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ABSTRACT
At least, some robust methodologies have provéreto
This study focuses on the calibration of a staidétmodel of efficient whatever the context, to classify specirdo
discrimination between different stages of a fundigkase different groups as long as a good sample helpsiricapa
attack on oil palm, based on field hyperspectraktatistical model of discrimination. Cluster analys for
measurements at the canopy scale. Combinationsgesf pinstance, allow good classifications of plant srésvels
processing, partial least square regression antbriac when combined with Partial Least Square Regreqd§iasS)
discriminant analysis are tested on a hundred wiptss to  [9][106] or Principal Component Analysis (PCA) [11]
prove the efficiency of canopy reflectance to pdevi In this paper, we propose to apply these appraatthe
information about the plant sanitary status. A sibu validate the efficiency of hyperspectral reflecinc
algorithm is thus derived, allowing classifying p&lm in a  spectroscopy to discriminate several levels of Genma
4-level typology, based on disease severity lefrels the  fungus contamination on oil palm trees. Indeed; thsease
sane to the critically sick tree with a global peniance of is one of the major issues in oil-palm crop manag&rfil2],
more than 92%. Applications and further improversesit ~ which will benefit from an appropriate remotely sed
this experiment are discussed. diagnosis tool. We will thus evaluate differenttistécal
models for the classification of spectra acquiredtte
Index Terms—Reflectance spectroscopy, in-situ canopy level depending on the number of attack esegyr
measurements, Partial Least Square, discriminatio,hen, we will analyze the possibility of developiagemote
phytopathology. sensing tool on this basis, in the aim of precidiaming
applications.

1. INTRODUCTION
2. MATERIAL

Early and non-destructive diagnostic of crop disessa
major issue in precision farming and sustainablicaljure  Field measurements were achieved in an oil palmtgtion
in general. Hyperspectral reflectance spectroscoplpcated in North Sumatra, Indonesia: Padang Halaban
theoretically meets these requirements, thanksttong Estate, which has been drastically attacked by the
relationships existing between the plant opticalperties on Ganoderma fungus for years. It thus provides a wateety
one hand, and leaf pigment concentration, andrfaiad of disease severity. We have surveyed more spaltyfia
canopy structures on the other hand (eg.[1][2][B3B- hundred of oil palm trees, geo-localized and sgottethe
Some authors have even shown that hyperspectral dailantation grid for easy subsequent identificatiand we
acquired by satellite or airborne remote sensinghinbe have assigned them a score in a four-level disgasdogy:
actually relevant to detect crop diseases or tessssrop 0 for sane (not sick) trees, 1 for a light atta2kfor a
damage severity (eg.[6][7][8]). However, these madare medium one, and 3 for a severe (close to deathytation.
always crop and/or disease-dedicated and new expets Among the different sampled trees, even the sars,@ome
need to be performed to validate the detectabibtya showed symptoms of nutritional stress like nitrqgean,
different pathology of another crop. bore or magnesium deficiencies.
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Then, we performed hyperspectral

reflectance

3.METHOD

measurements above the canopy of these trees with a

Unispec

(http:/imww.ppsystems.com/Literature/EDSUniSpec- 3.1. Spectra preprocessing

SC.pdf) from PP-SYSTEMS equipped with a Cosine As spectral signatures associated with Ganodermeasé

Receptor and fibre optics with 20° of field of viewhis
spectroradiometer covers 256 spectral bands inrdhge
310-1130nm. Climbing on scaffoldings to reach the of
each tree (up to six to ten meters high), we madéosten
radiance acquisitions distributed around the crqaimout
nine meters in diameter), each one integratingréacel of
about nine square-meters. Each canopy reflecteidneeal
measurement was directly followed by a diffuse decit
light radiance acquisition for a scaling in refeate. Then,
we averaged these intermediate reflectance vatudsrive
the mean reflectance of the whole tree crown.

Due to high level of noise in the resulting spadtrthe

symptoms might be very faint, it seems necessagvtid
any noise source or signal contamination due, rfstance,
to variations of sunlight and skylight illuminatiosoil and
other backgrounds reflectance or even instrumemtdtself.
The Savitzky—Golay filtering [13] consisting in alpnomial
fitting followed by a derivative computation is comnly
performed to meet this requirement [14][15][16].
However, its major constraint is the choice of,ane
hand, the smoothing window size and, on the othadhthe
degree of the polynomial fit [17], along with thertvative
order [14]. We have thus chosen to test a largeo$et
combinations of these parameters, calculating devie-

two extreme domains (310-450nm) and (1100-1130nMmgpectra at the null, first, and second order ofvaéon for

only the range 450-1100nm was actually analyzethis
study.

At the end of the campaign, the data base comtdhe
canopy reflectance spectra of 36 palm trees babgnip
score 0, 20 to score 1, 36 to score 2, and onty gore 3,
for a total of 95 trees.
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Figure 1: Examples of reflectance spectra for palm
canopies when the tree is sane (black solid linesttacked
by the Ganoderma disease at the respective levéige¥
solid lines) and 2 (grey dotted lines).
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polynomials of second and third degrees, each dradoat
nine different window sizes selected to broom thectral

bins from 10 nm to 160 nm. It thus results in S#atases of
derivative spectra. Higher orders of derivation everot

tested because the canopy architecture effecteflattance
is blurred at higher orders, and ganoderma symptargsly

appear on the tree canopy structure. The original
unprocessed reflectance data was also tested hoaévahe
actual gain of preprocessing.

