049 / 134.10^6

c = 2 bits per coordinate c = 3 bits per coordinate

c = 4 bits per coordinate c = 5 bits per coordinate

c = 6 bits per coordinate c = 7 bits per coordinate

c = 8 bits per coordinate c = 9 bits per coordinate

3000

1500

0 10 20

1200

600

0 30 80

1000

500

0 80 160

300

150

0 200 450

100

50

0 500 1000

50

25

0 1000 2500

45

30

0 1500 3000

40

20

0 1500 3000

Figure 7: Entropy histograms computed for c ∈ [2, 9], they
show the number of represented vectors, per symbols actually
used.

where wi is the weight of the i-th represented value (i.e. its proba-
bility). The results obtained for Walnut are displayed in Table 1 and
in Figure 8. Table 1 also shows the effective entropy after Huffman
coding, which includes the header overhead (Huffman table and
parameters). We should note that, for this plant, choosing c = 4 or
c = 5 give the best trade off between entropy and mean error. We
evaluate the compression efficiency of our method in Section 4.

3.3 Streaming of Plants
The previous section showed how we can progressively repre-

sent and code a plant. This section describes how the plant can be
streamed. We present how we encode the data into binary chunks
and pack the chunks into packets for transmission.

3.3.1 Binary Coding
A progressive representation of a plant consists of four types of

data: base data, branch models, instantiation parameters, and detail
vectors. Base data contains general characteristics of the plant, in-
formation about the trunk, and the entropy coder (the dictionary of
symbols). Base data needs to be received first in order to setup the
data structures for a plant. Special care has been taken in order to
minimize the number of bits used for representing various pieces
of information (in particular IDs and pointers).

In order to appreciate the relative weight of various components,
details of the Walnut model are shown in Table 2. For coding de-
pendencies, only 4 (resp. 11) bits are required to identify each of
the 11 models (resp. 1870 instances) nodes. For Walnut, the base

Bits per Theoretical Effective Maximal and
coordinate entropy entropy (w/ header) mean error

2 0.206 0.412 (0.454) 0.1991 0.0769
3 0.835 0.843 (0.943) 0.1061 0.0616
4 1.411 1.425 (1.694) 0.0526 0.0296
5 2.224 2.234 (3.062) 0.0255 0.0150
6 2.991 3.004 (5.204) 0.0131 0.0075
7 3.573 3.594 (8.743) 0.0065 0.0038
8 3.800 3.826 (11.810) 0.0033 0.0019
9 3.842 3.868 (13.342) 0.0017 0.0009

Table 1: Computed entropies and quantification errors, for
Walnut, c ∈ [2, 9]. The number of coordinates coded is
3128× 3 = 9384.

Figure 8: The entropies and errors for the quantization of the
Walnut

data size is 3020 bits and the total size is 246660 bits (30833 Bytes).
Note also that model nodes represent only 2.5% of the data.

Once we encode a plant into binary chunks, the next step is to
pack the chunks into packets for transmissions. As with packetizing
audio and video data, this process packs binary chunks one-by-one
into a packet, until the MTU of the packet is reached. The packet is
then passed to the transport layer for transmission. A question that
arises here is in what order should the binary chunks be sent. While
it is clear that the base data should be sent first, determining what
order to pack the other type of chunks such that the best rendered
quality is achieved at the receiver, is non-trivial. We describe our
approach in the next two sections.

3.3.2 Quality Metric
First, let us consider the case where there is no packet loss. In

this ideal case, the best way to send the data is in decreasing visual
contribution of a chunk – i.e. how much a chunk contributes to
the rendered quality of the plant. Doing so would ensure that the

Type Number of Size (bits)
chunks min avg max total

Models 11 10 533.64 1354 5870
Instances 1870 103 103.00 103 192610

Detail vectors 1870 17 24.15 50 45160

Table 2: Binary coding: data chunks and their size for Walnut.

Figure 9: The influence of the choice of (k0, k1, k2) on the struc-
ture of Walnut after decoding 5%, 10% and 20% of the data.

receiver can view, at any given time, the plants with the best quality
possible.

