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ABSTRACT 
 
This study focuses on the calibration of a statistical model of 
discrimination between different stages of a fungal disease 
attack on oil palm, based on field hyperspectral 
measurements at the canopy scale. Combinations of pre-
processing, partial least square regression and factorial 
discriminant analysis are tested on a hundred of samples to 
prove the efficiency of canopy reflectance to provide 
information about the plant sanitary status. A robust 
algorithm is thus derived, allowing classifying oil palm in a 
4-level typology, based on disease severity levels from the 
sane to the critically sick tree with a global performance of 
more than 92%. Applications and further improvements of 
this experiment are discussed. 
 

Index Terms—Reflectance spectroscopy, in-situ 
measurements, Partial Least Square, discrimination, 
phytopathology. 
 
 

1. INTRODUCTION 
 
Early and non-destructive diagnostic of crop disease is a 
major issue in precision farming and sustainable agriculture 
in general. Hyperspectral reflectance spectroscopy 
theoretically meets these requirements, thanks to strong 
relationships existing between the plant optical properties on 
one hand, and leaf pigment concentration, and foliar and 
canopy structures on the other hand (eg.[1][2][3][4][5]). 
Some authors have even shown that hyperspectral data 
acquired by satellite or airborne remote sensing might be 
actually relevant to detect crop diseases or to assess crop 
damage severity (eg.[6][7][8]). However, these studies are 
always crop and/or disease-dedicated and new experiments 
need to be performed to validate the detectability of a 
different pathology of another crop.  

 
 
 At least, some robust methodologies have proven to be 
efficient whatever the context, to classify spectra into 
different groups as long as a good sample helps training a 
statistical model of discrimination. Cluster analyses, for 
instance, allow good classifications of plant stress levels 
when combined with Partial Least Square Regression (PLS) 
[9][106] or Principal Component Analysis (PCA) [11].  
 In this paper, we propose to apply these approaches to 
validate the efficiency of hyperspectral reflectance 
spectroscopy to discriminate several levels of Ganoderma 
fungus contamination on oil palm trees. Indeed, this disease 
is one of the major issues in oil-palm crop management [12], 
which will benefit from an appropriate remotely sensed 
diagnosis tool. We will thus evaluate different statistical 
models for the classification of spectra acquired at the 
canopy level depending on the number of attack degrees. 
Then, we will analyze the possibility of developing a remote 
sensing tool on this basis, in the aim of precision farming 
applications. 
 
 

2. MATERIAL 
 
Field measurements were achieved in an oil palm plantation 
located in North Sumatra, Indonesia: Padang Halaban 
Estate, which has been drastically attacked by the 
Ganoderma fungus for years. It thus provides a wide variety 
of disease severity. We have surveyed more specifically a 
hundred of oil palm trees, geo-localized and spotted in the 
plantation grid for easy subsequent identification, and we 
have assigned them a score in a four-level disease typology: 
0 for sane (not sick) trees, 1 for a light attack, 2 for a 
medium one, and 3 for a severe (close to death) infestation. 
Among the different sampled trees, even the sane ones, some 
showed symptoms of nutritional stress like nitrogen, iron, 
bore or magnesium deficiencies. 
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 Then, we performed hyperspectral reflectance 
measurements above the canopy of these trees with a 
Unispec (http://www.ppsystems.com/Literature/EDSUniSpec-
SC.pdf) from PP-SYSTEMS, equipped with a Cosine 
Receptor and fibre optics with 20° of field of view. This 
spectroradiometer covers 256 spectral bands in the range 
310-1130nm. Climbing on scaffoldings to reach the top of 
each tree (up to six to ten meters high), we made six to ten 
radiance acquisitions distributed around the crown (about 
nine meters in diameter), each one integrating a surface of 
about nine square-meters. Each canopy reflected radiance 
measurement was directly followed by a diffuse incident 
light radiance acquisition for a scaling in reflectance. Then, 
we averaged these intermediate reflectance values to derive 
the mean reflectance of the whole tree crown.  
 Due to high level of noise in the resulting spectra in the 
two extreme domains (310-450nm) and (1100-1130nm), 
only the range 450-1100nm was actually analyzed in this 
study. 
 At the end of the campaign, the data base contained the 
canopy reflectance spectra of 36 palm trees belonging to 
score 0, 20 to score 1, 36 to score 2, and only 3 to score 3, 
for a total of 95 trees. 
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Figure 1:  Examples of reflectance spectra for oil palm 
canopies when the tree is sane (black solid lines) or attacked 
by the Ganoderma disease at the respective levels 1 (grey 
solid lines) and 2 (grey dotted lines). 

 
 

3. METHOD 
 
3.1. Spectra preprocessing 

As spectral signatures associated with Ganoderma disease 
symptoms might be very faint, it seems necessary to avoid 
any noise source or signal contamination due, for instance, 
to variations of sunlight and skylight illumination, soil and 
other backgrounds reflectance or even instrumentation itself. 
The Savitzky–Golay filtering [13] consisting in a polynomial 
fitting followed by a derivative computation is commonly 
performed to meet this requirement [14][15][16].  
 However, its major constraint is the choice of, on one 
hand, the smoothing window size and, on the other hand, the 
degree of the polynomial fit [17], along with the derivative 
order [14]. We have thus chosen to test a large set of 
combinations of these parameters, calculating derivative-
spectra at the null, first, and second order of derivation for 
polynomials of second and third degrees, each smoothed at 
nine different window sizes selected to broom the spectral 
bins from 10 nm to 160 nm. It thus results in 54 databases of 
derivative spectra. Higher orders of derivation were not 
tested because the canopy architecture effects on reflectance 
is blurred at higher orders, and ganoderma symptoms largely 
appear on the tree canopy structure. The original 
unprocessed reflectance data was also tested to evaluate the 
actual gain of preprocessing. 
 
