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Particleboards can be manufactured from particles of any lignin-cellulosic 
material that can be combined with an adhesive and consolidated under 
the action of temperature and pressure. Because the raw materials in the 
industrial process are continually changing, the particleboard industry 
requires methods for monitoring the quality of their products. Hence, the 
aim of this paper was to evaluate the composition of the agro-based 
particleboards by near infrared spectroscopy. In this study, agro-based 
particleboards produced with different compositions of Eucalyptus and 
Pinus wood particles and sugar cane bagasse were evaluated by NIR 
spectroscopy and partial least square (PLS) regression. The PLS models 
to estimate the Eucalyptus and Pinus particles and sugar cane bagasse 
contents presented a strong coefficient of determination (0.90, 0.88 and 
0.84, respectively), but also high magnitudes of standard errors of cross-
validation were observed (ranging from 8.84 to 11.27%). Development 
work would be required in order to reduce the standard errors and 
improve predictive model performance to build robust models that could 
be applied as quality control tool. 
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INTRODUCTION 
 
 Wood is frequently modified by an engineering process to give stiffness or 
homogeneous mechanical properties (Tsuchikawa 2007). Agro-based particleboards are 
manufactured from various lignin-cellulosic materials, usually wooden and mainly in the 
particle form, which are combined with an adhesive that consolidates under the action of 
temperature and pressure (Rowell et al. 2000). The advantages of particleboards are 
mainly attributed to their homogeneous structure and use of raw materials without 
restrictions as to shape and size. The main factors that influence the properties and 
quality of the panels are the density of the panel, geometry, and moisture content of the 
particles, the pressing cycle, and the quantity and type of adhesive (Kelly 1977; Maloney 
1993). The raw material in the process is always changing due to variations in the relative 
amount of wood species, differences in moisture content, storage effects, etc. Therefore, 
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the product engineering industry, such as that of particleboards, requires new solutions 
for controlling the quality of their products in order to maintain the same quality 
standard.  

A possibly suitable technique for characterization of variability in biomaterials is 
near infrared (NIR) spectroscopy (Burns and Ciurczak 2001). NIRS is a non-destructive 
technique used for rapid assessment of some properties in biological materials. The 
technique requires minimal or no sample preparation and measures the interaction of 
electromagnetic radiation with matter (Pasquini 2003). The tendency of the material to 
absorb different wavelengths of light depends on various vibrational modes of the 
component molecules. The method involves collecting the NIR spectra of a set of 
characterized samples, developing a regression equation [commonly using partial least 
squares (PLS) regression] and using the equation to predict the properties of further 
samples (the validation set) based on their NIR spectra (Jones et al. 2008). NIR radiation 
interacts with polar molecules and especially with O-H structural groups such as in water, 
C-H as in biomass, but also with C-O and C-O-H bonds and C=C double bonds 
frequently found in biomass. Biomass contains mostly C, O, and H atoms. Thus, 
reflectance in the NIR wavelength region senses most of the covalent bonds in biomass 
feedstocks, except for the C–C bonds in carbon chains (Lestander et al. 2008). 

The combined approaches of Near Infrared Spectroscopy and Multivariate 
Analysis can make it possible to monitor raw material changes and correlate them to 
variations in the quality of the final product  such as plywood (Sjoblom et al. 2004). For 
this reason, Tsuchikawa et al. (2003) suggested the application of NIRS for a reasonable 
classification of wood used at the factory. Thus, engineered wood products (for example, 
plywood, particleboard, etc.) are being manufactured for which NIR spectroscopy could 
be utilized as an online process control (Tsuchikawa 2007). Possibly the first study 
involving NIRS and engineered wood products was published by Kniest (1992), who 
used NIR spectroscopy to characterize wood particles treated with urea resin. Two years 
later Niemz et al. (1994) evaluated resin content in chip mixtures by NIR-spectroscopy.  
Currently some scientific contributions have shown the power of combining 
spectroscopic data with multivariate data analysis as a rapid and reliable tool for 
characterizing agro-based particleboards products (Meder et al. 2002; Rials et al. 2002; 
Dolezel-Horwath et al. 2005; Kelley et al. 2005). 