The question thus is how to quantify the visual contribution, or
importance, of a chunk. We describe a quality metric for each
chunk as follows:

• the importance of a branch model is a constant k0,

• the importance of an instance is the value of the scaling fac-
tor, corresponding to the size of the branch,

• the importance of detail vectors is the importance of the cor-
responding instance multiplied by the average length of the
detail vectors.

The next question is how to relate these three metrics to each
other: we choose to have the importance of instances and detail
vectors comparable using two constants (knobs), k1 and k2, re-
spectively. Intuitively, these can be chosen depending on the appli-
cation.

Figure 9 illustrates the impact of the choice for k1 and k2 for
the Walnut during the first steps of a progressive decoding. For a
botanist, detail vectors are important for the plant to look realistic
(so k2 will be chosen larger than k1, as shown by second row of the
figure); for a computer game player, density of the branches may
be of higher relevance (first row). The figure only shows the static
visual influence of the coefficients. One should also note that when
detail vectors are delayed too much, a move popping effect can be
observed as branches which carry many others are deformed when
their details are decoded.

Finally, if k0 � k2 and k0 � k1, then all branch models are
sent before the instances and detail vectors.

The proposed metric is for a single plant. In a scene containing
multiple plants, we can adjust the importance of a plant according
to its distance from the viewpoint. This importance leads to a sim-
ple view-point dependent streaming: plants closer to the viewpoint
are streamed first.

3.3.3 An Analytical Model for Streaming
For scheduling, two simple strategies may be used: Naive which

features dependence-only ordering (we send only ready-to-decode
data); and FIFO which adds importance ordering between binary
chunks. FIFO can be seen as almost optimal in the case of a stream
transmission (no packet reordering due to losses). In this section, a

more elaborated Greedy streaming strategy is presented; it modifies
the FIFO ordering to take packet loss into account.

When there are packet losses, one needs to consider dependen-
cies in deciding the sending order. Suppose there are two chunks
P and Q, with P depends on Q. If we send P and Q separately
in different packets, if the packet that contains Q is lost, then P
cannot be decoded even if it is received, until Q is retransmitted.
Thus, ideally one should put P and Q into the same packet.

The discussion above shows that the ideal order to send the
chunks (with the goal of optimizing the quality of the plant), needs
to consider both the dependencies and importance of the chunks.
The ideal order also depends on network characteristics – packet
loss rate, round trip time, and available bandwidth. The latter two
parameters determine time to retransmit a loss packet. In our pre-
vious work [9], we have developed a model for estimating the ex-
pected quality of the received 3D model, in the context of progres-
sive mesh. In this work, we adopt the model for streaming of plants.
We briefly highlight the results from this previous work in the rest
of this section for completeness. Interested readers are referred to
the original paper for details [9].

Our analytical model considers a sender sending packets at an
average (normalized) rate of one packet per unit time. We consider
retransmission-based protocol. A retransmitted packet always takes
precedence over new packets. Let Td be the average time between
sending a packet and discovering that it is lost (either NACK or
timeout-based methods can be used). We pack the data to send into
packets, and indexed the packets as 1, 2, 3, etc. We let Si be the
time a packet i is sent, andRi be the time a packet i is received. The
average loss rate of the network is p. We can estimate the sending
time, receiving time of a packet using the lemmas below.

LEMMA 1. If i ≥ Td, then for any k ≥ 0,

E[Si] = (i− Td + 1)
1

1− p + Td − 1.

Otherwise, if i < Td, then Si = i.

LEMMA 2.

Pr(Ri = t) =

{
(1− p)pni,t if (t− Si) mod Td = 0
0 otherwise

where ni,t = b(t − Si)/Tdc is the number of times packet i was
lost when Ri = t.

LEMMA 3.

Pr(Ri ≤ t) = 1− pni,t+1.

Let Dv be the decoding time of a chunk v, and P (v) be the set
of chunks v depends on. Then, we have the theorem below.

THEOREM 1.

Pr(Dv = t) =
∑

j∈P(v)

Pr(Rj = t)

Pr(Rj < t)

∏
k∈P(v)

Pr(Rk < t) (1)

The expected decoding time of a chunk v is thus

E[Dv] =

∞∑
j=t

jPr(Dv = j), (2)

This model we developed previously allows us to estimate when
a chunk can be decoded, considering dependencies and network
characteristics. We can use this estimation to help us decide the
sending order of the chunks. We proposed the following greedy
heuristic in our previous work as well [9].

