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I 

Summary 

Ludivine Lassois (2009): Agronomical and molecular factors influencing bananas (Musa 
acuminata, AAA, cv ‘Grande-Naine’) susceptibility to crown rot disease. University of 
Liege, Gembloux Agro-Bio Tech, Belgium. 162 pages, 15 tables, 19 figures. 

Crown rot affects export bananas in all producing countries and is considered to be one 
of the main export banana post-harvest disease. Variations are observed in the expression of 
crown rot symptoms. An original approach of the disease is proposed and consists on 
presenting the fruit quality potential at harvest as a key factor in crown rot development. This 
potential develops during growth of bananas in the field and depends on a physiological and a 
parasitical component. The physiological component refers here to the level of fruit 
susceptibility to crown rot and reflects the physiological state of the fruit. The aim of this 
study was to clarify the role of the fruit physiological component at harvest in the post-harvest 
crown rot development.  

It appears that the fruit physiological component at harvest greatly influence the post-
harvest disease development and thus the fruit susceptibility. Seasonal variations in disease 
severity were shown in two production area and are related to a variation of the fruit 
physiological component. In Guadeloupian conditions, the internal necrotic surface of the 
crown was nearly multiplied by 4 during 11 successive weeks. Two pre-harvest factors that 
could influence the fruit physiological component by modifying their susceptibility to crown 
rot, were identified: (i) hand position on the bunch and (ii) source-sink ratio of the banana 
plant (hand considered as sink and leaves as source). It was shown that within a bunch, there 
is a gradient of susceptibility to crown rot (r= -0.95), the hands initiated first (the upper ones) 
being more susceptible than those initiated last (the lower ones). These results also confirmed 
that source-sink ratio changes have a significant effect on fruit morphology and demonstrated 
that there is also an effect on fruit susceptibility to crown rot disease. When the sink is 
decreased by artificial removal of many hands, the level of fruit susceptibility to crown rot 
decreases.  

However, the molecular mechanisms underlying these quantitative host-pathogen 
relationships were still unknown. A study was designed to compare gene expression, by 
cDNA-AFLP, between crowns of bananas showing a high susceptibility (S+) and crowns of 
bananas showing a low susceptibility (S-) to Colletotrichum musae responsible for crown rot 
disease. This comparison was performed at two situation time: (i) between crowns (S+ and S-) 
collected one hour before infection and (ii) between crowns (S+ and S-) collected 13 days after 
infection. Genes implied in signaling pathway and proteolytic machinery were identified. It 
also appears that a cellulose synthase, a CAF1 gene, 2 glycolipid transfer protein and a 
dopamine-β-monooxygenase were differently expressed between bananas showing different 
levels of susceptibility.  

This is the first study of the characterization of the banana physiological component at 
harvest which influences the crown rot post-harvest disease development. In addition, to our 
knowledge, this work is the first to address both pre- and post-infection gene expression with 
the same host-pathogen combination and different susceptibility levels.  



 

II 

Ludivine Lassois (2009): Facteurs agronomiques et moléculaires influençant la 
sensibilité des bananes (Musa acuminata, AAA, cv ‘Grande-Naine’) aux pourritures de 
la couronne. Université de Liège, Gembloux Agro-Bio Tech, Belgique. 162 pages, 15 
tableaux, 19 figures. 

La maladie des pourritures de la couronne est considérée comme l’une des principales 
maladies post-récolte des bananes d’exportation. Elle se rencontre dans toutes les zones de 
production et des variations du niveau d’expression des symptômes sont observées. Une 
approche originale de l’étude du développement de la maladie est proposée dans ce travail et 
consiste à présenter le potentiel de qualité du fruit à la récolte comme un facteur déterminant 
dans le développement post-récolte de la maladie. Le potentiel de qualité s’élabore durant la 
phase de croissance du bananier et dépend d’une composante physiologique et parasitaire. La 
composante physiologique caractérise ici le niveau de sensibilité du fruit aux pourritures de la 
couronne. L’objectif de cette thèse est de clarifier le rôle de la composante physiologique du 
fruit à la récolte sur le développement post-récolte de la maladie.  

Au terme de cette étude, il apparaît que la composante physiologique du fruit à la 
récolte influence le développement post-récolte de la maladie et donc la sensibilité des fruits 
aux pourritures de la couronne. L’existence de variations saisonnières de sensibilité des fruits 
a été démontrée dans deux zones de production. En Guadeloupe, la surface de nécroses 
internes des couronnes a été presque multipliée par 4 durant 11 semaines successives. Deux 
facteurs pré-récolte pouvant influencer la composante physiologique du fruit en modifiant leur 
sensibilité aux pourritures ont été identifiés : (i) le niveau d’insertion de la main de banane sur 
le régime et (ii) le ratio source-puits du bananier (les mains étant considérées comme des puits 
et les feuilles comme des sources d’assimilats). En effet, une relation linéaire (r=-0.95) a été 
établie entre le niveau d’insertion du fruit sur le régime et sa sensibilité aux pourritures de la 
couronne. Les mains initiées en premier sont plus sensibles que les dernières sorties. Les 
essais menés ont confirmé que le ratio source-puits du bananier avait un effet significatif sur 
la morphologie des fruits mais ont également démontré un effet significatif sur la sensibilité 
des fruits aux pourritures de la couronne. Lorsque le nombre de puits diminue, suite à 
l’ablation de mains, la sensibilité des fruits restant sur le régime diminue également.  

Néanmoins, les processus sous-jacents ne sont pas connus et une approche moléculaire 
a été envisagée afin d’identifier les déterminants génétiques qui sous-tendent les réactions de 
sensibilité des fruits aux pourritures de la couronne. L’expression différentielle des gènes a 
été comparée, via cDNA-AFLP, entre des couronnes de bananes présentant une sensibilité 
élevée (S+) et des couronnes de bananes présentant une faible sensibilité (S-) à Colletotrichum 
musae, agent responsable des pourritures de la couronne. Cette comparaison a été réalisée à 
deux moments différents : (i) entre couronnes (S+ et S-) collectées une heure avant l’infection 
et, (ii) entre couronnes (S+ et S-) collectées 13 jours après l’infection. Des gènes impliqués 
dans la transduction du signal et dans la protéolyse ont été identifiés. D’autres gènes ont 
également été mis en évidence: une cellulose synthase, un gène CAF1, deux protéines de 
transfert de glycolipides et une dopamine-β-monooxygenase.  

Ce travail constitue la première étude concernant l’incidence de la composante 
physiologique des bananes à la récolte sur le développement post-récolte des pourritures de la 
couronne. De plus, à notre connaissance, ce travail est le premier qui évalue l’expression des 
gènes en situation de pré- et post-infection avec la même combinaison hôte-pathogène 
présentant des niveaux de sensibilité différents.  
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Introduction 

Crown rot is a major post-harvest disease of export bananas (Krauss and Johanson, 

2000; Reyes et al., 1998). This rot develops during transport, ripening, and storage of 

bananas, and constitutes a fatal defect when it comes to selling them. It results from the 

development of several non-specific fungi, including Colletotrichum musae, which is often 

considered as the most highly pathogenic (Finlay and Brown, 1993; Greene and Goos, 1963; 

Lassois et al., 2008; Lukezic et al., 1967; Shillingford, 1976).  

For six years, the Plant Pathology Unit of the University of Gembloux has been 

conducting research on crown rot disease of bananas in collaboration with two partners. The 

first is the CIRAD (Centre de coopération internationale en recherche agronomique pour le 

développement), where crown rot and other diseases involving Colletotrichum musae have 

been a research focus for many years. The second partner is CARBAP (Centre Africain de 

Recherche sur Bananiers et Plantains), based in Cameroon. This thesis is part of this research 

program aimed at a better understanding of the conditions and mechanisms determining the 

post-harvest crown rot development. 
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Abstract 

Cultivated bananas are giant herbaceous plants within the genus Musa. They are both 

sterile and parthenocarpic. There are well over a thousand domesticated Musa cultivars, they 

are mostly triploid (a few are diploid or tetraploid) and are derived from crosses between two 

wild species, Musa acuminata and Musa balbisiana. In terms of production, bananas are the 

fourth agricultural product after rice, wheat, and maize. They constitute the basis of food 

security for many people. Cropping systems vary widely around the world and contrasting 

objectives are encountered: consumption by the producer, sale on local or national markets, 

export, etc. Cooking bananas, including plantains, must be distinguished from dessert 

bananas, which constitute a major international trade. This international trade started only in 

the early 1900s but it has since grown continuously. Banana is currently the most exported 

fruit, in terms of both value and quantity. Despite the high genetic diversity found within the 

genus Musa, the export market is mainly based on single Cavendish. There are major 

challenges to banana production from biotic or abiotic stresses to continue to meet the criteria 

of sustainability, quality and yield that are imposed. 

 

Keywords: Banana, origin, genetic diversity, production, international trade, Cavendish 
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1.1. Origine et classification des bananiers 

Le bananier est originaire de l’Asie du Sud-Est, où il est retrouvé de l’Inde à la 

Polynésie (Simmonds, 1962), et son centre de diversification semble être la Malaysie ou 

l’Indonésie (Daniells et al., 2001).  Il s’est propagé vers l’Afrique de l’Ouest il y a au mois 

2500 ans (Mbida Mindzie et al., 2001). Son implantation aux Amériques s’est d’abord faite 

par la République Dominicaine, en 1516 grâce à des plants en provenance des îles Canaries, et 

s’est poursuivie vers l’Amérique Centrale et du Sud. Ainsi, depuis des millénaires, les 

migrations humaines et les échanges de matériel végétal ont introduit le bananier dans des 

situations écologiques très différentes sur tous les continents (Lassoudière, 2007).  

Les bananiers appartiennent à l’ordre des scitaminales, ou zingibérales, et à la famille 

des Musaceae. Ce sont des monocotylédones aux pièces florales par 3 ou multiple de 3, 

asymétriques zygomorphes avec nervation secondaire des limbes parallèles, absence de 

formation vasculaire secondaire au sein de la tige et des racines. La famille des Musaceae 

comporte 3 genres  à savoir (i) Musella, très peu représenté et localisé en Asie , (ii) Ensete, ne 

comportant pas d’espèces parthénocarpiques et (iii) le genre Musa, présentant une forte 

variabilité et caractérisé par des inflorescences avec des bractées insérées séparément des 

fleurs, à l’inverse du genre Ensete. Les premières classifications du genre Musa sont apparues 

à la fin du 19ème siècle. Le genre Musa a été divisé en 4 sections (Cheesman, 1947 cité par 

Heslop-Harrison et al., 2007) sur base du nombre de chromosomes et de caractéristiques 

morphologiques : Les Australimusa (n=10) ; les Callimusa (n=10) ; les Rhodochlamys (n=11) 

et enfin les Eumusa (n=11) avec 10 à 12 espèces qui constituent le genre le plus diversifié et 

comprend plus de 1000 variétés dont les plantains (Lassoudière, 2007). La section Eumusa 

regroupe presque tous les bananiers cultivés et se caractérise par des bractées sillonnées 

longitudinalement sur leur face externe et de nombreuses fleurs par bractées disposées en 

deux rangées. Une étude récente basée sur l’AFLP (Amplified fragment length 

polymorphism) propose de réduire de 4 à 2 groupes le genre Musa en regroupant les 

Rhodochlamys avec les Eumusa et les Australimusa avec les Callimusa (Wong et al., 2002). 

Cependant d’autres regroupements ont été proposés et la classification précise des espèces et 

sous-espèces reste toujours débattue (Heslop-Harrison et al., 2007). De plus, de nombreuses 

régions du centre de diversification du genre Musa  en Asie du Sud-Est n’ont pas encore été 

explorées et de nouvelles variétés et espèces continuent d’être découvertes (Häkkinen, 2009). 

D’un point de vue botanique, le genre Musa se divise en deux grands types : les variétés 

comestibles à fruits charnus et les espèces sauvages. Ces dernières, séminifères à fruits non 
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comestibles sont toutes diploïdes (AA et BB). Actuellement, on en compte environ 180, 

toutes originaires d’Asie du Sud-Est , mais leur recensement n’est pas encore définitif surtout 

pour BB (Cirad-Flhor, 2003). Ces variétés fertiles sont cependant importantes car elles 

présentent différents niveaux de résistance aux maladies et ravageurs. De plus, en se croisant 

naturellement entre eux, ces bananiers sauvages et séminifères ont contribué à l’élargissement 

de la diversité génétique. Ils sont donc la base des différents programmes d’amélioration 

génétique et de créations variétales actuels et futurs. C’est à partir de croisements entre ces 

espèces que sont apparues des variétés sans graine. Ces bananes qui possèdent des qualités 

alimentaires ont rapidement intéressé l’homme qui les a intégrées dans son agriculture en 

utilisant leur potentiel de multiplication végétative par enracinement de leurs ramifications 

latérales. Le nombre de cultivars ou de variétés comestibles à fruits charnus stériles et 

parthénocarpiques de part le monde est estimé à 1200 (Cirad-Flhor, 2003) et représente une 

diversité génétique non négligeable. Aujourd’hui, les variétés cultivées sont classées en 

groupes selon leur constitution génétique et leur niveau de ploïdie, puis en sous groupes en 

rassemblant les différents cultivars dérivant les uns des autres par mutations naturelles à partir 

d’un ancêtre génétiquement commun (Cirad-Flhor, 2003).  

Si les bananiers sauvages sont tous diploïdes, les variétés cultivées actuellement sont 

généralement des clones triploïdes stériles et aspermes (AAB et ABB), issus soit de 

croisements interspécifiques entre les 2 espèces séminifères sauvages diploïdes principales 

Musa acuminata et Musa balbisiana, soit de la seule espèce M. acuminata (AAA) (Figure 

1).On rencontre plus rarement des variétés diploïdes (AA et AB) et des clones tétraploïdes de 

nature interspécifique (Lassoudière, 2007). La contribution haploïde de M. acuminata et M. 

balbisiana aux bananiers cultivés est indiquée respectivement par A et B (Simmonds et al., 

1955). 
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Figure 1 : Evolution des principaux groupes génomiques de la série Eumusa (Tiré de Jones, 2000). W : 
Sauvage. 