3.2. Partial-Least-Square Discrimination Analysis  

We have applied on each database the Partial-Least-Square 
Discrimination Analysis (PLS-DA) [18][19]. It consists in: 
1. Partial Least Square Regression (PLS) applied to the 

preprocessed derivative spectra, reducing the spectral data 
to little or not correlated latent variables that are fewer 
than the number of variables in the sample. To perform a 
simple PLS, we have chosen to set a specific scale fixing a 
predictable value for each analyzed class in the bin [0,1].  

2. Discriminant Analysis (DA) applied to the most 
significant latent variables, enhancing the interclass 
variability while minimizing the intraclass variability of 
the sample to build a classification model. The selection of 
the number of PLS-variables is guided by the compromise 
between minimization of Root Mean Square Error of 
Prediction (RMSEP) and gain in correlation coefficient 
(R2) between predicted and reference values, on one hand, 
and stability of the model thanks to the fewer number of 
implied variables, on the other hand.  

 PLS-DA was achieved on the entire sample of 95 
individuals by cross-validation based on the “leave-one-out” 
method. The potential of the method was tested following 
two objectives independently: 



1. potential discrimination between the healthy (“score 0”; 
36 individuals in the sample) and the sick (“scores 1”, “2”, 
and “3” together; 56 individuals in the sample) trees, 

2. potential of classification of a given tree in the 4-level 
scoring of disease severity. 

 Classification results were then compared on the basis 
of the confusion matrix and the global precision values. 
 
 

4. RESULTS AND DISCUSSION 
 

The first discrimination objective was perfectly met (100% 
of good classification for each of the two classes) with a 
PLS-DA applied on the first-order derivative of a second-
degree polynomial fitted on a smoothing window of 32 nm. 
PLS-predictable values were set to 0 for “sane” and 1 for 
“sick”. DA was applied on the ten first latent variables 
derived from the PLS with a root mean square error of 
prediction of 0.27 and a correlation coefficient of 0.7. 
 The second objective was best met, corresponding to a 
global accuracy of 92.6%, while using the second-order 
derivative of a third-degree polynomial fitted on a 
smoothing window of 26 nm. PLS-predictable values were 
set on the basis of a simple unmixing of mean spectra of 
each class between the two endmembers “score 0” and 
“score 4”: 0 for “score 0”, 0.4 for “score 1”, 0.6 for “score 
2”, and 1.0 for “score 3”. DA was applied on the seven first 
latent variables derived from the PLS with a root mean 
square error of prediction of 0.13 and a correlation 
coefficient of 0.8. The two first discriminant factors are then 
able to split the space into four clusters. The corresponding 
confusion matrix is given Table1.  
 

Score 0 1 2 3 % of good classification 
0 34 2 0 0 94 % 
1 0 17 3 0 85 % 
2 0 2 34 0 94 % 
3 0 0 0 3 100 % 

Global precision 92.6% 
Table 1: Confusion matrix obtained for the classification  

in four levels of disease severity. 

 As a factor of comparison, the best result obtained on 
the original (not filtered and not derived) reflectance spectra  
only gave a global precision of 63%, with strong confusion 
between sane and sick trees and bad assignation of 
individuals inside distant classes. 
 Both models thus allow a very good discrimination 
between the sane and the sick trees, even if 6% of false 
alarms can be expected in the 4-level classification process.  
 

Even though, these alarms concern only two individuals that 
are classified as lightly attacked by the disease; it is still 
possible that the visual symptoms on which was based the 
ground-truth diagnostic were not yet observed while the 
reflectance spectrum already features some changes 
compared to sane individuals.  
 Moreover, errors occurring in this classification all 
shift the trees from one class to the direct next one. 
Considering that the limits between one score evaluated in-
situ and the closer one is very fuzzy, these errors can be 
either due to the classification or to the field diagnosis 
without clue to conclude. Even if it is purely a classification 
error, they are very rare and allow a good confidence in the 
overall results. The cross validation process also allows a 
good confidence in the robustness and stability of the model.  
 The tests also show that the preprocessing of the data 
has a considerable impact on the detectability of the spectral 
features associated with the disease presence, and its level of 
severity too. 
 Considering the loadings of the PLS, no privileged 
spectral range seems to contribute more than others do, and 
no range seems uninformative. This proves the essential 
need of the entire spectral richness to detect discriminating 
features in the canopy reflectance. Applications in remote 
sensing seems thus limited to hyperspectral sensors only, but 
this still has to be checked by dedicated studies. Indeed, 
airborne acquisitions would be of great help for fast 
mapping of the Ganoderma infestation in plantations, 
compared to field measurements that are still long, difficult, 
and dangerous to set up at this canopy height. 
 
 

5. CONCLUSION 
 
Statistical algorithms like PLS-DA applied to preprocessed 
hyperspectral reflectance data acquired in the fields over oil 
palm canopies are thus efficient to detect the Ganoderma 
fungal disease attack. They can even classify it into four 
levels of severity from sane to highly damaged trees with 
more than 92% accuracy. Even sane trees that present 
nutritional deficiencies are correctly are not misclassified as 
sick.  

It proves the potential of hyperspectral reflectance 
spectroscopy for tree-crop sanitary status evaluation and 
pushes for further improvements towards remote sensing 
applications. Nevertheless, new protocols must be fitted to 
airborne or satellite-borne hyperspectral data to calibrate a 
dedicated model that would take into account the imaging 
specificities (e.g. noise, scale, spatial contributions, etc…). 
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