Suppose a chunk i has an importance wi, as calculated from the
previous section. We consider the chunks that have not been sent.
For each chunk i, if all chunks that i depends on has either been
pack or sent, we decide whether to send i in the current packet, or
in the next packet. We compute a metric called penalty δi, given by

δi = wi(E[Dnext
i]− E[Dcurr

i]), (3)

where Dcurr
i and Dnext

i are the decoding time of i if i is packed
in the current packet and next packet respectively. Minimizing the
penalty maximizes the difference in decoded plant quality. The
greedy heuristic therefore simply packs the branch with highest
penalty at each step. We shall see in section 4.2.2 the advantage
of the greedy strategy when an important node is lost.

4. EXPERIMENTS
In order to validate our multi-resolution coding scheme, we

have at first evaluated the resulting compressed representation, then
tested the multi-resolution interdependent organization of the bi-
nary data over a lossy network.

Compression and streaming have been applied to three plants.
We have used two digitized plant models: a 20 year old Walnut
tree [29] and an apple tree [10]. The walnut tree is 7.5 meters
high and 5.8m large. It took two weeks to digitize using a Pol-
hemus 3Space Fastrack electromagnetic device. We pre-process it
by fitting Bézier curves to series of digitized points representing
branches. Our representation is thus composed of approximatively
1900 branches with a total of 6900 control points. The apple tree
is 6 year old, 2.8m high and 2m large and is made of 430 branches
and 1350 control points.

To extend our experimental range of models, we have also gen-
erated some examples using L-systems. For example, we use a
spruce-like tree composed of 4300 branches and 17500 control
points. Of course, if used in an application, L-systems models
would have been more efficiently transmitted by sending their gen-
erative rules and parameters. But determining generative process
of a given tree is not always possible, in particular for measured
tree.

4.1 Compression of Plants
In order to appreciate the efficiency of our compressed model we

have chosen to compare it with a well-known compression method
(bzip2). Results are shown in Table 3. First row contains the size
of a basic serialization of geometry and topology of the Bézier n-
tree (with floats and integers coded on 32 bits). Second row shows
the performance after compression with bzip2. Third row shows
results for our method if binary chunks are concatenated. Even
if simple, this concatenation keeps an important property of our
model: it is progressive. Naturally this is appropriate for either file
storage (with progressive loading) or network transmission (with
progressive rendering on client). Moreover, we could save a lit-
tle more by decreasing the pointer overhead: if binary chunks are
completely ordered, then some IDs (e.g. instance and detail IDs)
can be removed.

Results of Table 3 show that, if five bits are used for coding a
coordinate for Walnut, bzip2 compression applied to the basic cod-
ing reduces data size to 77% of the original, whereas our coding
method brings it down to 36%.

4.2 Transmission of a Set of Trees
As the main goal of our coding scheme is the progressive trans-

mission of large natural scenes, we evaluated our transmission
schemes over a lossy network to see how our interdependent bi-

Figure 10: Rendering after progressive decoding of the Walnut (quality metric parameters: k0 = 10000, k1 = 1, k2 = 10)

Tree name Walnut Apple Tree L-system
Basic 89964 17980 228504
Basic + bzip2 69659 (77%) 12395 (69%) 132758 (58%)
Our method (c = 4) 30833 (34%) 6606 (37%) 68618 (30%)
Our method (c = 5) 32438 (36%) 6864 (38%) 68831 (30%)
Our method (c = 6) 34950 (39%) 7152 (40%) 69326 (30%)
Our method (c = 7) 39102 (43%) 7381 (41%) 69964 (31%)

Table 3: Comparison of coding performance of three methods:
basic coding, basic coding compressed with bzip2 and our pro-
gressive coding (for a given c number of bits per detail vector
coordinate). The sizes are given in bytes.

nary chunks can be efficiently packetized, transmitted over a lossy
network, and progressively decoded.

4.2.1 Experimental Streaming Setup
We run our experiments using a client-server streaming setup.

On the server-side, the 3D scene data is loaded as a DAG of bi-
nary chunks (Figure 2). This DAG structure is packetized by the
scheduler which implements a given strategy (c.f. 3.3.3) and trans-
mitted. Lost packets are retransmitted; the retransmission order
differs depending on the strategy. On client-side (Figure 11), bi-
nary chunks are demultiplexed between objects and a progressive
decoder associated with the plant decodes them as soon as possible
to reconstruct the plant for rendering (Figure 10).