Le tableau 1 reprend la classification et la répartition géographique des principaux 

bananiers cultivés. Au sein des bananiers cultivés, il faut différencier deux grands types de 

bananes comestibles : les bananes qui se consomment à l’état frais, dites « dessert » et les 

bananes consommées cuites dites « à cuire » comprenant notamment les plantains. Ces 

derniers (AAB) comprennent de nombreux cultivars variant par leur forme, leur taille, leur 

couleur, leur goût etc... Produits de manière traditionnelle, leur productivité n’est pas très 

élevée (10T/ha) mais la culture nécessite peu de soins (Lescot, 2004). Les bananes à cuire 

constituent souvent l’un des produits essentiels de l’alimentation de base des populations de la 

zone tropicale humide. Source de carbo-hydrates, elles sont l’équivalent de la pomme de terre 

en pays tempérés (Lescot, 2004).  
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Tableau 1 : Classification et répartition géographique des principaux bananiers cultivés (Bakry et al., 
1997). 

Sous groupe Cultivars Type de fruit Distribution 

Groupe AA    

Sucrier Pisang Mas, Fayssinette, 

Figue sucrée 

dessert sucré Tous continents 

Psang Lilin - dessert Indonésie, Malaisie 

Pisang Berangan - dessert Indonésie, Malaisie 

Lakatan - dessert Philippines 

Groupe AAA    

Cavendish Lacatan, Poyo, 

Williams, Grande Naine, 

Petite Naine 

dessert Pays exportateurs 

Gros Michel Gros Michel, Highgate, 

Cocos 

dessert Tous continents 

Philippines 

Figue Rose Figue Rose rose, Figue 

Rose verte 

dessert Pacifique, Antilles, 

Afrique de l’Est 

Lujugira Intuntu, Mujuba à bière, à cuire Indonésie, Afrique 

Ibota Yangambi km5 dessert  

Groupe AB    

Ney Poovan Sait Velchi, Sukari dessert acide Inde, Afrique de l’Est 

Groupe AAB    

Figue Pomme Maça, Silk dessert acide Tous continents 

Pome Prata dessert acide Inde, Malaisie, 

Australie, Brésil, 

Afrique de l’Ouest 

Mysore Pisang Ceylan dessert acide Inde 

Pisang Kelat Pisang Kelat dessert Inde, Malaisie 

Pisang Rajah Pisang Rajah Bulu à cuire Malaisie, Indonésie 

Plantains French corne, Faux 

corne 

à cuire Afrique du Centre et de 

l’Ouest, Caraïbe, 

Amérique latine 

Popoulou Popoulou à cuire Pacifique 

Laknao Laknao à cuire Philippines 

Pisang Nangka Pisang Nangka à cuire Malaisie 

Groupe ABB    

Bluggoe Bluggoe, Matavia, 

Poteau, Cacambou 

à cuire Philippines, Caraïbe, 

Amérique latine 

Pelipita Pelipita à cuire Philippines, Amérique 

latine 

Pisang Awak Fougamou dessert Thaïlande, Inde, 

Philippines, Afrique de 

l’Est 

Peyan - à cuire Philippines, Thaïlande 

Saba Saba à cuire Philippines, Indonésie, 

Malaisie 
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1.2. La production mondiale de banane 

Les bananiers sont cultivés dans plus de 120 pays sur les 5 continents (Bakry et al., 

1997) et sur plus de 10 millions d’hectares (Lassoudière, 2007). Les bananes offrent de 

multiples usages. Elles sont consommées principalement sous forme de fruit frais ou comme 

légume cuit ou frit mais font également l’objet de nombreuses transformations : chips, frites, 

beignets, purée, confiture, ketchup, alcool, vin, bière etc.... D’autres parties de la plante sont 

utilisées comme fibre textile, pour la construction d’abris, la fabrication de couvertures ou 

comme emballages de cuisson. En termes de production mondiale, la banane est le quatrième 

produit agricole après le riz, le blé et le maïs (Lassoudière, 2007). Elle occupe le premier rang 

de la production fruitière, avec un peu plus de 106 millions de tonnes produites annuellement 

à l’échelle mondiale (Lescot, 2006). Les systèmes culturaux sont très diversifiés dans le 

monde et les objectifs très contrastés : autoconsommation, ventes sur les marchés locaux ou 

nationaux, exportation vers des régions proches ou vers les pays industrialisés du Nord. Près 

de 90% de la production sont issus de petits agriculteurs, produisant pour la consommation 

domestique et les marchés locaux. Seuls un peu plus de 10% de la production mondiale est 

destinée à l’exportation. On distingue cependant deux grandes filières de production : celle 

des bananiers en culture pure, dont une partie des fruits est destinée à l’exportation et celle des 

bananiers en polyculture, destinés à l’approvisionnement des marchés locaux ou à 

l’autoconsommation familiale. 

Dans les statistiques, il faut distinguer : 

Les bananes à cuire comprenant notamment les plantains (AAB) séparés des autres 

types de bananes à cuire.  

Les bananes dessert dominées par les variétés du sous-groupe Cavendish (AAA) 

séparées des autres bananes dessert pouvant appartenir au groupe AAB (Prata), AA (Figue 

sucrée) ou AAA (Gros Michel,…). 

Les bananes à cuire correspondent à 43% de la production mondiale des bananes et les 

plantains (AAB) représentent 40% de bananes à cuire.  

Le reste de la production mondiale (57%) concerne les bananes dessert, avec la majorité 

de leur production issue du groupe des Cavendish. L’Inde et le Brésil en sont les deux plus 

gros producteur et écoulent la quasi-totalité de leur récolte sur les marchés intérieurs 

(Lassoudière, 2007). En termes de production, ils sont suivis par l’Equateur, la Chine, la 
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Colombie et le Costa Rica. De 1985 à 2000, la production est passée de 42.5 à 63.4 millions 

de tonnes, les surfaces ayant augmenté corrélativement de 1 million d’hectares (Lassoudière, 

2007). Les études d’impact sur la production bananière sont peu nombreuses. Toutefois, cette 

industrie est d’une importance vitale pour l’ensemble des pays producteurs. Elle joue non 

seulement un rôle important dans l’alimentation, mais aussi aux niveaux social, économique 

et écologique.  

1.3. Le commerce international de la banane 

La culture de la banane pour l’exportation n’a vraiment débuté qu’à la fin du XIXème 

siècle. Dès 1870, la Jamaïque organise les premières exportations de bananes Gros-Michel 

vers les marchés d’Amérique du Nord. Quelques années plus tard, une filière en provenance 

des Canaries approvisionne le marché anglais avec une autre variété, Petite Naine, du sous 

groupe Cavendish (Bakry et al., 1997). Ce n’est qu’au début du XXème siècle que des 

exportations sur de plus longues distances ont débuté grâce aux premiers navires réfrigérés. 

C’est au cours de cette période pionnière que les méthodes de cultures industrielles et 

d’exportation massive d’un fruit fragile ont été mises en place. Depuis lors, la banane, qu’il 

s’agisse de production, d’exportation ou d’importation, n’a eu sur le long terme qu’une 

croissance continue et constitue à l’heure actuelle le 4ème produit d’exportation mondiale 

(Wilson et al., 2004). 

Malgré la grande diversité existant au niveau des variétés de bananier, le commerce 

international repose essentiellement sur un seul groupe variétal : les bananes Cavendish dont 

plus de 30% de la production sont destinés à l’exportation. Les Cavendish fournissent 97% du 

marché international (Loeillet, 2005). Pourtant, l’offre de bananes de par le monde est riche 

de variétés quasi totalement inconnues sur les grands marchés d’importations. Seuls 2% de la 

production de bananes à cuire sont destinés à un commerce international. Cela concerne 

principalement les bananes plantains (Lassoudière, 2007). Ces dernières sont présentes sur les 

marchés d’importation depuis des décennies mais les volumes sont limités et leur croissance 

minime. L’UE a importé environ 23 000 tonnes de plantains en 2000 (EUROSTAT, 2000). En 

un peu moins de 10 ans, les quantités importées sont restées quasiment inchangées 

(ODEADOM/Cirad-Flhor, 2000).  

Alors que de très nombreux pays produisent la banane, très peu participent de manière 

substantielle au marché international. Pour ces derniers, la dépendance vis-à-vis de la filière 

banane est grande. C’est une activité qui occupe toute l’année une main d’œuvre nombreuse 

et relativement peu qualifiée, jouant ainsi un rôle crucial dans la lutte contre la pauvreté 
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(Loeillet, 2005). Grâce aux exportations hebdomadaires régulières, des services de fret 

maritime réguliers ont été créés. Ils ont favorisé les importations de marchandises nécessaires 

au développement de ces pays et à la vie quotidienne de leurs habitants. Ces exportations 

régulières ont aussi permis de stabiliser des lignes maritimes sur lesquelles peuvent se 

construire d’autres filières d’exportation dans les domaines agricole et industriel (Loeillet, 

2005).  

Sur les 10 exportateurs mondiaux, 7 sont situés en Amérique Latine, 2 en Afrique et un 

en Asie (Loeillet, 2005). Ils totalisent 95% de l’offre mondiale (Loeillet, 2005). Les 

exportations américaines sont très largement dominantes, les Philippines s’intercalant au 4ème 

rang (Lassoudière, 2007). L’Equateur, le Costa Rica et la Colombie fournissent environ 65% 

du marché international, ce qui illustre le poids de la filière banane dans ces pays, tant au 

niveau économique que dans la vie sociale et politique (Lassoudière, 2007). Le premier 

producteur mondial, l’Equateur, exporte chaque année l’équivalent de la consommation de 

bananes de l’Union Européenne (4,5 millions de tonnes) (Loeillet, 2005). Les pays ACP  

(Afrique, Caraïbes, Pacifique) et l’Europe ne pèsent que 15% dans le commerce mondial 

(Lassoudière, 2007). La zone Europe, constituée de l’Espagne et du Portugal, participe au 

commerce mondial à hauteur de 3% des exportations. 

Les exportations en provenance des Caraïbes décroissent alors que celles d’Afrique 

augmentent, notamment en provenance du Cameroun et de la Côte d’Ivoire. Depuis 1990 la 

Côte d’Ivoire a multiplié par deux ses exportations et celles du Cameroun ont plus que triplé 

(Lassoudière, 2007). 

Le commerce mondial de la banane dessert est estimé à 14 millions de tonnes (Loeillet, 

2005), pour un chiffre d’affaire à l’exportation de plus de 4.9 milliards d’USD (Lescot et al., 

2008). Sur les 40 dernières années le marché s’est fortement développé. La production 

mondiale de bananes dessert à plus que doublé mais cette croissance est principalement due à 

l’augmentation des surfaces cultivées et non à une meilleure productivité (Picq et al., 2002). 

Sur la même période, les exportations ont été multipliées par 3,5 (Loeillet, 2005) et la valeur 

de ces exportations multipliée par 11. La croissance du marché a été de 7% par an entre 1985 

et 1995 mais a ralenti ces dernières années (Loeillet, 2005). 

La banane est le fruit le plus exporté aussi bien en valeur qu’en quantité. Cinq 

compagnies aux structures très intégrées contrôlent les ¾ des exportations du marché 

mondial : Chiquita Brands International (22%), Dole Food Company (21%), Del Monte Fresh 

Produce (16%), Noboa (7%) et Fyffes (7%) (Lassoudière, 2007).  
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Les 4 marchés d’importation mondiaux que sont l’Union Européenne, les Etats-Unis, le 

Japon et la Russie captent 78% de l’offre mondiale de banane dessert (Loeillet, 2005). A noter 

que certains marchés émergent en Afrique du Nord et au Moyen-Orient (6% de la production 

mondiale) et en Chine (4% de la production mondiale) (Lassoudière, 2007). Avec 4.6 millions 

de tonnes d’importation et une consommation moyenne de bananes aux alentours de 

10.1kg/hab/an, le marché européen est le premier marché mondial d’importation (Loeillet, 

2005). La structure de l’approvisionnement se répartit comme suit : en 2004, l’UE a reçu des 

bananes de trois origines différentes à savoir (i) Communautaires (16%), (ii) ACP (17%) et 

(iii) latino-américaine dite « dollar » (67%) (Loeillet, 2005).  

Le commerce international de la banane est très complexe et on ne peut en parler sans 

évoquer le différend qui oppose quelques pays européens, particulièrement la France, et les 

Etats-Unis. En effet, depuis des années, les Européens et les Américains se livrent une guerre 

commerciale autour de la banane. Avant la mise en place du marché unique européen, 

l’approvisionnement en bananes résultait d’une gestion nationale au cas par cas. Les pays 

ayant des attaches avec des zones de productions, comme la France avec la zone Antillaise et 

Africaine ou l’Espagne avec les Canaries, privilégiaient ces productions. Les autres pays, sans 

attache à une zone de production particulière, s’approvisionnaient en bananes « dollars » qui 

étaient importées sans frais de douane à travers les filières intégrées des sociétés américaines. 

Cette exonération de droits permit aux dites entreprises de réaliser des bénéfices colossaux, le 

fruit étant produit à très bas prix en Amérique Latine (Loeillet, 2005). Lors de la mise en 

place du marché unique Européen (1er janvier 1993), l’approvisionnement en bananes devait 

passer à une gestion commune à douze membres. Effective depuis le 1er juillet 1993, 

l'Organisation Commune du Marché de la Banane (OCMB) créée dans le cadre de la mise en 

place du marché unique européen instaure des quotas spécifiques d’importation et institue un 

régime d'aides compensatoires destiné à assurer un revenu minimum aux producteurs 

européens et de la zone ACP. Les bananes européennes et celles des pays ACP, plus chères, 

bénéficient alors d’importantes aides de l’Union Européenne. Mais la commission dut 

immédiatement faire face à une double pression: celle des multinationales américaines et celle 

du front de refus des principaux importateurs de bananes "dollars": l'Allemagne et le Benelux 

(Loeillet, 2005). En avril 1994, l’Organisation Mondiale du Commerce (OMC) est créée et 

dénonce rapidement le principe des quotas spécifiques mis en place par l’Union Européenne. 

Le système de l’OCMB privilégiant les bananes communautaires et ACP est jugé 

discriminatoire et non conforme aux règles du commerce international par l’OMC (Maillard, 

2002). Aussi, malgré une première modification de l’OCMB, le 1er janvier 1999 sous la 

pression des producteurs de « bananes dollars » et une diminution consécutive des droits de 
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douane pour ces pays, le nouveau régime européen d’importation est à nouveau dénoncé par 

l’OMC qui conteste, en particulier, le principe des quotas spécifiques. Depuis le 1er janvier 

2006, bien que toutes les négociations ne soient pas achevées, les nouvelles règles sont mises 

en application dans les grandes lignes. Les quotas d’importation sont abandonnés au profit 

d’un système uniquement tarifaire, c’est-à-dire fondé sur un droit de douane et sur le principe 

« premier arrivé = premier servi ». Des clauses particulières sont mises en place pour les pays 

ACP qui bénéficient de l’absence de droit de douane pour un quota donné. Le volet interne de 

l’OCMB qui régit l’aide aux producteurs de bananes européens est en cours de réexamen 

(Lassoudière, 2007).  