In the particleboards industry panels are being produced using cotton stalks, jute, 
grain plant stalks (corn wheat, etc), and other plant resources (Rowell et al. 2000). In the 
present work, agro-based particleboards were produced from Eucalyptus and Pinus wood 
particles and sugar cane bagasse under different manufacturing conditions. The work was 
done in order to evaluate the ability of NIR spectroscopy techniques to classify and 
predict the composition of the agro-based particleboards. 
  
 
MATERIAL AND METHODS 
 
Preparation of Agro-Based Particleboards 

Table 1 shows the composition classes used to produce the agro-based 
particleboards with different combinations of three raw materials. Softwood, hardwood, 
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and cane bagasse were obtained from experimental plantations located at the southeast of 
Minas Gerais State, Brazil. Wood particles were sampled from Pinus oocarpa (31 years 
old and average basic density of 0.50 g/cm3) and Eucalyptus urophylla (8 years old and 
average basic density of 0.56 g/cm3). The raw material underwent milling, and the slivers 
produced were classified at the mill by a shaker (0.8 x 0.8 mm) to remove most of the 
fines. The slivers were dried to a mean moisture content of 3% in a convection oven.  

Different proportions of cane bagasse, Pinus, and Eucalyptus slivers were 
combined into seven composition classes of particleboards, according to Table 1. For 
each class, three levels of phenol-formaldehyde and urea-formaldehyde resin (6, 9, and 
12% of the oven-dry weight of the agro-based slivers) were applied to the slivers using a 
rotary blender. Three replicates per resin level were produced. The total press time was 8 
minutes at 180 °C (for phenol-formaldehyde) and 160 °C (for urea-formaldehyde), and 
pressure of 40 kgf/cm2. The target board density and dimensions for all panels were 0.70 
g/cm3 and 480 x 480 x 15 mm, respectively. 

From each panel, two samples were removed for NIR scanning. The specimens 
were sawn from the center area of each panel and stabilized in an acclimatizing room, at 
20 ± 2 °C and 60 ± 3% relative humidity, where they were also submitted to spectral 
scanning. Under these conditions the moisture content of the samples stabilized at 12%. 
A total of 252 samples were analyzed: 7 composition combinations x 2 resins x 3 resin 
levels x 3 replicates x 2 samples.  
 
Table 1. Composition of Agro-Based Particleboards for Each Treatment 

Content (%) Composition 
Class Resin  

C P E 
1-C75P25 75 25 0 
2-C50P50 50 50 0 
3-C25P75 25 75 0 
4-C75E25 75 0 25 
5-C50E50 50 0 50 
6-C25E75 25 0 75 
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*C (cane bagasse); P (Pinus oocarpa) and E (Eucalyptus urophylla). 
 

By applying different adhesives and different concentrations into a same 
composition class (our reference values), we tried to simulate what would be a realistic 
approach to NIR spectroscopy coupled with multivariate statistical analysis applied as an 
online, real time quality control tool. These heterogeneous classes are more likely to 
build robust predictive models that are needed for such applications. 
 
NIR Spectra Acquisition 
 The NIR spectra were measured in the diffuse reflectance mode in a FEMTO 
spectrophotometer (NIR 900 PLS model) in a climatized room with temperature around 
20°C and relative humidity around 65%. This Fourier transform spectrometer is designed 
for reflectance analysis of solids with an integrating sphere. The NIR spectra were 
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obtained at 5 nm intervals over the wavelength range of 1100 nm to 2500 nm. NIR 
spectral information was taken directly from the sample surface. Four scans were 
measured and averaged for each sample. This procedure involved turning the sample in 
the equipment measuring cell so that the light beam would capture different spots of the 
heterogeneous surface, providing more representative averaged spectrum of the sample 
and reducing the data noise. 
 
Calibration Statistics 

Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression 
analyses were performed using the Unscrambler (CAMO AS, Norway) software, version 
9.2. The PLS calibrations were developed in order to describe the relationship between 
the NIR spectra and particleboards properties. PCA and PLS models were performed in 
full cross-validation mode with a maximum of twelve latent variables (LV). The LV 
number adopted for each model presented minimal residual variance, and the outlier 
samples were identified from the student residuals and leverage value plot analyses. The 
outlier detection and the selection of the number of PLS factors follow the suggestion 
described in Hein et al. (2009). In order to enhance the quality of the calibration 
adjustment, the significant wavelengths were selected by the Martens uncertainty test 
(Westad and Martens 2000), and mathematical pretreatments including first and second 
derivatives (Savitzky and Golay 1964) were applied to the NIR spectra data. 
 