We use unreliable transport (DCCP) with retransmission in our
experiments so that packets after a loss can still be processed before
repairing the loss (TCP buffers packets to deliver them in order).
For reproducibility, we first capture a packet trace of random packet
data over given network conditions, and use the trace to simulate
transmissions of plants over realistic network conditions and replay
it locally while decoding progressively the packetized plants.

Figure 11: The decoding process.

Experimenting with DCCP has proved to be very challenging.
First, because of security restrictions on firewalls, DCCP ports
needs to be opened. And because DCCP uses TCP’s port’s sys-
tem (client receives data on a random port), this makes the task
of configuring port traversal via firewalls tricky. The second prob-
lem came from the backbone itself: experiments carried out be-
tween Toulouse and Singapore showed that somehow some back-
bone routers do not route DCCP traffic. The solution to the last
problem was to implement an application-level UDP tunnel that
carries out DCCP traffic.

Two main congestion control mechanisms have been imple-
mented in DCCP (CCID2 and CCID3 in DCCP’s RFC [17]).
CCID2 implements TCP-like congestion control whereas CCID3
uses TFRC (TCP-friendly Rate Control). We have chosen to
present here experiments with CCID2, as we found its implemen-
tation in recent Linux kernels more robust.

Time (seconds) Time (seconds)

Time (seconds)Time (seconds)

Pl
an

t
Q

u
a

lit
y

Pl
an

t
Q

u
a

lit
y

Pl
an

t
Q

u
a

lit
y

 D
iff

e
re

n
ce

Pl
an

t
Q

u
a

lit
y

 D
iff

e
re

n
ce

Figure 12: Comparison of the efficiency of packetization strate-
gies Greedy and FIFO, during the progressive transmission of
4 walnuts between Toulouse and Singapore.

Figure 13: Example showing the structure of the same tree of
the scene better packetized by the Greedy strategy.

Experiments with DCCP have been carried out on both WAN
(with the tunnel) and LAN (a WAN was simulated by adjusting
packet loss and delay with traffic control tools of the Linux kernel).
For conciseness, we shall only present here results on a real WAN.

4.2.2 Transmission Results
As an example of our experiments, we give results for the trans-

mission of a set of four walnut trees (considered independent from
each other) over the Internet, between Toulouse and Singapore. The
dynamic importance proposed at the end of section 3.3.2, that is, the
importance is scaled by the distance to the view point is computed.
We used DCCP + retransmission (with CCID2) in our UDP tunnel
(c.f. 4.2.1). For this network capture, we have measured a packet
loss weaving between 10% and 15%.

Two packetization strategies have been tested: FIFO strategy
which takes into account both dependencies and importance order-
ing between binary chunks and the proposed Greedy strategy (see
section 3.3.3).

In Figure 12, we show the evolution of the quality of the set of
trees (in the first row, the sum of the tree qualities; in the second
row, the quality of the tree of minimal quality) over time for FIFO
and Greedy strategies (the right column shows the difference be-
tween these two curves). Both experiments use the same set of
packet trace. So, at a given time, both have received exactly the

same amount of data. On the arrival of a packet, we reconstruct
the trees with the available binary chunks and compute the quality.
Therefore, the plots tend to confirm that the proposed Greedy strat-
egy of the binary chunks improves the amount of decodable data
over transmission time. Figure 13 shows the reconstruction of one
of the trees after receiving 7% of its data during both transmissions.
We can observe that most of the data received in the FIFO case is
unusable due to the lack of one or more binary chunks on which
many others depend. The aim of the Greedy packetization strategy
is rightly to prevent those “accidents” to happen.

5. CONCLUSION AND PERSPECTIVES
We have proposed an original progressive representation of bran-

ching systems adapted to the streaming of 3D scenes. This repre-
sentation allows efficient compression of the plant geometry rep-
resented by generalized cylinders. Our method outputs a set of
interdependent binary pieces of data well suited for packetization
and progressive transmission over lossy networks with the help of
a quality metric.