1.4. La variété Cavendish 

1.4.1. Morphologie de la plante  

1.4.1.1. Description de l’appareil végétatif 

Le bananier est une herbe géante dont le pseudo-tronc est formé par l’emboîtement des 

gaines foliaires (Champion, 1963) (Figure 2). Les feuilles sont émises par le méristème 

terminal de la tige vraie souterraine improprement appelée « bulbe ». Les nouvelles feuilles se 

déroulent au sommet du pseudo-tronc et sont donc de plus en plus jeunes en se rapprochant du 

sommet. Par convention, elles sont numérotées de la plus jeune à la plus âgée (Bakry et al., 

1997). Le nombre de feuilles varie selon le cultivar et les conditions environnementales 

(Jones, 2000). Les feuilles, dont la durée de vie varie entre 70 et 200 jours, présentent une 

surface pouvant aller jusqu’à 2 m2 fournissant ainsi à la plante une surface foliaire importante 

au moment de la floraison et permettant de canaliser les eaux de pluie (Stover et al., 1987). 

Toutefois, la longueur et la largeur du limbe s’accroissent au cours du cycle. Au moment de la 

sortie de l’inflorescence, il reste 11 à 15 feuilles fonctionnelles (Lassoudière, 2007). Pour un 

développement correct des fruits jusqu’à la récolte, il faut au minimum 8 feuilles 

fonctionnelles à la floraison et au moins 4 à la récolte. Le bourgeon situé à l’aisselle de 

chaque feuille donne éventuellement naissance à un rejet. A la fin de la phase végétative, le 

changement de fonctionnement du méristème central provoque la croissance et l’allongement 

de la tige vraie au cœur du pseudo-tronc puis l’émergence de l’inflorescence.  
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Figure 2: Représentation de l’organisation du bananier et de ses rejets (tiré de Champion, 1963). 
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1.4.1.2. L’inflorescence 

Les étapes du développement végétatif ont des répercussions capitales sur la croissance 

et le développement de l’inflorescence (Lassoudière, 2007). Dans le cas des variétés 

Cavendish comme la Grande-Naine, la floraison intervient dès qu’une trentaine de feuilles ont 

été émises. Les premières phases du développement de l’inflorescence ont lieu à l’intérieur du 

pseudo-tronc pendant la montée de la tige. L’inflorescence du bananier (appelée régime) se 

caractérise par un pédoncule robuste d’environ 1m recourbé vers le bas (Figure 2). Elle est 

constituée de spathes pourpres, déhiscentes, imbriquées, disposées selon 3 hélices qui se 

soulèvent avant de tomber rapidement et à l’aisselle desquelles naissent les rangées simples 

ou doubles de fleurs. Ce sont les premières rangées de fleurs, appelées mains, qui forment les 

régimes de fruits. Ces premières rangées sont constituées de fleurs femelles avec un ovaire 

infère comprenant trois loges carpellaires à l’intérieur desquelles deux rangées d’ovules sont 

insérées sur un placenta axilaire et des étamines non fonctionnelles. Les ovaires se 

remplissent de pulpe pour former le fruit sans pollinisation ni formation de graines. Les mains 

sont composées de 10 à 30 fleurs ou doigts insérés sur le coussinet selon deux rangées et sont 

numérotées à partir de la première main dégagée. A l’anthèse, les doigts sont dirigés vers le 

bas et se redressent progressivement pour atteindre, en plus ou moins 15 jours, le stade appelé 

« stade doigts horizontaux ».  

Après les fleurs femelles, apparaissent deux à trois mains de fleurs neutres avec toutes 

les pièces florales avortées, suivies par les mains de fleurs mâles constituées d’ovaires réduits 

et d’étamines bien développées. Les fleurs mâles tombent au fur et à mesure de leur 

libération, dénudant ainsi la partie inférieure de la hampe. La croissance de l’inflorescence se 

poursuit indéfiniment pour former le bourgeon mâle, constitué de la superposition des 

bractées. S’il n’est pas coupé, ce bourgeon mâle prolongera sa croissance jusqu’à la maturité 

des fruits et la fanaison de la tige. Pour le groupe des AAA notamment, une disproportion 

entre le nombre de mains femelles (4 à 18 mains) et le nombre de mains mâles (200 à 500 

mains) est observée (Lassoudière, 2007). 
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1.4.2. Le fruit 1 

1.4.2.1. Développement du fruit 

Deux grandes phases peuvent-être distinguées dans le développement des fruits : une 

première phase qui se déroule à l’intérieur du pseudo-tronc et au cours de laquelle les 

différentes structures du futur fruit se mettent en place. 

La deuxième phase se déroule après la sortie de l’inflorescence et correspond 

essentiellement au développement de la pulpe. Les bananes se développent de manière 

parthénocarpique à partir des fleurs femelles et sont formées de la peau (le péricarpe) et de la 

pulpe (endocarpe). Le doigt est relié au coussinet par un pédicelle. Le péricarpe est composé 

d’un épiderme stomatifère avec cuticule ne permettant que peu d’échanges gazeux, d’une 

couche parenchymatique sous-épidermique et d’une zone profonde à parenchyme lâche 

(Omoaka, 2000). La couche parenchymatique sous-épidermique contient des chloroplastes. 

Les fruits possèdent une grande proportion de peau qui diminue avec leur maturité. Les ovules 

avortés se retrouvent dans l’endocarpe et les grosses cellules ovoïdes amylifères des 3 

carpelles constituent l’essentiel de la pulpe (Lassoudière, 2007). 

Quatre périodes essentielles de croissance du fruit sont à retenir pour les variétés 

Cavendish (Lassoudière, 2007) : 

• Croissance faible jusqu’au début de l’allongement de la hampe florale ; 

• Divisions cellulaires très actives de 10 jours avant à 30 jours après la sortie de 

l’inflorescence à l’extérieur. Les divisions cellulaires sont à l’origine du 

développement de la pulpe et correspondent à une phase de forte élongation du 

fruit et de faible augmentation du poids sec de la pulpe ; 

• Accroissement cellulaire de 30 à 80 jours après la sortie de l’inflorescence à 

l’extérieur. Cette période correspond au remplissage des cellules de la pulpe par 

accumulation d’amidon qui est la forme principale de stockage. Les assimilats 

sont amenés jusqu’aux fruits par le pédoncule dont le rôle est uniquement 

conducteur ; 

• Phase finale de maturation et d’hydrolyse de l’amidon. 

                                                 

1 L’entièreté de ce paragraphe (1.4.2. le fruit) a été rajouté à la thèse après acceptation de la publication 
« La banane : de son origine à sa commercialisation » par la revue B.A.S.E. et ne se retrouve donc pas 
inséré dans la publication. 
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La phase finale de maturation commence avant la récolte et avant le remplissage 

maximal du fruit. 

Au sein d’un même régime, des différences de développement sont observées. Les fruits 

initiés les premiers sont par exemple de 30 à 40% plus gros que ceux initiés les derniers 

(Robinson, 1996). Les écarts de longueur entre la deuxième et la dernière main s’accroissent 

du début de relèvement des doigts jusqu’à la récolte mais la valeur relative reste constante 

(20%) (Lassoudière, 2007). En revanche, pour le grade, les écarts ne deviennent importants 

qu’au cours du mois précédant la récolte (Lassoudière, 2007). Il a été suggéré que le 

développement différentiel des fruits résulterait des différences au niveau des divisions 

cellulaires et des caractéristiques de remplissage des fruits causées par la différence d’âge 

observée entre les fruits. Lassoudière (2007) précise que si la différence d’âge entre les fleurs 

d’une même main n’est que de deux jours en moyenne, elle est de plus de 15 jours entre les 

mains 1 et 8. Jullien et al. (2001) ont estimé que la différence entre les premières et dernières 

mains était de 70 degrés.jour. 

1.4.2.2. Physiologie du fruit 

Il existe deux groupes de fruits : (i) les fruits climactériques, comme la banane, la 

pomme et l’avocat et (ii) les fruits non-climactériques qui comprennent les agrumes, les 

fraises ou les cerises. Le processus de maturation des fruits climactériques se caractérise par 

une forte augmentation du taux de respiration (appelé pic climactérique) et par une production 

endogène d’éthylène. La période post-récolte des bananes d’exportation comprend trois étapes 

principales (John & Marchal, 1995): premièrement, la phase pré-climactérique au cours de 

laquelle le fruit reste immature ; deuxièmement, la phase de maturation accompagnée d’une 

intense activité respiratoire et enfin, la phase de sénescence du fruit. 

La phase pré-climactérique, aussi appelée la durée de vie verte, est particulièrement 

importante pour les mûrisseurs qui recherchent une durée de vie verte la plus longue possible 

afin de commercialiser des fruits de qualité. Durant cette période, les fruits verts matures 

présentent une faible activité catabolique et métabolique. Le taux de respiration est faible et la 

production d’éthylène presque indétectable (Marriott & Lancaster, 1983). La durée de vie 

verte peut être allongée en modifiant certains paramètres environnementaux de stockage tels 

que la température, l’humidité relative et la composition atmosphérique.  

La période climactérique se caractérise par 3 principaux processus (Seymour et al., 

1993). Premièrement, une augmentation de la respiration du fruit indiquée par une 
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augmentation de la production de CO2. Deuxièmement, une diminution du niveau d’oxygène 

dans la pulpe et finalement une augmentation rapide et transitoire de la production d’éthylène 

par la pulpe. Ce pic climactérique peut se produire sur le plant mais dans le cas des bananes 

d’exportation, celui-ci est induit après la récolte par un apport exogène d’éthylène avant la 

production naturelle. L’éthylène est physiologiquement actif à faible dose (Peacock, 1972). Il 

s’agit d’une hormone végétale naturelle qui est synthétisée par la pulpe (Dominguez & 

Vendrell, 1994) à partir de L-méthionine. Celle-ci sera convertie en S-Adenosylméthionine 

(SAM) qui sera à son tour transformée en acide 1-aminocyclopropane-1-carboxylique (ACC), 

précurseur immédiat de l’éthylène. Toutes formes de dommages physiologiques au cours de la 

croissance du fruit, de la récolte ou de la maturation peuvent aboutir à un stress, à une 

stimulation de la maturation et de la sénescence et donc influencer la qualité des bananes 

(Omoaka, 2000). De plus, les maladies parasitaires, telles que les pourritures de la couronne, 

sont reconnues comme réduisant la durée de vie verte et la qualité des fruits (Jones, 2000). 

La maturation des bananes se caractérise par de nombreuses modifications de la pulpe et 

de la peau permettant l’obtention d’un fruit comestible. Les principales modifications sont la 

transformation des réserves amylacées en sucres, une chute brutale de la teneur en 

chlorophylle de la peau et un ramollissement de la pulpe. 

La dernière phase du développement post-récolte des bananes d’exportation est la phase 

de sénescence qui se caractérise par une importante perte de fermeté du fruit. 

1.4.3. Itinéraire technique 

De la plantation à la consommation, la banane dessert d’exportation de type Grande 

Naine (sous-groupe Cavendish AAA) exige de nombreuses opérations techniques pouvant 

être très différentes en fonction des zones de production et des systèmes de culture. A titre 

d’exemple, certains aspects de la culture tels que rencontrés dans la région de Njombé au 

Cameroun sont présentés ci-après. 

1.4.3.1. De la plantation à la floraison 

Le premier cycle de culture est mis en place au champ par la plantation, en ligne ou en 

touffes, de rejets, de souches ou de plants issus de la culture in vitro. L’objectif principal de 

l’utilisation de vitroplants est de disposer au champ d’un matériel sain, en particulier indemne 

de nématodes, de virus et de bactéries. Au cours de sa croissance végétative, le bananier émet 

des rejets latéraux. Un unique rejet sera sélectionné, par une technique appelée œilletonnage, 
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afin d’assurer le cycle de culture suivant tout en conservant au maximum une structure de 

population constante. Le rejet successeur sera sélectionné le plus tôt possible pour favoriser 

son développement. L’objectif est un retour de cycle de durée minimale, afin d’augmenter le 

nombre de régimes récoltés par bananier et par an. 

1.4.3.2. De la floraison à la récolte 

Dès l’émergence de l’inflorescence commencent les soins aux régimes. Ces soins vont 

conditionner la qualité des fruits au moment de la récolte. Les feuilles susceptibles de gêner le 

développement du régime, ou risquant d’abîmer les fruits par frottements, sont dégagées. 

Cette opération consiste à découper ou écarter les feuilles en contact avec l’inflorescence. 

Dans la mesure du possible, cette pratique est limitée au maximum afin de ne pas diminuer le 

potentiel photosynthétique du bananier. 

Au stade « doigts horizontaux » le bourgeon mâle et les dernières mains sont supprimés 

afin de privilégier la croissance des mains supérieures. Seuls deux doigts, appelés « tire-

sèves », sont préservés. Ces derniers permettent d’arrêter les remontées de pourritures dans le 

rachis.  

Les restes des pièces florales sénescentes présentes à l’extrémité des fruits sont 

également supprimés (Figure 3). Cette opération, nommée épistillage, permet d’éviter une 

source importante d’inoculum pathogène et de limiter les blessures par contact avec les autres 

doigts. 

Les régimes sont ensuite gainés à l’aide d’un film de polyéthylène permettant de 

tamponner les variations de température, d’assurer une meilleure croissance des fruits, de 

présenter une barrière mécanique contre les parasites et de protéger les fruits contre les 

agressions mécaniques dues, par exemple, aux frottements des feuilles (Figure 3).  