Selection of the Predictive Model 

The parameters R²cv - coefficient of determination of the cross-validation, SECV - 
standard error of cross-validation, and RPD value (ratio of performance to deviation) 
were used as selection criteria to select the predictive model to estimate the particle-
boards composition, as suggest by Jones et al. (2008). Formulas used to estimate the SEC 
and SECV are given in Schimleck et al. (2001) and should be as low as possible, while 
the coefficient of determinations should be high. The RPD value is the ratio of the SEP to 
the standard deviation (SD) of the original data. This statistic provides a basis for 
standardizing the SEP (Williams and Sobering 1993) and makes it possible to compare 
different calibration parameters such as spectra information obtained from different agro-
based particleboards. Williams and Sobering (1993) state that a RPD greater than 2.5 is 
considered satisfactory for screening, although it has been shown that with RPD of 
approximately 1.5 indicates that NIR spectroscopy can be used as an initial screening tool 
(Schimleck et al. 2003). 
 
 
RESULTS AND DISCUSSION 
 
NIR spectral Information 

The NIR spectral information consists basically of overtones and combination 
bands of fundamental molecular vibrations, especially stretching and bending, of O-H, N-
H and C-H functional groups (Workman and Weywer 2007). Figure 1 shows original 
spectra data obtained from agro-based particleboards with the NIR spectrometer. Each 
spectrum represents the averaged spectra of each treatment. 
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Fig. 1. Original NIR spectral data from agro-based particleboards 

 
The absorbance spectra measured on the particleboard surfaces showed inter-

esting results (Fig. 1). The panels manufactured with different contents of cane bagasse 
and Pinus wood (1-C75P25; 2-C50P50; 3-C25P75) presented higher absorbance values 
when compared to Eucalyptus based panels (4-C75E25; 5-C50E50; 6-C25E75). On both 
Pinus- and Eucalyptus-based particleboards, the increased content of wood (or decreased 
content of cane bagasse) present in panels composition seamed to augment the 
absorbance value throughout the NIR spectral range. Panels produced only with cane 
bagasse (treatment 7-C100) showed an intermediate absorbance value.  

As a complex material, particleboards can be described as a combination of 
different kinds and contents of chemical substances, anatomical tissues, and solid 
materials. NIR spectra from such a complex surface are consequently not merely driven 
by the underlying chemistry, but also by the solid structure (Gierlinger et al. 2004). The 
absorbance values (Fig. 1) represent a great variety of interactions of the NIR radiation 
along the wavelength range and the particleboard’s chemical and physical properties. 
Therefore, the spectral “finger print” reflects the energy captured (or reflected) by 
chemical bonds from different resins (phenol-formaldehyde and urea-formaldehyde) and 
resin levels, wood components nature and contents (cellulose, lignin, hemicelluloses, 
extractives), as well as their interactions. Spectra also represent the refraction and 
scattering of light due to surface roughness, particles size and shape, among other factors. 
This complex information demands sophisticated statistical tools, such as PCA and PLS, 
to allow proper interpretations and enhance NIR spectral data applications.  
 



 

PEER-REVIEWED ARTICLE  bioresources.com 
 

 
Campos et al. (2009). “NIR spectroscopy, particleboards,” BioResources 4(3), 1058-1069. 1063 

Principal Component Analysis 
Principal Component Analysis is the most common and versatile method to 

analyze NIR spectral information (Pasquini 2003). NIR spectral differences between the 
particleboards composition can be simply recognized by the application of principal 
component analysis (Fujimoto et al. 2008). These chemometric tools showed promising 
results in a range of studies involving engineering products (Dolezel-Horwath et al. 2005; 
Kelley et al. 2005). For instance, recently Muller et al. (2009) evaluated particleboards 
and medium density fibreboard (MDF) of Abies grandis [Douglas ex D. Don] lindl. and 
Fagus sylfatica L., employing fourrier transform infrared (FTIR) attenuated total 
reflectance spectroscopy in combination with multivariate statistical methods in order to 
investigate the homogeneity of the wood-based panels. They showed that principal 
component analysis of FTIR spectra was able to discriminate wood, fibers, particles, 
MDF and particleboards of both species during the production process for panels.  