There are several directions we can take to continue this research.
For the progressive representation of plants, we plan to design

more accurate methods for grouping branches, for example, using
PCA (Principal Component Analysis) on their geometry. Doing
so would lead to more relevant branch models, allowing to delay
the transmission of detail vectors and more aggressive quantization.
Moreover, it would be interesting to find out if sharing branch mod-
els between different plants of the scene can increase the compres-
sion. The challenge is to have more accurate models while keeping
a good ratio between the numbers of models and instances.

For progressive transmission of plants, the quality metric could
be made more dynamic by considering the viewpoint of the navi-
gating user more accurately. For example, at the scene level, scene
data close to the central region of the view frustum should have
a higher importance and therefore be streamed first. The current
quality metric also depends on the tunning of parameters k0, k1

and k2 (3.3.2). A user survey may be useful to evaluate the sub-
jective impact of the quality metric, especially in the presence of
undesired effects such as popping, a common problem of most 3D
multi-resolution models.

The efficiency of our progressive representation could be evalu-
ated in other applications requiring progressive models for plants,
for example 3D visualisation on mobile devices or plant modeling
or animation software.

Finally, we also think of adapting standardization and instanti-
ation to represent leaves. Our tree representation can be extended
with some reference leaf symbols that will be instantiated similarly
to branches to encode the foliage.

6. ACKNOWLEDGMENTS
This work has been partly funded by the NatSim ANR project

(French National Research Agency 05-MMSA-0004-01) and Na-
tional University of Singapore Academic Research Fund R-252-
000-306-112.

7. REFERENCES
[1] G. Al-Regib and Y. Altunbasak. An unequal error protection

method for packet loss resilient 3D mesh transmission. In
Proceedings of the 21st Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM),
volume 2, pages 743–752, New York, NY, June 2002.

[2] G. Al-Regib and Y. Altunbasak. 3TP: An application-layer
protocol for streaming 3D models. IEEE Transactions on
Multimedia, 7(6):1149–1156, December 2005.

[3] S. Behrendt, C. Colditz, O. Franzke, J. Kopf, and
O. Deussen. Realistic real-time rendering of landscapes
using billboard clouds. Computer Graphics Forum,
24(3):507–516, September 2005.

[4] J. Bloomenthal. Modeling the mighty maple. ACM Computer
Graphics (SIGGRAPH’85), 19(3):305–311, July 1985.

[5] F. Boudon, A. Meyer, and C. Godin. Survey on computer
representations of trees for realistic and efficient rendering.
Research Report 2301, LIRIS, Université Claude Bernard
Lyon 1, 2006.

[6] Z. Chen, J. F. Barnes, and B. Bodenheimer. Hybrid and
forward error correction transmission techniques for
unreliable transport of 3D geometry. Multimedia Systems,
10(3):230–244, March 2005.

[7] I. Cheng, L. Ying, and A. Basu. Packet-loss modeling for
perceptually optimized 3D transmission. Advances in
Multimedia, 2007(1):11–11, January 2007.

[8] W. Cheng and W. T. Ooi. Receiver-driven view dependent
streaming of progressive mesh. In Proceedings of the 18th
International Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV),
Braunschweig, Germany, May 2008.

[9] W. Cheng, W. T. Ooi, S. Mondet, R. Grigoras, and G. Morin.
An analytical model for progressive mesh streaming. In
Proceedings of the 15th ACM International Conference on
Multimedia, pages 737–746, Augsburg, Germany, September
2007.

[10] E. Costes, H. Sinoquet, J. Kelner, and C. Godin. Exploring
within-tree architectural development of two apple tree
cultivars over 6 years. Annals of Botany, 91:91–104, 2003.

[11] P. Decaudin and F. Neyret. Rendering forest scenes in
real-time. In Proceedings of the 15th Eurographics
Symposium on Rendering, pages 93–102, Norrköping,
Sweden, June 2004.

[12] O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis.
Interactive visualization of complex plant ecosystems. In
Proceedings of IEEE Visualization, Boston, MA, October
2002.

[13] O. Deussenand and B. Lintermann. Digital Design of
Nature: Computer Generated Plants and Organics.
Springer-Verlag, 2005.

[14] C. Galbraith, P. MacMurchy, and B. Wyvill. BlobTree trees.
In Proceedings of Computer Graphics International, Crete,
Greece, June 2004.