Le marquage des régimes se fait également au stade « doigts horizontaux » et permet les 

prévisions de récolte (Figure 3). En effet, les différents régimes arrivés à ce stade sont 

marqués d’une bande de couleur spécifique dans le but de connaître leur âge et de prévoir la 

date de récolte à un âge physiologique déterminé. En fonction des plantations, 9 à 12 couleurs 

de marquage sont utilisées dans une succession hebdomadaire.  
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1.4.3.3. La récolte 

La récolte des régimes ne s’improvise pas. L’objectif est de récolter au grade le plus 

élevé possible compatible avec l’absence de mûrs d’arrivage à l’entrée en mûrisserie. Le stade 

de récolte sera donc fonction des délais et des conditions prévalant entre la coupe et l’entrée 

en mûrisserie. Traditionnellement, la récolte s’effectue lorsque le grade commercial est 

atteint. C’est-à-dire lorsque le fruit de référence, représenté par le doigt médian du rang 

externe de la deuxième ou de la quatrième main, a un diamètre de respectivement 36 ou 34 

mm. Les fruits sont à ce stade remplis au ¾ et sont encore verts et durs. Le seul critère du 

grade n’est pas suffisant pour décider du stade optimal de récolte. En l’absence de facteurs 

limitant, le grade de coupe est atteint lorsque le fruit a accumulé 900°C jours au seuil de 14°C 

depuis le marquage au stade doigts horizontaux. A cet âge physiologique les fruits ont une 

durée de vie verte (DVV) qui correspond au temps écoulé entre la coupe des fruits et le début 

de leur crise climactérique et qui est compatible avec leur transport maritime et leur 

acheminement vers la mûrisserie. Il est ainsi possible de prévoir la récolte à partir de la date 

de floraison et de l’utilisation de données météorologiques (Jullien et al., 2008). L’intervalle 

de temps entre la floraison du bananier et la récolte du régime, appelé « intervalle fleur-

coupe » (IFC), est donc théoriquement constant lorsqu’il est exprimé en somme de 

températures. Il est par contre très variable en jours en fonction de la zone de production, de la 

saison et surtout des pratiques culturales. 

La récolte s’effectue à la machette avec toutes les précautions nécessaires pour éviter les 

chocs et meurtrissures aux fruits. Les régimes sont portés à l’extérieur des parcelles dans des 

berceaux matelassées positionnés sur la tête. Le régime est alors déposé avec le berceau dans 

une remorque ou accroché à un système de câbles qui traverse la bananeraie jusqu’au hangar 

d’emballage (Figure 3). La récolte du régime marque le début du dépérissement du pied-mère 

qui est alors coupé. Sa suppression enlève la dominance apicale sur le rejet préalablement 

sélectionné et permet de poursuivre la culture. 

1.4.3.4. De la récolte au conditionnement 

A la station d’emballage, les régimes sont accrochés à un rail et les mains sont séparées 

de la hampe florale à l’aide d’un couteau (Figure 3). Les mains sont ensuite plongées dans un 

bac d’eau enrichi en chlore et en alun appelé bac de dépattage afin de permettre l’écoulement 

du latex (Figure 3). A la sortie de ces bacs, les mains de bananes sont récupérées, parfois 

frottées à l’aide d’une éponge savonneuse, et sont découpées en bouquets de 3 à 8 fruits. Ces 

derniers sont alors placés dans un second bac, appelé bac de lavage, pendant au moins 20 
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minutes (Figure 3). Ils sont ensuite acheminés sur des tapis roulants vers la zone de traitement 

fongicide avant d’être pesés et conditionnés dans des emballages plastiques (sacs en 

polyéthylène perforé ou non, avec ou sans vide d’air) et disposés dans des cartons 

d’exportation (Figure 3). Les techniques de traitement chimique sont très variées: trempage, 

tunnel de pulvérisation, pulvérisateurs, cascades, badigeonnage manuel, etc…Mais il semble 

qu’un bon mouillage des fruits soit essentiel pour assurer une bonne efficacité des traitements 

fongicides (de Lapeyre de Bellaire et al., 1994). 

1.4.3.5. De la station d’emballage à la mûrisserie 

Les cartons de bananes sont regroupés sur des palettes et sont stockés dans un container 

refroidi à 13°C (Figure 3). La mise au froid permet d’une part, de minimiser la production 

d’éthylène et de retarder le processus de maturation et d’autre part, de réduire le 

développement de champignons éventuellement présents (Krauss et al., 2000). Ces containers 

sont acheminés par camions vers le port de Douala où les palettes sont débarquées et 

entreposées dans les cales de navires. Par la maîtrise de la température, de l’hygrométrie et de 

la composition de l’atmosphère, ces cales assurent la conservation des bananes durant la 

traversée maritime. Au bout d’une dizaine de jours, les palettes sont débarquées dans le port 

de destination et sont acheminées par voies terrestres vers les mûrisseries où s’effectuera la 

maturation artificielle des bananes (Figure 3). Cette maturation est initiée par un apport 

exogène d’éthylène durant 24h à une température de 20°C. Au terme de ces 24h, les fruits 

sont ventilés et peuvent être commercialisés. 

1.4.4. Avantages et limites de l’utilisation exclusive de la Cavendish 

Le sous-groupe homogène des Cavendish (AAA) a pu être adopté dans presque toutes 

les régions tropicales humides pour son énorme potentiel productif (jusqu’à 60 tonnes/ha) 

associé à une bonne précocité (récolte en 10 mois) et une taille réduite (moins de 3 m) 

facilitant sa culture (Lescot, 1998). Ainsi, les acteurs de la filière ont fortement investi et se 

sont organisés exclusivement autour du standard Cavendish. Les efforts de recherche et 

développement ont été dirigés vers l’optimisation des modes de production, emballage, 

transport, mûrissage et marketing des bananes Cavendish. A l’heure actuelle, le processus et 

l’équipement industriel de production et de distribution sont adaptés à la Cavendish. Ce 

schéma industriel ne laisse que très peu de place à l’introduction d’autres variétés et aux 

changements. Elle est soumise à une forte pression normative qui pousse à banaliser le produit 

et à rendre ce marché monolithique : la banane dessert au « format » Cavendish, 

correspondant aux normes Dole ou Chiquita. Dans l’ensemble des fruits et légumes, il 
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n’existe pas d’exemple semblable. L’offre du marché pour un fruit est, dans tout les cas, 

constitué d’au moins deux variétés.  

Ainsi, malgré la diversité génétique des bananiers, il n’est pas rare dans certaines 

régions de production destinée à un commerce d’exportation, de ne rencontrer que de la 

Cavendish. La diversité des cultivars existant au sein d’une même structure de production est 

d’autant plus réduite qu’on s’éloigne du centre d’origine du complexe d’espèces pour aller 

vers des régions ou seuls quelques exemplaires de bananiers ont été introduits. Cette forte 

spécialisation variétale et géographique s’accompagne d’une concentration du pouvoir de 

marché entre quelques grandes firmes (Loeillet, 2005).  

Il existe évidemment des contraintes liées à la monoculture intensive de type agro-

industriel, sans rotation, faisant appel à d’importantes quantités d’intrants et pratiquée durant 

de nombreuses années (parfois plus de 40 ans) (Lescot, 2004). Ces contraintes sont 

notamment d’ordre environnemental et phytosanitaire. Ce type de culture peu respectueuse de 

l’environnement aboutit notamment à une évolution et dégradation des sols. Des déséquilibres 

biologiques apparaissent rendant la culture plus sujette aux maladies et ravageurs. De plus les 

populations de pathogènes aériens ou telluriques, inféodés à la culture, ont tendance à 

s’accroître s’il n’y a pas rupture de leur cycle biologique due à la suppression de l’hôte. Les 

risques de résistance aux pesticides sont également accrus dans ces conditions et l’apparition 

de nouvelles maladies est une réalité. Ainsi, le problème majeur des productions bananières 

sont les lourdes menaces parasitaires qui pèsent sur ces productions face à l’étroitesse de la 

gamme variétale cultivée à l’heure actuelle en monoculture intensive.  

Chez la banane, le premier problème est apparu lorsque la Gros-Michel a été cultivée de 

manière intensive et que ce premier cultivar commercial a été détruit avec l’apparition de 

Fusarium  oxysporum cubense ou maladie de Panama. Après 1960 le commerce international 

de la banane a été dominé par le cultivar de type Cavendish. Plus récemment, une forme 

extrêmement virulente du pathogène F. oxysporum, la race T4, et pouvant s’attaquer aux 

Cavendish a été décrite (Hwang et al., 2004). D’autres problèmes parasitaires associés aux 

Cavendish sont apparus et ont été largement développés par divers auteurs (Jones, 2000; 

Ploetz et al., 2003). Parmi les différentes contraintes liées aux parasites et ravageurs, il faut 

signaler que les maladies d’origine fongique, très répandues dans les plantations industrielles, 

constituent la principale perte de rendement et affectent tous les organes de l’hôte (Ploetz et 

al., 2003). A l’heure actuelle, les plus néfastes, affectant de manière significative la 

production des Cavendish d’exportation, sont les cercosporioses. D’autres maladies 
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fongiques, propres aux marchés d’exportation et causant d’importants dégâts et pertes 

économiques, méritent qu’on les souligne. Il s’agit des maladies de conservation comme les 

pourritures de la couronne (Lassois et al., accepted) et l’anthracnose.  

1.5. Conclusion 

Malgré l’importante diversité génétique existant au sein du genre Musa le marché 

d’exportation est dominé par la culture presque exclusive de la variété Cavendish. Cependant, 

la production de banane d’exportation doit être capable de répondre aux exigences de 

durabilité, qualité et rendement qui lui sont imposées. Ceci constitue un véritable défi pour les 

variétés existantes et ce de part  l’étroitesse de la gamme variétale utilisée et l’apparition de 

nouvelles maladies ou de nouvelles souches virulente. Ainsi, d’importantes stratégies de lutte 

doivent être élaborées.  

En bananeraies intensives, le système de culture dominant a longtemps reposé sur une 

large utilisation systématique des produits phytosanitaires. Au début des années 90, les 

bananeraies étaient traitées avec des quantités très élevées de matières actives : de 17 à 22 

kg/ha/an (Lassoudière, 2007). Actuellement on ne peut plus concevoir la protection 

phytosanitaire uniquement sous le seul aspect de la lutte chimique. Celle-ci pose de gros 

problèmes tels que la toxicité des produits, l’accumulation de résidus dans les fruits, la 

destruction d’organismes non cibles, le risque de pollution des eaux, les pertes d’efficacité des 

produits. De plus, la protection phytosanitaire doit faire face à une législation de plus en plus 

restrictive. Pour certaines maladies, comme la maladie de Panama, aucun produit 

phytosanitaire n’a jamais apporté de réponse satisfaisante.  

Ainsi, l’ensemble du système de culture et de l’itinéraire technique est à adapter. Il faut 

envisager une approche globale de la filière banane dans un but de durabilité de la production. 

Des solutions techniques ont permis de réduire de plus de 50% l’utilisation des pesticides aux 

Antilles Françaises au cours de la dernière décennie (Chabrier et al., 2005). Parmi les 

techniques alternatives à la lutte chimique, on retrouve également la sélection et 

l’amélioration variétale. C’est aujourd’hui la voie privilégiée pour maintenir à plus ou moins 

long terme la culture de la banane dans les zones actuelles de production mais il s’agit d’une 

action de longue haleine. Les premiers travaux d’amélioration des bananiers par croisement 

ont été amorcés dès les années 20 à la suite de l’extension de la maladie de Panama. 

Parallèlement à ces activités de croisement, d’autres équipes ont concentré leurs efforts, à 

partir des années 80, sur la mutagenèse et sur la sélection de variants somaclonaux qui sont 

apparus à la suite du développement des techniques de cultures in vitro pour la multiplication 
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rapide et industrielle des vitroplants de bananiers. Le comportement de variétés issues de 

mutations induites par l’application de rayons ionisants sur les bourgeons végétatifs est 

également évalué. Enfin, l’avènement des techniques de biologie cellulaire et moléculaire a 

favorisé l’émergence d’équipes qui travaillent sur la transformation génétique des bananiers. 

Cependant, les réponses sur la durabilité de la culture bananière ne relèvent pas d’une 

seule solution miracle, à savoir la recherche d’un produit phytosanitaire plus performant ou 

même uniquement la mise au point d’un bananier résistant. Elle dépend plutôt d’une mutation 

des systèmes de culture par l’amélioration d’itinéraires techniques complets basée sur une 

connaissance approfondie de l’agronomie de la plante, de la biologie des parasites et des 

relations hôte-pathogènes.  
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Abstract 

Crown rot is a complex disease which affects export bananas in all producing countries. 

Usually invisible when the fruits are packed for transportation from tropical countries to 

distant destinations, disease symptoms occur during shipment, ripening, and storage. This 

disease, characterised by rot and necrosis, affects tissues joining the fingers with each other, 

called the crown. It may reach the pedicel and ultimately the banana pulp when the crown rot 

is severe. Losses from 10% to 86% have been recorded for bananas respectively treated and 

untreated. 

In this paper, we proposed to inventory current knowledge on crown rot disease and 

associated control measures which must be considered throughout the production channel in 

order to be effective. We suggest a new, approach to consider this post-harvest disease of 

bananas. In this approach we consider that bananas elaborate in the field a fruit quality 

potential. We consider that this new concept of preharvest quality potential is a key factor in 

understanding crown rot development, since is it responsible for most of disease incidence 

variations observed in the industry. The fruit quality potential depends on both a physiological 

and a parasitic component, both of which depend on agro-technic and pedo-climatic factors of 

the crop production area. The physiological component is defined as the sensitivity of the 

fruits to crown rot, while the parasitic component reflects the capacity of the parasitic 

complex to induce a level of disease. 

The content of this review is divided into two parts. First the fruit quality potential at 

field level is addressed, with special interest on its physiological and parasitic components. 

Secondly, the control methods are examined at different steps of the channel, in order to give 

an overview of a possible integrated control strategy.  
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2.1. Introduction  

Bananas are grown in over 120 countries and rank second in world fruit production, 

after oranges and before grapes. The banana industry, which is based on a small number of 

cultivars belonging to the Cavendish subgroup, is a vital source of income, employment, and 

export revenue for most exporting countries, which are mainly developing countries in Latin 

America, the West Indies, Southeast Asia, and Africa. However, major losses often occur 

during shipping of bananas to their final market mainly because of ripening incidents, 

appearance defects, and storage decay such as anthracnose and crown rot that occur during 

shipping. Such post-harvest diseases negatively impact the market value of bananas, 

especially when they are assessed at the port of arrival or in ripening facilities, thus 

contributing to banana quality depreciation and constraining export trade. Anthony et al. (9) 

reported that post-harvest diseases were responsible for 20% of harvest losses in Sri Lanka in 

1997.  

Crown rot affects export bananas in all producing countries and is considered to be one 

of the main export banana post-harvest diseases (61, 83). This became a major problem in the 

banana industry during varietal reconversion initiatives in the 1960s. Up until 1960, only 

Gros-Michel subgroup cultivars were cropped for export, and for economic and practical 

reasons bananas were shipped in complete bunches consisting of double layers of fruits called 

hands which are arranged helicoidally around a central axis called the stalk. These cultivars 

were, however, susceptible to Panama disease (Fusarium oxysporum f. sp. Cubense) and thus 

replaced by Cavendish subgroup cultivars because of their resistance to Panama disease. 