This qualitative analysis can be used to explore information from NIR spectra 
measurements, and it is useful to remove redundant data. They also allow the 
visualization of the majority of significant data in two or three-dimensional spaces 
(Ciosek et al. 2005). In this study, the particleboards were divided into three classes to 
perform PCA: C with panels composed by only bagasse cane; CE representing panels 
composed by different contents of bagasse cane and Eucalyptus wood chips; and CP 
composed by panels manufactured by different contents of bagasse cane and Pinus wood 
chips. Figure 2 shows the two-dimensional scatter plots of scores for PC 1 and PC 2 from 
PCA of the first derivative spectra data for each of the three classes (A to C) and for all 
the 252 particleboards samples (D). The principal component (PC) 1 and 2 accounted for 
76 to 89% of the NIR spectra variability.  

 The plots of PC scores (Fig. 2) presented clusters among the particleboard 
samples due to their resin (phenol-formaldehyde and urea- formaldehyde). However, the 
discrimination of the type of resin or particleboard composition (CE, CP and C) is not 
clear in Fig. 2-D. These graphics allow one to infer that the major amount of variability 
of the NIR spectra data is mainly influenced by the resin type, which is the response of 
NIR absorbance by the chemical bonds present in both adhesives. 

In this study, three principal components accounted for 85% of the total NIR 
spectra variability (PC 1 with 45%, PC 2 with 32%, and PC 3 with 8%). Figure 3 shows 
the scores plot for PC 2 and PC 3, in which two classes of particleboards (C and CE) 
were easily distinguishable from each other, with clearly different patterns of response. 
However, the CP particleboards manufactured were not discriminated from the first well-
distinguished clusters. Figure 3 brings some insight that the composition nature of the 
particleboards may be partially responsible for the third major amount of variability 
within NIR spectra data. However, it was not sufficiently strong to allow PCA analysis to 
discriminate the composition classes accurately. Spectral information along the NIR 
range can be further analyzed with more powerful tool, such as PLS-R model, in order to 
find spectral variability related to agro-based particleboard composition.  
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Fig. 2. Two dimensional scatter plots of scores for PC 1 and PC 2 from principal component 
analyses of the first derivative spectra data of the particleboards made of pure cane bagasse (A), 
cane bagasse and Eucalyptus wood (B), cane bagasse and Pinus wood (C), and all the agro-
based particleboards produced (D) 

 
 
Partial Least Squares Regression 

The PLS-R models were calibrated from the original NIR spectra data and after 
mathematical treatment of the spectra scanned from the panels. The statistics associated 
with calibration and cross-validation models to estimate the composition of the agro-
based particleboards are reported in Table 2.  
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Fig. 3. – Two-dimensional scatter plots of scores for PC 2 and PC 3 from principal component 
analysis of the first derivative spectra data of the particleboards 
 

 
Table 2. Summary of NIRS Calibration to Predict Agro-Based Particleboards 
Composition 
Biomaterial Treat R²c SEC R²cv SECV LV Outliers RPD 

none 0.89 9.416 0.87 9.93 8 5 (1.98%) 2.8 
1der 0.91 8.619 0.90 9.06 6 4 (1.58%) 3.1 Eucalyptus 

2der 0.92 7.854 0.90 8.84 7 4 (1.58%) 3.2 
none 0.89 9.126 0.87 9.93 10 6 (2.38%) 2.8 
1der 0.89 9.140 0.88 9.85 7 1 (0.39%) 2.9 Pinus 

2der 0.89 9.444 0.87 10.14 8 1 (0.39%) 2.8 
none 0.83 10.507 0.81 11.12 7 4 (1.58%)  2.3 
1der 0.85 9.837 0.84 10.46 6 3 (1.19%) 2.5 Cane bagasse 