[15] A. F. Harris (III) and R. Kravets. The design of a transport
protocol for on-demand graphical rendering. In Proceedings
of the 12th International Workshop on Network and
Operating System Support for Digital Audio and Video
(NOSSDAV), pages 43–49, Miami, FL, May 2002.

[16] H. Hoppe. Progressive meshes. In SIGGRAPH’96
Conference Proceedings, 1996.

[17] E. Kohler, M. Handley, and S. Floyd. RFC 4340 - Datagram
Congestion Control Protocol, 2006.

[18] H. Li, M. Li, and B. Prabhakaran. Middleware for streaming
3D progressive meshes over lossy networks. ACM
Transactions on Multimedia Computing, Communication
and Applications, 2(4):282–317, 2006.

[19] F. Meng and H. Zha. Streaming transmission of
point-sampled geometry based on view-dependent
level-of-detail. In Proceedings of 4th International
Conference on 3-D Digital Imaging and Modeling, pages
466–473, Banff, Canada, October 2003.

[20] A. Meyer, F. Neyret, and P. Poulin. Interactive rendering of
trees with shading and shadows. In Proceedings of the
Eurographics Workshop on Rendering Techniques, pages
183–196, London, UK, June 2001.

[21] B. Neubert, T. Franken, and O. Deussen. Approximate
image-based tree-modeling using particle flows. ACM
Transactions on Graphics, 26(3):88, July 2007.

[22] S.-B. Park, C.-S. Kim, and S.-U. Lee. Error resilient 3-D
mesh compression. IEEE Transactions on Multimedia,
8(5):885–895, October 2006.

[23] P. Prusinkiewicz. Graphical applications of L-systems. In
Vision Interface, pages 247–253, Vancouver, BC, May 1986.

[24] P. Prusinkiewicz and A. Lindenmayer. The algorithmic
beauty of plants. Springer Verlag, 1990.

[25] P. Prusinkiewicz, L. Mündermann, R. Karwowski, and
B. Lane. The use of positional information in the modeling
of plants. ACM Computer Graphics (SIGGRAPH ’01),
22(4):289–300, 2001.

[26] P. Ramanathan, M. Kalman, and B. Girod. Rate-distortion
optimized streaming of compressed light fields. In
Proceedings of International Conference on Image
Processing, pages III–277–80, Barcelona, Spain, September
2003.

[27] I. Remolar, M. Chover, O. Belmonte, J. Ribelles, and
C. Rebollo. Geometric simplification of foliage. In
Eurographics’02 Short Presentations, pages 397–404,
Saarbrücken, Germany, September 2002.

[28] S. Rusinkiewicz and M. Levoy. Streaming QSplat: a viewer
for networked visualization of large, dense models. In
Proceedings of the 2001 Symposium on Interactive 3D
Graphics, pages 63–68, Research Triangle Park, NC, March
2001.

[29] H. Sinoquet, P. Rivet, and C. Godin. Assessment of the
three-dimensional architecture of walnut trees using
digitising. Silva Fennica, 31(3):265–273, 1997.

[30] B. Tari, Y. Yemez, O. Ozkasap, and R. Civanlar. Progressive
view-dependent transmission of 3D models over lossy
netowrk. In Proceedings of the 13th European Signal
Proceesing Conference, Antalya, Turkey, September 2005.

[31] D. Tian and G. Al-Regib. FQM: a fast quality measure for
efficient transmission of textured 3D models. In Proceedings
of the 12th Annual ACM International Conference on
Multimedia, pages 684–691, New York, NY, USA, October
2004.

[32] J. Weber and J. Penn. Creation and rendering of realistic
trees. ACM Computer Graphics (SIGGRAPH ’95),
29(3):119–128, August 1995.

[33] Z. Yan, S. Kumar, and C.-C. Kuo. Error-resilient coding of
3-D graphic models via adaptive mesh segmentation. IEEE
Transactions on Circuits and Systems for Video Technology,
11(7):860–873, July 2001.

[34] S. Yang, C.-H. Lee, and C.-C. J. Kuo. Optimized mesh and
texture multiplexing for progressive textured model
transmission. In Proceedings of the 12th Annual ACM
International Conference on Multimedia, pages 676–683,
New York, NY, October 2004.