However, Cavendish bananas are more fragile during shipping (33) and this triggered a 

revolution in the banana industry as bunch shipping was discontinued. Bananas were instead 

cut into clusters consisting of several banana fruits joined by the crown tissues (Fig. 1) and 

boxed for shipping.  
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Fig. 1: Crown rot symptoms. (A) Healthy crowns after maritime shipping before being placed in ripening 
rooms; (B) Crowns diseased with a superficial mycelium after maritime shipping; (C) Rot noted on bananas 
after maritime shipping; (D) Rot on the peduncles inducing banana ripening upon their arrival after 
maritime shipping; (E) External crown rot symptoms after fruit ripening; (F) Internal crown rot symptoms 
after fruit ripening. 

The crown became a prime site for infection by different pathogens (41, 52, 64). The 

incidence of crown rot periodically increases during the rainy season, and losses of over 10% 

have been recorded in the UK in bananas coming from the Windward Islands that were 

harvested during this period (61). Losses of up to 86% have also been reported in non-

chemically treated bananas from the Philippines (6).  

The first studies on crown rot focused on (i) the etiology of this disease, especially on 

the identification of the most pathogenic fungal species involved; and (ii) on post-harvest 

control methods, mainly chemical. Nevertheless, these studies provided neither a good 

understanding of the conditions most conducive for disease expression nor adequate control 

of this disease at all spatio-temporal scales. There is now some evidence that fruit physiology 

at harvest influences crown rot development and that all interactions among the 

microorganisms implicated should be considered. Taking these into account, a banana quality 

build-up scheme was proposed (Fig. 2).  
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Crown rot at commercial level

Factors affecting crown rot development during
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Artificial fruit ripening

Shipping and storage: fruit conservation 

Harvestand packing station

Field plot
Harvest stage

Fruit quality potential

Pathological 
component

Physiological 
component

Agro-technical factors

Pedo-climatic factors

Field prophylaxy, sleeving, 
…

Genetic 
control
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handling, cleaning

Storage conditions (T°, RH, CA or MA)

 

Fig. 2: Diagram representing different key factors that arise throughout the commodity chanel concerning 
crown rot development at the commercial stage, and related control methods. T°: temperature; RH: 
relative humidity; CA: controlled atmosphere; MA: modified atmosphere. 

In this scheme, the fruit quality potential at harvest is presented as a key factor in crown 

rot development. The quality potential elaborates during the banana growth phase in the field 

and depends on two components: (i) a fruit physiological component, which determines the 

fruit susceptibility to the disease; and (ii) a parasitic component which reflects a level of 

crown contamination by the fungal complex, as well as the pathogenicity of this complex. The 

influence of environmental and agrotechnical pre-harvest factors on these two components of 

the fruit quality potential is a new approach in the post-harvest disease research, and we will 

therefore discuss their importance in this review. 

2.2. Crown rot symptoms 

Crown rot affects tissues of the so-called “crown”, which unites the peduncles (Fig. 1). 

The rot is not visible when the bananas are boxed, and symptoms generally appear only after 

maritime shipping. The rot begins with mycelial development on the surface of the crown 

(Fig. 1B), followed by the peduncles (Fig. 1D) and fruit (Fig. 1C). The bananas may detach 

from the peduncle during severe infections. Crown rot results from the development in the 
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crown of several common fungi, which constitute a fungal complex, and leads to softening 

and blackening of tissues at the site of the wound left when the cluster was cut from the 

bunch. The role of bacteria in the complex (64) has not been confirmed by detailed research. 

The symptoms develop rapidly during ripening when the physiology of the fruit undergoes 

modifications that facilitate fungal development (46).  

Crown rot affects the fruit quality because of the development of necrosis on the fruit, 

and it can also trigger early ripening of bananas during shipping (77) (Fig. 1D). Ripening may 

be caused by ethylene released by stressed and necrotic tissues (31, 65, 89), but also by 

ethylene produced by mycelia of fungi such as Colletotrichum musae (23, 78). Onset of the 

disease cannot be predicted and it spreads in an irregular pattern on all clusters in a shipping 

box. The same box may contain both healthy and infected clusters.  

2.3. Fruit quality potential as a key factor in crown rot infection patterns  

Geographical and seasonal variations have been noted in the incidence of crown rot 

disease of bananas (61, 64, 87). Lukezic et al. (64) showed that the incidence of this disease 

varied throughout the year in Honduras. It is generally higher during the summer (March–

September) and declines during the coldest period (October–February). They also 

demonstrated that this pattern did not seem to be correlated with variations in the fungal 

complex isolated from banana crowns. Moreover, in Jamaica, a high disease incidence was 

found to be correlated with periods during the year when temperatures were highest (87), 

whereas in the Windward Islands, incidence was reported to be highest during the rainy 

period (61). These spatiotemporal fluctuations reflect the variations in the banana fruit quality 

potential that depends both on a parasitic and physiological component (Fig. 2).  

2.3.1. Parasitic component of the fruit quality potential 

In crown rot, the parasitic component reflects a level of crown contamination by the 

fungal complex, as well as the pathogenicity of this complex.  

2.3.1.1. Etiology of crown rot and pathogenicity of the fungal complex 

Crown rot is the result of the activity of a fungal complex. The microorganisms most 

commonly isolated in crown rot are: Musicillium theobromae, Colletotrichum musae, 

Ceratocystis paradoxa, Lasiodoplodia theobromae, Nigrospora sphaerica, Cladosporium sp., 

Acremonium sp., Penicillium sp. and Aspergillus sp., as well as many Fusarium spp., 
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including F. semitectum, F. verticillioides, F. sporotrichoides, F. oxysporum, and F. solani (9, 

39, 41, 51, 64, 66, 71, 76, 85, 96, 97).  

Several organisms may be involved in disease development. Moreover, disease severity 

and the nature of the complex may vary substantially, depending on the production area 

(Table 1) and season. Lukezic and Kaiser (63) showed that fungal populations may differ 

between banana plants and even between crowns.  

Fungi of the complex do not all have the same pathogenicity and variations have been 

reported between regions (Table 1). Knight (58) considered that F. oxysporum, F. 

verticillioides and F. graminearum, which have been isolated frequently from crowns of 

Windward Island bananas, are primary pathogens, whereas L. theobromae, M. theobromae, 

and N. sphaerica are considered to be relatively nonpathogenic species. According to the 

findings of Marin et al. (66) in Costa-Rica, F. verticillioides and F. semitectum are the most 

pathogenic species. According to Griffee (40), C. musae, L. theobromae, C. paradoxa, F. 

semitectum, and F. graminearum are major pathogens involved in this disease. However, 

many authors agree on the strong pathogenicity of C. musae, which may trigger an infection 

from a very small amount of inoculum (34, 39, 62, 64, 85). Other pathogens require larger 

amounts of inocula to induce crown rot symptoms (34, 40, 59, 60, 62).  

A wide range of fungal complex compositions have been noted in natural 

contaminations. The nature of this composition, the specific pathogenicity of the different 

microorganisms involved as well as interactions among them may even alter the pathogenicity 

of the complex. C. musae was more pathogenic when it was inoculated alone than when it 

was coinoculated with other species (62); however, Anthony et al. (9) found that L. 

theobromae, F. Verticillioides, and C. musae were more highly pathogenic when coinoculated 

than when they were inoculated separately.  

The respective roles of the different species that could belong to the fungal complex has 

been thoroughly studied, whereas little information is available on the antagonistic or 

synergistic relationships among these different species. It is essential to gain greater insight 

into these interactions so in order to better characterise the pathogenicity of the fungal 

complex.  
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2.3.1.2. Factors influencing the level of crown contamination by the fungal complex 

Very little information is available on the epidemiology of crown rot. The fact that the 

characteristics of each species involved in the disease complex differ complicates studies on 

the infection cycle. There are nevertheless some general features. Badger (11) showed that the 

relative humidity generally has to be over 86% for germination of conidia of most fungi 

involved in the complex. In banana plantations, this group of fungal species sporulates 

abundantly on all putrescent organs such as leaves (68, 88), floral parts (2, 28), and bracts (26, 

63). C. musae and some Fusarium species are primary colonizers of decomposing leaves (69) 

and floral parts (26). Banana contamination by spores of C. musae and various Fusarium spp. 

mainly occurs during the first 40 days following bunch emergence, and these are gradually 

replaced by another fungal complex (28). Spores of some species such as Colletotrichum spp. 

are mainly disseminated by rainwater (26, 28, 47), whereas others are airborne (63).  

The fungus C. musae, which is also a causal agent of anthracnose, establishes quiescent 

infections in the field during the first month following banana flowering (26). These quiescent 

infections could also contribute to the onset of crown rot if the pathogen has an opportunity to 

colonize the crown region (42); however, for the other pathogens, even though field infections 

cannot be excluded, infections mainly occur during harvest and when clusters are trimmed 

from bunches (70). Contamination generally takes place when hands are cut with a 

contaminated knife (35, 39, 94, 96), or when clusters are cleaned with contaminated washing 

water (86). At harvest, the fruits and senescent floral organs bear high quantities of spores that 

could potentially contaminate the crowns. Some of these spores could be removed by washing 

and then accumulate in the washing water (91), while others, such as C. musae appressoria, 

may adhere tightly to the fruit surface (84). The washing tanks are the main source of inocula 

according to Shillingford (86). After the banana clusters are dipped in the washing water, the 

spores can penetrate a few millimetres into the vascular vessels of the crown, and disease is 

then hard to control with a fungicide spray treatment (33). Green and Goos (39) showed that a 

suspension of C. musae spores could penetrate 5–7 mm into the crown tissues within only 3 

min. The crowns may also be contaminated by airborne spores before the fruit are placed in 

boxes in the packing station. The risk is especially high when the facilities are dirty or if 

debris (pistils, stalks and fruits) is piled up nearby. Conidia can survive for several months 

under extreme temperature and humidity conditions before germination (70).  



Literature Review 

37 

2.3.2. Physiological component of the fruit quality potential 

The physiological component refers to the level of fruit susceptibility to crown rot, 

which reflects the physiological state of the fruit and is dependent on agrotechnical and 

pedoclimatic factors during plant growth. Only a few studies have been conducted on factors 

influencing the level of banana susceptibility to crown rot. In Guadeloupian conditions, it was 

shown that marked variations in fruit susceptibility could occur at the same production site 

over a period of 10 successive weeks (62). Variations in crown rot susceptibility between 

different Guadeloupian production areas during the same period have also been observed (L. 

Lassois, unpublished). 

Fruit age as expressed in accumulated degree day (dd) (53) also seems to affect crown 

rot development. An intra-bunch banana crown rot susceptibility gradient has been 

documented. Clusters growing on the first hands of a bunch, which are, on average, 70 dd 

more advanced than the hands initiated last (54), are more susceptible than clusters 

developing on the last hands (L. Lassois, H. Bastiaanse, M. Chillet, M.H. Jijakli, A. Jullien, 

and L. de Lapeyre de Bellaire, unpublished). Moreover, a linear relationship between fruit age 

(in dd) and the susceptibility of the fruit to crown rot was reported, with the oldest fruit being 

most susceptible to this disease (36).  

Some agricultural practices have a bearing on crown rot development. Modifying the 

source-sink ratio by trimming leaves and hands (where leaves are considered as sources and 

fruits as sinks) may induce variations in fruit susceptibility. Severe bunch trimming leads to a 

sharp drop in banana crown rot susceptibility when the bananas are harvested at a constant 

physiological age of 900 dd (L. Lassois, H. Bastiaanse, M. Chillet, M.H. Jijakli, A. Jullien, 

and L. de Lapeyre de Bellaire, unpublished). 

The mechanisms underlying variations in fruit crown rot susceptibility have yet to be 

investigated. The plant mineral status has an effect on banana susceptibility to various 

diseases (18, 45). Preformed fungitoxic polyphenolic compounds could be involved in banana 

resistance to post-harvest diseases (1, 4, 19, 72, 74). Nevertheless, all factors potentially 

involved in plant resistance mechanisms could have an impact on the level of banana crown 

rot susceptibility. Plants are equipped with a series of defense mechanisms controlled through 

the expression of different genes. Genes governing observed susceptibility variations could be 

identified by assessing differences in gene expression between bananas with different levels 

of susceptibility. Studies are currently under way to identify the underlying mechanisms and 

key genetic factors involved in crown rot susceptibility variations using a differential 
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expression analysis technique (L. Lassois, P. Frettinger, L. de Lapeyre de Bellaire, P. 

Lepoivre and H. Jijakli, unpublished). 

2.4. Crown rot control methods 

Banana crown rot, like other storage diseases, has an especially detrimental impact on 

export produce. A routine postharvest treatment with a fungicide is the main method currently 

used to control this disease. Problems may, however, arise from differences in fungicide 

efficacy associated with the level of susceptibility of the fruit to crown rot or of the pathogens 

to the different fungicides. Finally, discharge of fungicidal slurries can also lead to 

environmental pollution, and residues of fungicides may subsequently be detected in the 

marketed bananas. Research focused on alternative nonchemical control methods is of 

considerable interest in the current increasingly prohibitive social and legal setting. It is 

essential to implement sound integrated control strategies throughout the commodity chain 

considering the complexity of the disease and the difficulty of its control (33, 91).  

2.4.1. Field control methods 

We have a set of methods that can usually be implemented in an integrated way to 

achieve efficient crown rot control (Fig. 2). These are mainly preventive measures aimed at 

limiting fungal contamination of bananas in the field. 

2.4.1.1. Sanitation of banana plantations  

Most species involved in the fungal complex are saprophytes that occur on senescent 

banana organs, especially on decomposing leaves (69). Old leaves present in the banana 

plantation may harbour inocula that could be responsible for severe contamination of bananas 

by this fungal complex (90). The inoculum pressure, and thus the disease development rate, 

may be reduced through regular elimination of senescent leaves around the fruit (91). Banana 

floral parts are also inoculum sources, especially for C. musae and several Fusarium species 

(28). In light of the potential role of bunch stalk contamination in the development of crown 

rot (35), early elimination of flower parts in the field is also essential for reducing bunch 

contamination by the pathogens (26).  

2.4.1.2. Plastic sleeving to protect bananas 

No accurate studies have been carried out to assess the impact of sleeving on the crown 

rot development rate. It is nevertheless known that bunch sleeving (Fig. 3) with perforated 
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plastic film protects bunches from fungal contamination, thus especially curbing the 

development of pitting disease (44) and speckling disease (52). Moreover, it has been shown 

that sleeving can reduce contamination of banana bunches by C. musae by over 80% (26). 

These findings suggest that sleeving directly reduces crown contamination in the field, or that 

sleeved fruits release fewer spores in washing water during packing operations. 