2der 0.82 10.841 0.81 11.27 5 1 (0.39%) 2.3 
Treat - pretreatment applied; 1d - first derivative; 2d - second derivative; R2

c - coefficient of 
determination of the calibration model (%); SEC - standard error of calibration (%); R2

cv - 
coefficient of determination of the cross-validation (%); SECV - standard error of cross-validation 
(%); LV - number of latent variables and RPD - Ratio of Performance to Deviation. 
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The Eucalyptus particle content and the spectral data presented strong coefficients 
of determination, ranging from 0.87 (raw NIR spectra data) to 0.90 (first and second 
derivatives). The RPD of these models ranged from 2.8 to 3.2, and the standard errors of 
cross-validation were lower when compared to those of the PLS-R models to estimate 
Pinus wood and sugar cane content. The calibrations to predict Pinus particle content 
were similar to those obtained using Eucalyptus particles. The R2 of the Pinus particle 
content cross-validated PLS-R model ranged from 0.87 to 0.88 with a RPD value ranging 
from 2.8 to 2.9. Although the associated statistics seems to be quite close, it is important 
to note that raw NIR spectra data required 10 latent variables and the removal of 6 
outliers against 7 latent variables and 1 outlier from the first derivative PLS-R model.  
The standard errors of cross-validation to estimate Pinus content were, comparatively, 
higher (9.85 to 10.13) than Eucalyptus chip content models (8.84 to 9.92). The cross-
validation to predict sugar cane bagasse content gave, comparatively, weaker statistics 
(R2=0.81 to 0.84; SECV=10.45 to 11.27 and RPD=2.3 to 2.5).  

The RPD value relates the SECV to the standard deviation of the original 
reference data. According to Williams and Sobering (1993) the RPD value should be as 
high as possible, and values of 5 to 10 are adequate for quality control. However, RPDs 
of this magnitude are rarely encountered in NIR analysis from lignin-cellulosic materials. 
The RPD value of 1.0 means that the SECV and the SD are the same, and the instrument 
is not capable of predicting the parameter accurately, using that calibration (Williams and 
Sobering 1993). In breeding programs, an RPD value of 2.5 or higher is satisfactory for 
screening, but to control the panel production quality we did not find any reference value. 
In this initial work, the calibration models presented RPD values ranging from 2.3 to 3.2. 

The statistics associated with calibration and cross-validation PLS-R models were 
affected after mathematical pretreatments (first and second derivatives) of the NIR 
spectral data. This can be explained because, although diffuse reflectance measurement 
of solid samples is a distinguishing measurement mode employed in NIR spectroscopy 
(Pasquini 2003), in diffuse reflectance, scattering and absorbance by solid granules 
contribute to change the signal intensity. Hence, to solve these problems, mathematical 
pretreatments on the NIR spectra data were performed.  

According to Delwiche and Reeves (2004) the performance of PLS regression 
equations that utilize NIR spectra data benefits from a mathematical transformation of the 
spectra before the PLS processing. In this study, the mathematical treatment in the 
spectra improved the Eucalyptus particle content prediction, raising the coefficient of 
determination from 0.87 (raw NIR spectra data) to 0.90 (first and second derivatives), 
decreasing the SECV from 9.93 to 8.84 and improving the RPD from 2.8 to 3.2. 
Schimleck et al. (1999), Jones et al. (2005), and Hein et al. (2009) reported the same 
effect when applied to mathematical treatments in the NIR spectral information. 

At first sight, the high values presented by the coefficients of determination (0.81 
to 0.90) seem to indicate powerful predictive models, but the standard errors of cross-
validation also presented high magnitudes (ranging from 8.84 to 11.27%). For example: 
the Eucalyptus particle content and the NIR spectral data presented the strongest 
coefficients of determination (0.90) and standard error of cross-validation of 9.06. 
Although this PLS-R model presents a high R²cv, it would allow a prediction uncertainty 
of ~30% to ~70% of Eucalyptus wood content for a panel with 50%. To enhance the 
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performance of such predictive PLS-R models, more samples would be required with 
gradual content rising (from 0 to 100% for each component) for the calibration step, in 
order to reduce standard error. 
 
 
CONCLUSIONS 
 

These results suggest that NIR spectroscopy coupled with multivariate statistical 
analysis has the potential to classify and quantify agro-based particleboards composition. 
The high values of standard error of cross-validation, encountered for the calibrated PLS-
R models within this work, limit their application as predictive models for the 
composition of panels. In order to reduce the standard errors and improve predictive 
model ability, we recommend the following: i. the enlargement of the reference samples 
within the range of composition and in smaller intervals (i.e. 0, 5, 10…100%); ii. ground 
and screen particleboard samples to NIRS scanning in order to reduce the spectral noise. 
Development work would be required to build robust models that could be applied as 
quality control tools.  
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