10th Congress of the European Society for Agronomy
15-19 September 2008, Bologna, Italy

Multi-functional Agriculture
Agriculture as a Resource for Energy and Environmental Preservation

edited by
Paola Rossi Pisa
Contents

1. AGRICULTURE TO PRESERVE ENVIRONMENT 35

1.1 LAND AND WATER CONSERVATION 36

1.1a Erosion Control; Point and Diffuse Pollution Control
(Phytodepuration, Phytoremediation and other Techniques) 36

Keynote Speaker: Markus Flury
Soil and its Importance for Human Civilizations 39
Markus Flury

Oral

Application of a Crop-Farm-Indicators Modelling Chain to Assess the Impact of
the EU Nitrate Directive in the Midi-Pyrenees Region 41
Belhouchette H., Louhichi K., Flichman G., Therond O., Wery J.

Quantitative Parameters for the Evaluation of Cover Crop Performance in
Relation to Soil Cover and Rooting Dynamics 43
Bodner G., Himmelbauer M., Loiskandl W., Kaul H.P.

Water Infiltration and Soil Losses in a Permanent Bed Irrigated System in
Southern Spain 45
Boulal H., Gómez-Macpherson H., Gómez J.A.

Sod Seeding and Soil Erosion in a Semi-Arid Mediterranean Environment of
South of Italy 47
Cosentino S., Mantineo M., Copani V.

Irrigated Agriculture and Urban Waste Water: the Cases of Bean and Tomato
D’Andrea L., Campi P., Palombo A.D., Convertini G., Ferri D., Mastrorilli M. 49
Production of Quality Croton (Codiaeum Variegatum) Plants by Using Different Growing Media
Younis A., Riaz A., Waseem M.

3.2 ADAPTATION
Keynote Speaker: Jørgen E. Olesen

Adaptation Strategies for Coping with Climate Change
Olesen J.E.

Oral

From Detailed to Summary Models of the Crop-Soil System for Larger Scale Applications
Adam M., Tittonell P., Bergez J.E., Ewert F., Leffelaar P.

Using Long-Term Data and Crop Modelling to Assess Climate Change Impacts on Durum Wheat Production in the Mediterranean
Cesaraccio C., Dettori M., Dupe P., Spano D., Motroni A., Mereu V.

ALOMYSYS: a Model for Evaluating and Developing Cropping Systems for Integrated Weed Management
Colbach N., Sass A., Granger S.

Simulation of Growth and Production of Open-field Bell Pepper under Mediterranean Conditions
De Melo e Abreu J.P., Vieira M.I., Ferreira M.E., Monteiro A.

Functional-Structural Plant Modelling, Applied to Tillering in Wheat
Evers J.B., Vos J., Andrieu B., Chelle M., Buck-Sorlin G.H.

Yield Modelling of Mediterranean Crops: a Probabilistic Approach
Ferrise R., Moriondo M., Bindi M.

Land, Climate and Resources (LandCaRe) 2020 – Foresight and Potentials in Rural Areas under Regional Climate Change

IXIM: A New Maize Simulation Model For DSSAT v 4.5
Lizaso J.I., Boote K.J., Jones J.W., Porter C.H.

From Site-Specific Modelling Supported by Monitoring Data to Regional Application
From Detailed to Summary Models of the Crop-Soil System for Larger Scale Applications

Myriam Adam1,2,3, Pablo Tittonell1, Jacques Eric Bergez4, Frank Ewert1 and Peter Leffelaar1

1 Plant Production Systems Group, Wageningen University, the Netherlands
2 CIRAD, UMR System CIRAD-INRA-SupAgro, France
3 Plant Research International, Wageningen University and Research Center, the Netherlands
4 Institut National de Recherche Agronomique, UMR ARCHE, France

Crop growth models developed at field level are increasingly used in larger scale studies often in combination with other models to explore management options at the whole-farm scale or for integrated assessment at regional level (e.g. Giller et al., 2006; van Ittersum et al., 2008). Unclear is whether the mechanistic detail of dynamic simulation crop models is required for such applications or whether summary models may be sufficient. To address this issue and to identify relationships that need specific attention in future research, we compared simulations of crop production by two models with a different degree of mechanistic detail.

Methodology

The models considered are APES and FIELD. The crop module of APES (Agricultural Productivity and Externalities Simulator - Donatelli et al., 2007) was developed to simulate crop growth and production for the European agriculture. The crop module of FIELD (Field-scale resource Interactions, use Efficiencies and Long-term soil fertility Development - Tittonell et al., 2007) calculates crop production based on resource (light, water, nutrients and labour) availability on the farm, aggregated over a season. The crop module of FIELD summarises processes regulating resource utilisation in the form of functional relationships. For this study APES was calibrated for maize using leaf area index, date of flowering and physiological maturity collected at Bouilac, Midi Pyrenees, France during the years 1999 and 2000. APES was used to derive functional relationships for maize to be used in FIELD. Crop production was calculated with FIELD using these functional relationships. We compared yields predicted on the basis of radiation and water availability by these two models against measured data for the years 1999 and 2000 and compared yield predicted from both models for a time series from 1982 to 2006.