 

Fig. 3: Successive operations carried out from the field to the banana marketing stage. a: deflowering is 
done in the packing station when it has not been done in the field. 

2.4.1.3. Controlling the banana harvest stage 

Bananas are exported when they have grown to a commercial grade specified by 

European regulations (Commission Regulation (EC) No 2257/94 of 16 September 1994, 

setting quality standards for bananas) and market requirements. However, bananas should be 

harvested at an age that will ensure a sufficient conservation. It has also been shown that the 

best estimator of fruit shelf life is physiological age, expressed as a sum of accumulated 

temperatures from flowering to harvest rather than in days (53). It was shown that the 

physiological age of bananas (expressed in dd) has an impact on crown rot susceptibility (36). 
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The fruit physiological age should thus be taken into account at harvest. Some practices 

such as field trimming of false hands, some true hands, male buds and external fruits of hands 

can accelerate the fruit pulp filling rate. These practices can thus reduce the physiological age 

that bananas need at harvest to enable them to reach a sufficient commercial grade (61, L. 

Lassois, H. Bastiaanse, M. Chillet, M.H. Jijakli, A. Jullien and L. de Lapeyre de Bellaire, 

unpublished).  

2.4.1.4. Genetic control 

The range of varieties grown for dessert banana export is very narrow as all clones 

belong to the Cavendish subgroup (12). Moreover, breeding is complicated because triploid 

banana varieties are generally sterile. In the past, banana genetic improvement programs were 

mainly focused on obtaining varieties resistant to Sigatoka and Panama diseases. Resistance 

to crown rot of improved varieties has not been considered in any breeding programs to date.  

According to Marin et al. (66), FHIA-01 and FHIA-02, two hybrids produced by the 

FHIA breeding program, are partially resistant to crown rot. Conversely, Perez Vicente and 

Hernandez (79) consider that these two varieties are more susceptible to crown rot caused by 

F. semitectum and C. musae as compared with Cavendish varieties. According to these 

authors, only FHIA-23 is more resistant to crown rot than Grande-Naine. Finally, the first 

FHIA hybrids were introduced in the late 1980s, but their characteristics differ from those of 

Cavendish bananas and consumers have shown little interest in them, thus limiting their 

distribution. 

2.4.2. Postharvest control methods 

2.4.2.1. Chemical control  

Routine post-harvest fungicide treatment is still the most efficient crown rot control 

method. This strategy was introduced in the late 1960s with the discovery of systemic 

benzimidazole derivative fungicides (thiabendazole and benomyl). They are classified as 

antimitotic compounds. Gradually, other fungicides that inhibit ergosterol biosynthesis, such 

as imazalil and bitertanol, were also introduced (29, 37). The application methods vary 

markedly: dipping, spraying (Fig. 3), cascade treatment, etc., but in every case the bananas 

must be thoroughly wetted to ensure the fungicide treatment efficacy (29, 50). Alum is often 

combined with fungicide slurries to neutralise latex residue remaining on crowns when the 

bananas are removed from the washing bath (73); however, this mixture seems to have a 

negative impact on the performance of some active ingredients such as thiabendazole (50). The 
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time between crown trimming and fungicide application is critical. Crown rot severity seems to 

increase when fungicide application is delayed (39). Bananas are nevertheless usually treated in 

time in packing stations, i.e. just after they are removed from the washing bath. Problems 

concerning the development of resistant strains may arise with this practice. Postharvest 

fungicides generally have the same mode of action as those sprayed in the field to control 

Sigatoka disease. C. musae strains resistant to thiabendazole, and generally to all antimitotic 

compounds, have been detected in many banana-producing countries (27, 46, 51, 61). In 

Guadeloupe, it has been shown that thiabendazole-resistant C. musae strains developed after 

exclusive foliar applications of benomyl over a decade (1972-1982) for Sigatoka Disease 

control (27). Postharvest use of chemicals could ultimately be prohibited because the number 

of active substances registered for postharvest treatment has been reduced by current 

regulations, and legislation is becoming increasingly restrictive. Moreover, the efficacy of 

intensive fungicide treatments is not always adequate. In some areas where very few resistant 

strains are present, the efficacy of fungicides for postharvest disease control was found to vary 

substantially depending on season and production area (16). Finally, consumers are now highly 

selective with respect to food safety concerns, and demand is increasing for produce that has not 

undergone any postharvest chemical treatments. Alternative non-fungicide solutions are 

therefore being sought.  

2.4.2.2. Preventive measures in packing stations 

Deflowering in packing stations 

Deflowering (Fig. 3) involves the removal of all floral parts that could potentially 

harbour inocula before the dehanding operation. When the floral parts have not been removed 

in the field, deflowering is done in the packing station before bunch trimming, thus reducing 

the risk of contamination of the different washing baths (61, 85).  

Packing station water quality 

Fruit dehanding is a risky operation because the resulting wound is the main portal for 

infection by crown rot pathogens. Contamination of crowns when the bananas are processed in 

the dehanding tanks and then in the washing tanks is a key step in the crown-rot development 

process (Fig. 3). Spore accumulation in the water can be reduced by regularly changing the 

washing water in the washing and delatexing baths (91) (Fig. 3). These baths can host a high 

quantity of spores, mainly Fusarium sp. and Verticillum sp., that detach from the peel surface 

(86), whereas C. musae conidia are less often found (85). Care should be taken to avoid 
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contaminating the baths with plant debris (pistils, leaves, trimming waste, etc.) and the water 

should be regularly refreshed.  

It is also recommended that the bath water be treated with active chlorine (10, 33, 91) or 

quaternary ammonium disinfectants in order to hamper contamination (86), but the efficacy of 

this disinfection procedure is controversial (33, 91). The chlorine concentration should be 

regularly adjusted to offset the high observed losses by volatilization or through redox 

reactions with latex or other organic matter in the washing baths (86). It is especially hard to 

maintain the bath water quality when the water is recirculated in a closed system. In such 

situations, latex contamination gradually increases in the tanks, so it is hard to control the water 

quality simply through chlorine treatment. Note also that, due to changes in market standards, it 

is important to reduce health risks associated with the development of human pathogens in the 

washing baths. 

Packing station sanitation 

Protective measures implemented in the packing station are aimed at keeping the crowns 

of freshly trimmed bananas away from all inoculum sources. To ensure efficient crown rot 

control, it is thus essential to keep the packing station and the adjoining facilities clean. Waste 

(stalks, low-grade fruit, etc.) located in the vicinity of the banana packing area, which could 

contaminate the air in the station, must be eliminated (35, 61). It has been shown that trimming 

clusters in a clean environment rather than in the field can reduce the crown rot incidence by 

50% (35).  

The fruits should also be cleaned before being trimmed from the bunch. A contaminated 

trimming knife could spread inocula from the peel into the crown tissues (64). This may be 

avoided by washing the bunches in lightly chlorinated water before they are trimmed into 

clusters (61). 

2.4.2.3. Banana and crown trimming 

Bananas should be trimmed with a clean stainless steel blade. Finlay and Brown (34) 

showed that roughly trimming the crowns, or ripping them off the hands, significantly increased 

the level of fruit contamination. Tissue fragments on the surface of the crowns dry out and 

quickly become senescent, thus providing an ideal site for rot development (34). Moreover, 

banana trimming knife tips are rounded to avoid banana fruit wounds (61). It is also important 

to cut wide crown sections containing as much crown tissue as possible, a technique that seems 
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to enhance crown resistance to rot and seldom leads to the spread of rot into the fruit pedicels 

(73). 

2.4.2.4. Banana storage techniques 

The temperature, relative humidity and atmospheric composition are the main 

environmental factors that impact storage disease development. These factors may directly 

affect the biology of the pathogens, but they can also have an indirect effect by slowing down 

the fruit metabolism. These environmental parameters can thus be modified, especially to 

extend the banana greenlife. The greenlife represents the period between the fruit harvest and 

the beginning of the climacteric phase and seems to be a prime factor in the development of 

storage diseases since a direct relationship has been noted between the degree of banana 

ripeness and susceptibility to disease (73). Fruit resistance also seems to decrease at the onset of 

the ripening process. It is therefore crucial to carefully manage these factors to ensure efficient 

banana crown rot control (61). 

Storage temperature 

One way to slow down the banana metabolism, and thus to delay crown rot development, 

is to refrigerate the fruit in boxes at the lowest possible temperature without changing fruit 

physiology. Cooling should be continuous throughout the shipping phase, which in turn should 

be as short as possible. Containers designed for maritime shipping of bananas are climate 

controlled at 13-14 °C, because temperatures below 12 °C are detrimental to fruit quality (73). 

Fungal growth is slowed down at 13 °C (34), which is a good tradeoff with respect to 

preserving the bananas and hampering fungal colonization of the crowns. However, this is 

much lower than the optimal temperatures for germination and growth of fungi responsible 

for crown rot, but it is not low enough to slow down the activity of these fungi, which can 

take place within a broad temperature range, i.e. 8 to 36 °C (90). As a result, crown rot 

incidence and severity are higher in bananas exposed to temperatures over 16°C (91). 

Relative humidity 

Although most pathogens require a high relative humidity for their in vitro development 

(11), bananas are less susceptible to crown rot under these conditions. A high relative humidity 

seems to hinder transpiratory water loss from the fruit, which is essential to ensure a long 

greenlife. Indeed, banana greenlife is markedly reduced under low relative humidity 

atmospheric conditions (30 to 40%) as a result of ethylene production from the fruit peel (77). 
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The senescence of banana crown tissues, which is conducive to crown rot development, can be 

hampered by maintaining their turgidity (73). 

Atmosphere composition 

The composition of the atmosphere around bananas during shipping can be manipulated 

to slow down metabolic activity. Modified atmospheres (MA) can be achieved by packing 

bananas in sealed plastic bags (polybags), and controlled atmospheres (CA) are obtained by 

injecting nitrogen in the storage rooms. It was shown that crown rot can be partially 

controlled by packing bananas in MA (H. Bastiaanse, L. de Lapeyre de Bellaire, L. Lassois, 

C. Misson, and M. H. Jijakli, unpublished). For MA, the balance of an atmosphere with a 

lower O2 and a higher CO2 content depends on the extent of fruit respiration, bag permeability, 

and the composition of the air outside the bag (95). The O2 and CO2 contents generally range 

from 1 to 10% and 2 to 14%, respectively, depending on the quality and thickness of the 

plastic packaging (67, 95). This modification in the gas composition reduces the fruit 

respiratory intensity and hampers endogenous ethylene synthesis, which can considerably 

increase the length of the preclimacteric phase. MA also inhibits the metabolism of some 

pathogenic agents. These plastic bags must also have a high mechanical strength because even 

small punctures will upset the MA (16). 

High CO2 (>15%) and low O2 (<1%) levels are toxic to many fungi (3, 38). 

Unfortunately, bananas cannot be stored under these conditions because major alterations 

generally occur during ripening when the atmospheric CO2 level is above 7 to 12% or when 

the O2 level is below 1 to 2% (22, 95, 100).   

Another way to modify gas exchange is to coat the peel with a wax composed of 

sucrose esters combined with cellulose or fatty acids. This wax blocks the stomatal pores, thus 

reducing gas exchange (14). The fruits have higher permeability to CO2 than to O2, and wax 

coatings accentuate this difference. This leads to a substantial decrease in the fruit internal O2 

content without increasing the CO2 to an excessively high level, thus creating an ideal 

atmosphere for preserving bananas without alterations (13).  
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2.4.2.5. Physical control methods 

Hot water treatments 

Hot water treatments destroy the pathogens (15) and modify the fruit environment by 

activating antimicrobial compounds in the peel (24). de Costa and Erabadupitiya  (24) showed 

that the optimal temperature and exposure time for controlling crown rot was 50 °C for 3 min. 

Higher temperatures lead to pale fruit, and exposure times of over 5 min reduce Brix values 

(24) and damage the fruit peel (101). A 20 min longer treatment at a temperature under 45°C is 

effective for controlling C. paradoxa, with the percentage of infected bananas decreasing from 

100% to less than 15% (83). However, commercial tests on naturally infected fruit have not 

achieved crown rot control, and ripening delays have also been noted. There has been no 

commercial adaptation of this technique to date, except in other tropical fruits such as papaya 

(21, 75) and mango (20, 92). Hot water treatments have also been combined with the 

application of antagonistic bacteria in order to increase the biological control efficacy (24).  

UV and gamma radiation treatment 

Ultraviolet light (UV) treatments have considerable potential for fruit and vegetable 

post-harvest diseases control. Stevens et al. (93) discussed the possibility of inducing apple 

resistance to Colletotrichum gloeosporioides through UV-C treatments. In bananas, however, 

the peel seems to be too sensitive to UV for the use of this technique for postharvest control 

of some pathogens of the complex like C. musae  (49). 

Kanapathipillai et al. (55) pointed out that gamma ray treatment (38 min at 4 kGy) 

inhibited spore germination, the formation of C. musae appressoria, and all fungal 

development on the surface of fruit pieces. However, these authors did not investigate the 

effects of gamma rays on whole fruit, or on their complex components. Although dosages of 

around 0.5 kGy can extend banana greenlife (67, 99), Marriott and Palmer (67) noted that 

irradiation can alter the banana peel; the maximum dose tolerated by the fruits is likely around 

0.5 kGy (99). Finally, the development of postharvest fruit irradiation has been hampered 

especially by the high cost of such treatments and their low consumer acceptance (99). 

2.4.2.6. Biological control 

Postharvest biological control is very promising because the crown rot infection site on 

the fruit is limited, the environmental conditions during storage are clearly defined and stable, 
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and bananas have a high added value (48). The results of many studies have suggested that the 

use of microorganisms such as fungi, bacteria and yeasts could provide partial crown rot 

control (7, 24, 25, 32, 43, 60, 62, 80, 98). It has also been shown that biological control 

efficacy increases with the antagonistic agent concentration and with the incubation time 

between the application of the antagonist and crown contamination by the fungal complex 

(62, 80). Antagonists can be used to significantly reduce lesions induced by the fungal 

complex that causes crown rot, but the control efficacy is limited and variable (62). This type 

of control, when used alone, cannot provide total crown rot control, and so should be 

combined with other control tactics such as calcium additives and MA packaging (H. 

Bastiaanse, L. de Lapeyre de Bellaire, L. Lassois, C. Misson, and M. H. Jijakli, unpublished ). 