3.2. Partial-L east-Squar e Discrimination Analysis

We have applied on each database the Partial-ISzpgtre

Discrimination AnalysisRL S-DA) [18][19]. It consists in:

1. Partial Least Square Regression (PLS) applied ¢ th
preprocessed derivative spectra, reducing the rgpeatdita
to little or not correlated latent variables thae dewer
than the number of variables in the sample. Togperfa
simple PLS, we have chosen to set a specific dicdhg a
predictable value for each analyzed class in thg(L].

2. Discriminant Analysis (DA) applied to the most
significant latent variables, enhancing the intessl
variability while minimizing the intraclass varidiby of
the sample to build a classification model. Thestbn of
the number of PLS-variables is guided by the comise
between minimization of Root Mean Square Error of
Prediction (RMSEP) and gain in correlation coeéfiti
(R?) between predicted and reference values, on omé, ha
and stability of the model thanks to the fewer nambf
implied variables, on the other hand.

PLS-DA was achieved on the entire sample of 95
individuals by cross-validatiohased on the “leave-one-out”
method. The potential of the method was testedawviotig
two objectives independently:



1. potential discrimination between the healthy (“&c6f;  Even though, these alarms concern only two indadsithat
36 individuals in the sample) and the sick (“scdrgs’2”, are classified as lightly attacked by the disedtsés still

and “3” together; 56 individuals in the sampleesge possible that the visual symptoms on which was ddkse
2. potential of classification of a given tree in thdevel ground-truth diagnostic were not yet observed while
scoring of disease severity. reflectance spectrum already features some changes
Classification results were then compared on tmsh compared to sane individuals.
of the confusion matrix and the global precisiotuea. Moreover, errors occurring in this classificatiai

shift the trees from one class to the direct nere.o
Considering that the limits between one score esatliin-
4, RESULTSAND DISCUSSION situ and the closer one is very fuzzy, these ercars be
either due to the classification or to the fielcaghosis
The first discrimination objective was perfectly nf@00%  without clue to conclude. Even if it is purely asdification
of good classification for each of the two classedh a  error, they are very rare and allow a good configein the
PLS-DA applied on the first-order derivative of ecend- overall results. The cross validation process albows a
degree polynomial fitted on a smoothing window &fr8n.  good confidence in the robustness and stabilitheimodel.
PLS-predictable values were set to O for “sane” arfdr The tests also show that the preprocessing otishe
“sick”. DA was applied on the ten first latent \ales has a considerable impact on the detectabilithefspectral
derived from the PLS with a root mean square eobr features associated with the disease presencéisdadel of
prediction of 0.27 and a correlation coefficieni0or . severity too.

The second objective was best met, correspondirg t Considering the loadings of the PLS, no privileged
global accuracy of 92.6%, while using the secor#Bor gpectral range seems to contribute more than otterand
derivative of a third-degree polynomial fitted on apg range seems uninformative. This proves the &aben
smoothing window of 26 nm. PLS-predictable valusSev neeq of the entire spectral richness to detectidistating
set on the basis of a simple unmixing of mean speut  featyres in the canopy reflectance. Applicationgemote
each class between the two endmembers “score 0" aR@nsing seems thus limited to hyperspectral senstysbut
“score 4": 0 for “score 07, 0.4 for “score 17, Ofér “score  thjs sill has to be checked by dedicated studieseed,
2", and 1.0 for “score 3". DA was applied on theeefirst  5ihome acquisitions would be of great help fostfa
latent variables derived from the PLS with a roatam \hanning of the Ganoderma infestation in plantations

square error of prediction of 0.13 and a correfatio compared to field measurements that are still lafif§icult,
coefficient of 0.8. The two first discriminant facs are then 54 dangerous to set up at this canopy height.

able to split the space into four clusters. Theesponding
confusion matrix is given Tablel.

5. CONCLUSION

Score| O 1 2 3| % of good classification

0 [34[ 2] 0] 0 94 %

1 ol 17! 31 o 85 % Statistical algorithms like PLS-DA applied to prepessed

2 ol 2134l o 94 % hyperspectral reflectance data acquired in thegieler oil

3 o|lo| o 3 100 % palm canopies are thus efficient to detect the @arma
Global precision 92.6% fungal disease attack. They can even classifytd four
Table 1: Confusion matrix obtained for the classifion levels of severity from sane to highly damaged sredth

in four levels of disease severity. more than 92% accuracy. Even sane trees that presen

nutritional deficiencies are correctly are not rtassified as

As a factor of comparison, the best result obthioe  sjck.
the original (not filtered and not derived) refleate spectra It proves the potential of hyperspectral refleceanc
only gave a global precision of 63%, with strongifesion  spectroscopy for tree-crop sanitary status evalpatind
between sane and sick trees and bad assignation @fishes for further improvements towards remote isgns
individuals inside distant classes. applications. Nevertheless, new protocols mustitbedfto

Both models thus allow a very good discriminationairborne or satellite-borne hyperspectral dataditbate a
between the sane and the sick trees, even if 6%leé dedicated model that would take into account thagimg
alarms can be expected in the 4-level classifingtimcess.  specificities (e.g. noise, scale, spatial contiing, etc..).
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