Results

The two years chosen for the calibration/testing of APES were ‘average’ years for the region, in terms of weather, with similar amounts of rainfall and radiation captured by the crop during the growing season (Table 1). Using APES we derived two relationships for the model FIELD, specific to Bouilac in Midi Pyrenees:

\[Y_l = I_{PAR} \times F_{int} \times \varepsilon_l \]
\[Y_{wl} = R_{cum} \times F_{cap} \times e_w \]

Where, \(Y_l \) is the light determined yield, \(I_{PAR} \) the incident photo-synthetically active radiation (PAR) received by a crop canopy over the growing season, \(F_{int} = 0.5 \) is the fraction of PAR intercepted by the crop over the season, derived for maize in Midi Pyrenees using APES, and \(\varepsilon_l = 3.3 \) g DM (dry matter) MJ \(^{-1} \), the average (intercepted) radiation use efficiency over the season.

\(Y_{wl} \) is the water-limited yield, \(R_{cum} \) the amount of water (rainfall and irrigation) given to the plant during the growing season, \(F_{cap} = 0.37 \), is the water capture efficiency, or the fraction of the total water available (\(R_{cum} \)) that is transpired by the crop as derived with APES for maize in Midi Pyrenees. The coefficient \(e_w = 10.24 \) g DM m\(^{-2}\) mm\(^{-1}\) represents the transpiration conversion efficiency, i.e. the amount of biomass produced per mm of water transpired by the crop canopy over the growing season.
Figure 1 shows the yield predicted by both models compared with the observed yields at Bouillac for the years 1999 and 2000. Maize productivity was 8.4% lower in 2000 than in 1999, although average radiation and cumulative water available to the crop was almost similar in both years (Table 1). This lower productivity is due to the higher water stress during the grain filling period (less rain during this period) in the year 2000. A mechanistic crop growth model such as APES, simulating the dynamics of crop growth during the growing season is able to account for the effects of water stress during critical phases. APES simulated maize yields that were 26% lower in 2000 than in 1999, with yield differences with respect to measurements of +15% for the year 1999 and -7.2% for 2000. The summary model FIELD, which does not consider intra-season rainfall variability, simulated maize yields that were 13% larger for 2000 than for 1999, overestimated water-limited grain yields in the year 2000 by 16% with respect to measured yields.

Table 1: Radiation and water available for the crop during the growing season and water stress indexes experienced by a maize (calculated by APES) at Bouillac in 1999 and 2000.

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming PAR (MJ m⁻²)</td>
<td>1602</td>
<td>1644</td>
</tr>
<tr>
<td>Available water for the crop (mm)</td>
<td>502</td>
<td>569</td>
</tr>
<tr>
<td>Average water stress index</td>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td>Water stress index during grain filling</td>
<td>0.08</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Discussion and conclusions
Results from the simulation of water-limited maize grain yields in Midi Pyrenees over a 25 years period (not shown) indicate a difference of 20% between yields predicted by FIELD and APES. The advantages of summary models for farm and regional applications reside in that they require less data for parameterisation, once generic functional relationships have been derived for a certain region (cf. Equations 1 and 2). For exploration of medium- to long-term changes in crop productivity and soil quality such summary models may suffice (Bouman et al., 1996). However, the preliminary results of this study suggest that the intra-seasonal variability of resources such as water may have a noticeable effect on maize productivity (overestimation of 16% for water limited grain yield). Such an effect may be larger in situations without irrigation, when droughts coincide with pollination, or for maize genotypes of shorter cycles. On the other hand, this effect may be smaller for other crop types with a more spread reproductive period. Further analysis with longer time series are required (and are ongoing) to derive relationships that consider the effect of intra-seasonal rainfall variability in summary models to enable yield estimations at large scales.

References
Donatelli et al., 2007. Agricultural Production and Externalities Simulator (APES) prototype to be used in Prototype 1 of SEAMLESS-IF SEAMLESS report no. 28.
Giller et al., 2006. Resource use dynamics and interactions in the tropics: scaling up in space and time. Agric. Syst. 88,8-27.

Acknowledgements
We want to thank l’Institut du Vegetal ARVALIS for providing the dataset we used to calibrate APES. We are indebted to the work of the APES team without which we could not have written this article.