The impact of several natural substances or nonsynthetic fungicides, such as 

preparations of calcium, plant extracts or organic acids, on crown rot development has also 

been evaluated. Allium sativum extracts (61), and essential oils of Cinnamomum zeylanicum, 

Syzygium aromaticum (81, 82), Cymbopogon nardus, and Ocimum basilicum (9) have also been 

found to have fungicidal activity. Win et al. (101) showed that cinnamon extracts reduced 

crown rot, increased greenlife, and had no negative effects on postharvest banana quality. These 

plant extracts have fungistatic and fungitoxic activity and inhibit conidial germination and 

mycelial growth of C. musae, Fusarium spp., and L. theobromae. However, cases of 

phytotoxicity have been reported and the level of control provided by these natural substances 

is not sufficient to meet market requirements. The use of antioxidants (56) and organic salts 

(5), sometimes combined with surfactants (8), can also enhance crown rot control. Finally, 

treatments with Biocto 6 (seed extract from citrus) combined with a wax-based additive 

(Verdiol), was found to provide the same level of crown rot control as fungicide treatments of 

export bananas (30). 

2.5. Conclusion 

Crown rot studies and control are especially complex because of the observed diversity 

and variability in the composition and pathogenicity of the complex involved in the 

development of this disease. The broad range of possible situations complicates studies on both 

the parasitic and physiologic components of fruit quality. Further studies are thus required to 

gain better insight into this disease, especially since little documentation is available on certain 

aspects such as the epidemiology of crown rot. It is also very important to enhance the overall 

understanding of banana physiological mechanisms involved in the induction of fruit resistance 

to crown rot pathogens with the aim of improving control.  
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There is considerable growing interest in alternative methods to reduce or even 

completely eliminate fungicide treatments. To be efficient, these alternative control methods 

should not be too specific considering the broad spectrum of pathogens involved in the 

complex. No alternative methods to chemical control are currently efficient enough by 

themselves to match the efficacy of fungicide treatments. However, the results of some 

experimental trials have shown that crown rot can actually be managed by combining different 

nonchemical control methods. Crown rot research should enhance the overall understanding of 

this disease and thus lead to the development of an effective integrated control strategy.  
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3. Contributions of molecular biology to understanding the 
mechanisms involved in variation of banana susceptibility to 
crown rot disease 

3.1. Introduction 

Biological responses of fruits, and notably physiological changes and susceptibility to 

fungi, are controlled and regulated by the expression of certain genes associated with specific 

metabolic pathways. Although the genome is identical in every cell of an organism, genes 

may be expressed differently over time (development-stage-specific expression), in space 

(cell-type-specific expression), and according to the state of the fruit (which may be, for 

example, more or less susceptible to a disease). One way to understand the phenomena and 

reactions involved in variation of banana susceptibility to crown rot disease in relation to the 

physiological state of the fruit at harvest is to identify genes involved in these processes via 

the study of their expression. Transcriptomic analysis is an important tool for evaluating gene 

expression. Both molecular biology and genetic engineering have spawned a wide range of 

techniques for studying the differential expression of genes in a given tissue on the basis of 

transcript levels. 

3.2.  cDNA-AFLP analysis 

3.2.1. Introduction 

cDNA-AFLP derives from AFLP (amplified fragment length polymorphism) analysis, 

based on PCR amplification and developed by Vos et al. (1995) primarily for mapping 

genomic DNA. AFLP was adapted for analysis of mRNA levels in plants, and cDNA-AFLP 

was first described by Bachem et al. (1996). Since its introduction in 1996, this technique has 

become a reference tool for the study of differently expressed genes (Botton et al., 2008). The 

technique consists in using RT-PCR to compare mRNA populations produced by different 

populations of cells. This wide-range screening has revealed differential transcription of genes 

whose function is "a priori" unknown, by comparison of the transcriptomes of similar cells or 

tissues (Bachem et al. 1998; Bachem et al. 2001; Van der Biezen et al. 2000; Durrant et al., 

2000). 

3.2.2. Principle 

After reverse transcription of the mRNA, the synthesized double-stranded cDNA is 

digested by a pair of restriction enzymes, one with a 4-basepair recognition site and one with 
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a 6-basepair recognition site. The ends of the digested fragments are then ligated to specific 

adapters. All digested, ligated cDNAs are amplified with a pair of primers, one hybridizing 

with each adapter. This step, called pre-amplification, yields many different fragments that 

cannot be separated on a polyacrylamide gel. A second amplification, called selective 

amplification, is performed with selective primers containing, in addition to the sequence of 

the adapter, one, two, or three additional bases at the 3' end and allowing selective 

amplification of cDNA fragments with complementary 5’ nucleotides. Thus, only a sub-

population of fragments, separated on a polyacrylamide gel, are amplified. Radiolabeling of 

one of the two primers used makes it possible to visualize the fragments by autoradiography. 

 

Figure 1 : Schematic representation of the cDNA-AFLP applied with Eco RI and Mse I like restriction 
enzymes and radiolabelled with 33P. The digestion of cDNA by Eco RI and Mse I and the adaptator 
ligation result in the generation of fragments flanked by (i) identical adaptators and by (ii) non-identical 
adaptators. Fragments that are flanked by identical adaptators are excluded from further amplification 
due the formation of a hairpin structure.  

3.2.3. Advantages 

The cDNA-AFLP method does not require prior sequence information and can thus be 

used with any biological system, especially when genomic resources are lacking (Bachem et 
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al., 1996 ; Ditt et al., 2001). Secondly, the technique allows identification of new genes 

(Botton et al., 2008; Cappelli et al., 2007; Ramonell and Somerville, 2002; Reijans et al., 

2003). These features are particularly interesting because the factors responsible for 

quantitative variation of symptoms in the case of compatible interactions linked to infection 

are still poorly understood and most likely remain to be discovered. More than two 

populations of mRNAs can be compared simultaneously, and by using all combinations of 

specific primers, the cDNA-AFLP makes it possible in principle to amplify all cDNAs 

(Donson et al., 2002). Its reproducibility is very high (Campalans et al. 2001; Lassois et al., 

2009; Matz and Luckyanov, 1998), having been estimated at 100% (Khun, 2001). Its 

sensitivity is comparable to that obtained with microarrays (Reijans et al., 2003), allowing 

detection of transcripts present in very low quantity (Decorosi et al., 2005; Lievens et al., 

2001; Ramonell and Somerville, 2002; Reijans et al., 2003; Savelkoul, 1999) and even of 

transcripts that are considered rare (Fukumura et al. 2003). Bachem et al. (1998) evaluated the 

sensitivity of cDNA-AFLP at one copy of mRNA per cell. In addition, the expression profiles 

obtained correlate well with those obtained by Northern blotting (Albertini et al., 2004; 

Bachem et al. 1996; Breyne et al., 2003; Cnudde et al., 2003; Donson et al., 2002; Durrant et 

al. 2000, Jones et al., 2000). The false positive rate is low, lower than with other similar 

techniques such as differential display (Matz and Luckyanov 1998, Kuhn, 2001; Campalans et 

al., 2001). Moreover, cDNA-AFLP analysis requires only a very small amount of sample 

(Cappelli, 2005) and allows discrimination of homologous genes (Decorosi et al., 2005). As 

its cost is low and it does not require specific hardware, it is affordable for smaller 

laboratories (Ramonell and Somerville, 2002). 

3.2.4. Disadvantages 

Despite its many advantages, cDNA-AFLP analysis has a few disadvantages. Firstly, 

the interpretation of results can be complicated by the fact that a single initial mRNA can give 

rise to amplification of several fragments (Matz and Luckyanov, 1998; Lorkowski and Cullen, 

2004). Secondly, as it is tedious to use all primer combinations, cDNA-AFLP is generally 

performed with only a few primer pairs. Thus, cDNAs that doe not have the restriction sites 

recognized by the enzymes used are not analyzed by the method (Habu et al., 1997; 

Lorkowski and Cullen, 2004). In addition, information on differently expressed genes is 

limited to bands that are sequenced, and the technique does not provide quantitative data on 

the abundance of transcripts (Ramonell and Somerville, 2002). Since cDNA-AFLP analysis 

requires radiolabeling PCR primers, safety precautions must be taken and the work must be 

carried out in a laboratory accredited for work with radioisotopes (Decorosi et al., 2005). 
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Finally, a weakness of the technique lies in the possibility of obtaining false positives due to 

co-isolation of sequences of the same size as the fragment of interest. This is why it is 

imperative to confirm the results obtained by means of an independent technique such as real-

time RT-PCR. 

3.2.5. Application of the method 

The cDNA-AFLP technique and its application to plants were first described by 

Bachem et al. (1996), who analyzed the differential expression of genes in Solanum 

tuberosum in vitro tuberization systems. Other authors subsequently applied the cDNA-AFLP 

analysis to the same model (Trindade et al., 2003, Trindade et al., 2004) and since then, the 

technique has been applied to many other models, among which cotton plants (Ma et al., 

2007), apple (Yao et al., 2007), rice (Akihiro et al., 2006), Arabidopsis thaliana (de Diego et 

al., 2006), and sugarcane (Borras-Hidalgo et al., 2005) are just a few examples. The technique 

has revealed interesting parallels between the responses of plants to pathogens and 

environmental constraints and the expression of genes that establish these responses (Lin et 

al., 2003, Zheng et al., 2009; Ramonell and Somerville, 2002; Simoes-Araujo et al., 2002; 

Nimbalkar et al., 2006; Ditt et al., 2001; Ditt et al.,  2005; Chen et al., 2003). cDNA-AFLP 

analysis has also been applied to other models besides plants: to mammals such as horses 

(Cappelli et al., 2005; Capelli et al., 2007), rats (Fukuda et al., 1999), dogs (Vandeput et al., 

2005), and humans (Egert et al., 2006), but and also to fungi (Avrova et al., 2003; Botton et 

al. , 2008), yeast (Massart and Jijakli, 2006; Reijans et al., 2003), bacteria (Decorosi et al., 

2005; Dellagi et al., 2000), and nematodes (Qin et al., 2000). 

3.3.  High-throughput sequencing for transcriptomics 

Recently developed high-throughput sequencing (HTS) technology has made possible 

powerful strategies for comprehensively interrogating nucleic-acid-based information in a cell 

at unparalleled resolution and depth (Qui et al., 2009; Lister et al., 2009). The availability of 

relatively low-cost sequencing techniques rapidly producing huge amounts of sequence 

information has triggered a paradigm shift in genomics (Lister et al., 2009). The diversity of 

applications to which such techniques have been applied demonstrates the immense range of 

cell processes and properties that can now be studied at single-base resolution. Transcriptome 

sequencing is among these applications, as high-throughput sequencing has become a real 

alternative to other classical techniques for studying the transcriptome. It offers many 

advantages: quantitative detection of messengers, detection of rare transcripts and small 

RNAs, and no a priori dependence on annotation of the genome. This approach thus offers 
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the plant biologist unprecedented opportunities to probe the functions and dynamics of plant 

cells and populations. Currently and in planning future research, these techniques cannot be 

ignored. They will notably make it possible to obtain information that will help to elucidate 

plant responses to pathogen attack. 
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As show in figure 1 hereafter, crown rot development at commercial level depends on 

several post-harvest factors. The first researches on crown rot focused on (i) the etiology of 

this disease, especially on the identification of the most pathogenic fungal species involved; 

and (ii) on post-harvest control methods, mainly chemical. Nevertheless, these researches did 

not provide neither a good understanding of the most conducive conditions for disease 

expression, nor a perfect control of this disease at all spatio-temporal scales. Variations were 

observed in the expression of crown rot symptoms when post-harvest conditions were 

assumed to have been reasonably constant, although not actively controlled (Griffee, 1976; 

Lukezic et al., 1967; Shillingford, 1978).  

We suggest a new, interesting and original approach to consider the crown rot post-

harvest development. It consists to present a fruit quality potential at harvest as a key factor in 

crown rot development (Lassois et al., accepted) (chapter 1.2). This potential develops during 

growth of bananas in the field and depends on a physiological and a parasitical component 

which both are function on agro-technical and pedo-climatic factors of the crop production 

area.  

The parasitic component reflects both a level of crown contamination by the parasitic 

complex and the pathogenicity of this parasitic complex.  

The physiological component refers here to the level of fruit susceptibility to crown rot. 

This level of banana crown rot susceptibility reflects the physiological state of the fruit. Yet 

little is known about the influence of the fruit physiological component in post-harvest 

development of the disease and on the pre-harvest factors influencing the level of banana 

susceptibility to crown rot. Although pedo-climatic conditions and agro-technical factors are 

known to influence the development of this post-harvest disease (Krauss and Johanson, 2000; 

Lukezic et al. 1967; Shillingford, 1978), there are few studies linking such fluctuations to the 

field susceptibility level (Lassois et al., 2008). In addition, the cellular mechanisms and 

genetic determinants underlying the susceptibility to crown rot disease variation are not yet 

known. 

The aim of this study was to clarify the role of the fruit physiological component at 

harvest in the observed crown rot disease incidence variations on Musa acuminata, AAA, cv 

‘Grande-Naine’. To evaluate the influence of the fruit physiological component in post-

harvest disease development it is necessary to overcome the influence of the parasitic 

component. To do this, fruit susceptibility is measured by lesion size after standardized 

artificial inoculations (de Lapeyre de Bellaire et al., 2008). In figure 1 the general research 
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outline of the study is depicted. Specific aims were first to evaluate the influence of the fruit 

physiological component at harvest on the crown rot post-harvest development (chapter 3.1) 

and to characterize the importance of some pre-harvest factors in determining fruit 

susceptibility to crown rot (chapter 3.2). Then, the genetic determinants of fruit (Musa 

acuminata, AAA, cv ‘Grande-Naine’) susceptibility to crown rot caused by C. musae were 

studied. For this part of the work, the molecular techniques necessary from sample 

conservation to differential gene expression analyses had to be developed, tested and 

compared (chapter 4.1). The cDNA-AFLP technique was applied in order to identify the pre-

and post-infection genes differently expressed between bananas with different levels of 

susceptibility to crown rot (chapter 4.2). 

Finally, in chapter 5, conclusions and perspectives for further studies have been 

formulated. 

Crown rot at commercial level

Factors affecting crown rot development during
banana commodity channel

Artificial fruit ripening

Shipping and storage: fruit conservation 

Harvestand packing station

Field plot

Harvest stage

Fruit quality potential

Pathological 
component

Physiological 
component

Agro-technical factors

Pedo-climatic factors

Hand position on the bunch

Source-sink ratio at flowering 
stage

Elaboration of necessary 
techniques (chapter 4.1)

Quantification of the seasonal 
susceptibility variation (chapter 
3.1)

Evaluation of the importance of the
fruit physiological component at
harvest in post-harvest disease
development

Evaluation of the influence of some
pre-harvest factors in physiological
component at harvest (chapter3.2.)

Study of the genetic determinants of
fruit susceptibility

Genes identification (chapter 4.2)

Research conducted

 

Figure 1: Diagram representing different key factors that arise throughout the commodity chain 
concerning crown rot development at commercial stage and research outline of the study on the 
physiological component of the fruit quality potential at harvest. 
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1. Temporal variation of fruit susceptibility 

1.1. Introduction 

As explained in the above review of the literature, a banana quality build-up scheme has 

been designed for the anthracnose model (Chillet and de Lapeyre de Bellaire, 1996a). In the 

light of the similarities between anthracnose and crown rot, this scheme was transposed to the 

crown rot model (Lassois et al., accepted), postulating that crown rot disease development 

depends on a physiological and a parasitic component. In crown rot disease, however, the 

relative importance of the physiological and parasitical components in disease development is 

unknown. Seasonal fluctuations in crown rot severity have been reported in situations of 

natural contamination (Griffee, 1976; Lukezic et al., 1967; Shillingford, 1978) and it have 

been suggest that fruit susceptibility variation could occur but this has never been confirmed 

by detailed research conducted in controlled inoculation situation. In the present study, fruit 

susceptibility to crown rot disease was monitored for 11 weeks in order to identify the role of 

the physiological component in disease development. As in our other experiments and to 

avoid dealing with the complex parasitic component, the susceptibility level of the fruit was 

measured by the size of the lesions after standardized artificial inoculations (de Lapeyre de 

Bellaire et al., 2008). For the first time in crown rot disease, we have demonstrated that fruit 

physiological component at harvest greatly influence the post-harvest crown rot development. 

The results obtained are included in the following publication and are presented hereafter the 

way they have been published.  

Lassois L., de Lapeyre de Bellaire L. and Jijakli H. 2008. Biological control of crown 

rot of bananas with Pichia anomala strain K and Candida oleophila strain O, Biological 

Control, 45: 410-418. 

1.2. Materials and methods  

1.2.1. Fruit sampling and assessment of banana susceptibility to crown rot 

disease 

The banana cultivar used was Grande-Naine (Musa acuminata AAA, Cavendish group). 

As susceptibility to some postharvest diseases depends on banana physiological age (Chillet 

et al., 2006), all fruits were harvested at the same physiological age of 900°C.days according 

to the method described by Ganry (1978). One cluster of 4 bananas from either the 2nd or 3rd 

hand of each of 5 homogenous bunches was harvested in the morning on the day each 

experiment began in order to evaluate the average susceptibility of the bananas at this harvest 
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time. Thirteen experiments like this were conducted over 11 weeks from March to June 2003 

at the CIRAD experimental station (Neufchâteau) in Guadeloupe, France. Assessment of rot 

progression was carried out 13 days after artificial inoculation (i.e. 3 days after ethylene 

treatment). The internal progression of rot from the original inoculation point was determined 

by cutting the crown longitudinally and measuring the rot area in the crown. This “internal 

necrotic surface” (INS) was measured and expressed in mm2. The INS average of 5 banana 

clusters was calculated for each experiment. 

1.2.2. Artificial inoculation of crown rot agents  

The clusters of 4 bananas were placed in tap water for 20 minutes, for latex elimination, 

before refreshing the crown surface with a knife. These cuttings were square, with regular and 

clean-cut sections in order to obtain similar crowns. The crowns were surface-sterilized by 

immersion in 50% ethanol. Three fungal pathogens frequently observed in the complex from 

Guadeloupe were used to inoculate the clusters, namely C. musae, F. moniliforme, and 

Cephalosporium sp. These pathogens had been isolated in Guadeloupe from different organs 

of the banana plant (crown rots, floral remnants) and identified as being frequently involved 

in the development of crown rot. They were conserved at -80°C in glycerol solution (50%). 

Before use, they were grown at 25°C on Potato Dextrose Agar (PDA) (BioMérieux, Lyon, 

France) for 7 to 10 days. Conidia were removed by flooding the plates with sterile distilled 

water and filtered through a 40-µm sieve. Conidia concentrations were determined with a 

Mallassez cell.  F. moniliforme, Cephalosporium sp, and C. musae were mixed and the 

respective final concentrations of these species were 104, 104, and to only 103 conidia/ml for 

C. musae because of its strong pathogenicity. One-hundred microlitres of conidial suspension 

was applied to the centre of the freshly exposed crown tissue and covered with a small filter 

paper, which was withdrawn 15 minutes later. The 5 clusters of 4 bananas were packed in 

punched polyfilms normally used in the industry and placed in a small cardboard box 

(24*23*23cm) in order to simulate commercial packing. To simulate shipment, the boxes 

were stored on shelves in a conditioned room (15m3) at 13°C for 10 days. Then artificial 

ripening was initiated by exposing the bananas to 1000 ppm ethylene (Azethyl, AIR 

LIQUIDE, France) for 24 h at 20°C. After strong ventilation they remained at 20°C for 

another two days before the assessment of crown rot.  
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1.3. Results and discussion 

As shown in Figure 1, the INS of the bananas inoculated with the complex increased 

regularly from 112.6 mm2 to 426.6 mm2 in the course of all experiments. These values 

represent respectively 31% and 100% of the total crown surface.  

Seasonal fluctuations in crown rot severity have been reported for situations of natural 

contamination (Griffee, 1976; Lukezic et al., 1967; Shillingford, 1978), but the present 

investigation is the first report of such fluctuations in the case of artificial contamination. The 

present results confirm our postulate that the development of crown rot at the commercial 

level does not depend solely on the parasitic component. It also depends on the physiological 

state of the fruit at harvest, which determines its susceptibility to the fungal complex. On the 

other hand, the present results demonstrate that the physiological component is quite variable, 

allowing considerable variation of disease incidence over a short period of time. In the present 

work the parasitic component was constant and controlled, and the edaphic conditions can be 

assumed to have been reasonably constant, although not actively controlled. Climate 

variations were thus probably involved in the observed fluctuations of fruit susceptibility to 

crown rot. The mechanisms underlying the susceptibility level are still unknown, however. 
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Figure 1: Variation of the Internal Necrotic Surface (INS) assessed on clusters inoculated with the fungal 
complex composed by Colletotrichum musae (103 conidia/ml), Fusarium moniliforme (104 conidia/ml) and 
Cephalosporium sp. (104 conidia/ml) in the course of all experiments carried out between 06/03/03 and 
22/05/03. 
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2. Hand position on the bunch and source-sink ratio influence 
the banana susceptibility to crown rot disease 

It was showed there was a lack of information and researches about the role of the fruit 

physiological component that influence the fruit quality potential at harvest. In the same way, 

no information was available about the pre-harvest factors implicate in the observed variation 

in susceptibility. We first tried, but without success, to identify simultaneously parameters 

that influencing the fruit susceptibility to crown rot in field conditions (results not show). It 

quickly became apparent that the environment-plant relationships determining susceptibility 

of fruit were very complex. We therefore concentrated on the study of 2 individual pre-

harvest factors. We identified that fruit position on the bunch and source-sink ratio at 

flowering stage have an impact on the fruit susceptibility level. 

The results obtained were accepted for publication. 

Lassois L., Bastiaanse H., Chillet M., Jullien A., Jijakli M.H. and de Lapeyre de 

Bellaire. Hand position on the bunch and source-sink ratio influence the banana susceptibility 

to crown rot disease. Annals of Applied Biology. DOI: 10.1111/j.1744-7348.2009.00381.x 
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Abstract 

The post-harvest development of crown rot of bananas depends notably on the fruit 

susceptibility to this disease at harvest. It has been shown that fruit susceptibility to crown rot 

is variable and it was suggested that this depends on environmental pre-harvest factors. 

However, little is known about the pre-harvest factors influencing this susceptibility. The aim 

of this work was to evaluate the extent to which fruit filling characteristics during growth and 

the fruit development stage influence the banana susceptibility to crown rot. This involved 

evaluating the influence of (i) the fruit position at different levels of the banana bunch (hands) 

and (ii) changing the source-sink ratio, on the fruit susceptibility to crown rot. The fruit 

susceptibility was determined by measuring the internal necrotic surface (INS) after artificial 

inoculation of Colletotrichum musae. A linear correlation (r = -0.95) was found between the 

hand position on the bunch and the INS. The source-sink ratio was found to influence the 

pomological characteristics of the fruits and their susceptibility to crown rot. Fruits of 

bunches from which six hands were removed (2 hands remaining on the bunch) proved to be 

significantly less susceptible to crown rot (INS = 138.3 mm2) than those from bunches with 8 

hands (INS = 237.9 mm2). The banana susceptibility to crown rot is thus likely to be 

influenced by the fruit development stage and filling characteristics. The present results 

highlight the importance of standardizing hand sampling on a bunch when testing fruit 

susceptibility to crown rot. They also show that hand removal in the field has advantages in 

the context of integrated pest management, making it possible to reduce fruit susceptibility to 

crown rot while increasing fruit size. 

Keywords: Colletotrichum musae, Musa sp., plant-pathogen interactions, post-harvest 

disease, fruit quality.  



Significance of the fruit physiological component at harvest on the post-harvest crown rot 
development and identification of pre-harvest factors influencing the fruit susceptibility 

78 

2.1. Introduction 

Crown rot disease affects export bananas in all producing countries and is viewed as one 

of the main post-harvest diseases of bananas. The disease develops during shipping, ripening, 

and storage and has a negative impact on the market value of bananas (Slabaugh and Grove, 

1982). It results from the development of several relatively nonspecific pathogens, but many 

authors agree on the high pathogenicity of Colletotrichum musae, which can trigger an 

infection from a very small inoculum (Finlay and Brown, 1993; Lassois et al., 2008).  

Geographic and seasonal variations have been noted in the incidence of banana post-

harvest diseases (Chillet and de Lapeyre de Bellaire, 1996; Chillet et al., 2007; Krauss and 

Johanson, 2000; Lassois et al., 2008; Lukezic et al., 1967; Shillingford, 1978). It has been 

suggested that these spatiotemporal fluctuations may reflect variations in the banana fruit 

quality potential that develops in the field and which determines the post-harvest onset or 

absence of diseases (Chillet and de Lapeyre de Bellaire, 1996; Lassois et al., accepted). The 

quality potential comprises a physiological and parasitic component, which both depend on 

agro-technical factors and on soil and climate environment conditions (names pedo-climatic 

factors).  

The physiological component here refers to the fruit susceptibility to crown rot. In order 

to overcome the parasitic component, this susceptibility level of the fruit is measured by the 

size of lesions in standardized artificial inoculations (de Lapeyre de Bellaire et al., 2008). In 

the case of anthracnose it has been shown that fruit susceptibility at harvest is a key factor in 

the development of this disease and its control (Chillet et al., 2007; Chillet et al., 2006). Little 

is known, however, about the factors influencing the banana susceptibility to crown rot. 

Although pedo-climatic conditions and agro-technical factors are known to influence the 

development of this post-harvest disease (Krauss and Johanson, 2000; Lukezic et al. 1967; 

Shillingford, 1978), there are few studies linking such fluctuations to the field susceptibility 

(Lassois et al., 2008).  

The aim of this work was to characterize the importance of some pre-harvest factors in 

determining fruit susceptibility to crown rot. In particular, we were interested in the influence 

of the fruit development stage and fruit filling characteristics. First we examined whether the 

position of a hand in a banana bunch influences the susceptibility of its fruits to crown rot, 

taking advantage of the fact that the hands of a bunch differ as regards to both their 

development stage and filling status (Jullien et al. 2001a). Next we evaluated how a change in 
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the source-sink ratio during growth of the bunch affects fruit susceptibility to crown rot 

(leaves being the source and fruit, the sink) considering that source-sink ratio modification 

leads, among others, to changes in the rate of fruit filling (Jullien et al., 2001b). The source-

sink terms are commonly used in plant characterization. Leaves were considered as source 

tissues because they produce excess of assimilate, while fruits were sink organs. With respect 

to metabolism, plant organs are generally divided into source and sink tissues. Source tissues 

like mature leaves produce excess of assimilates which are transported via the phloem to the 

different sink tissues not able to produce themselves sufficient amounts of assimilates. 

2.2. Materials and Methods 

A banana plant produces an inflorescence called a bunch. Fruits on a bunch are grouped 

into female and male hands arranged helicoidally around a central axis called the stalk. The 

hand at the top of the bunch is the first to be initiated and hands are traditionally numbered 

from this one downward. Each hand can be divided into clusters consisting of several banana 

fruits called fingers (Figure 1). 
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Figure 1: Organization of a banana bunch 
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2.2.1. Plant material 

For each performed test, homogeneous sets of banana plants (Musa acuminata [AAA 

group, Cavendish subgroup] cv Grand Nain) which have grown under the same agro-technical 

practices were randomly selected at the Dia-Dia commercial plantation (PHP, Njombe, 

Cameroon (altitude: 80 m; annual mean temperature: 26.5°C; annual mean rainfall: 3500 

mm). Non-systemic fungicide applications were used to control foliar diseases. The crown 

tissues have never been in contact with fungicides. The date of flowering was indicated by 

tying a colored belt to each bunch at the horizontal finger stage in order to predict the time of 

harvest. Bunches were also covered with a plastic sleeve at this stage. Bunches were 

harvested at a constant physiological age (Jullien et al., 2008), i.e. when the mean daily 

temperature sum accumulated by the fruit at the 14°C threshold between flowering and 

harvest reached 900 degree days (dd). Temperatures were recorded at a weather station on the 

plantation. The daily average temperature (Td) was estimated from measurements of 

maximum temperature (Tmax) and minimum temperature (Tmin). 

2.2.2. Evaluation of susceptibility to crown rot  

Hands of bananas collected on the day of the experiment and transported to the 

laboratory were cut into clusters of 4 fingers without defects. The crown surfaces were 

refreshed with a knife. These cuttings were square, with regular, clean-cut sections in order to 

obtain similar crowns. Smoothly cut crowns were obtained with a sharp knife, leaving as 

much crown tissue as possible. Latex from crown tissues was dried with absorbent paper and 

the crowns were surface-sterilized by submersion in 50% ethanol. Fifty microlitres of C. 

musae conidial suspension containing 104 conidia/ml was applied to the centre of the freshly 

exposed crown tissue and covered with a small paper filter. The C. musae strain was isolated 

in Njombe, Cameroon. It is sensitive to thiabendazole and was stored at –20°C in a glycerol 

solution (30%). C. musae cultures were grown at 25°C in Mathur medium (MgSO4.7H2O: 

2.5g/l; KH2PO4: 2.7g/l; peptone : 1 g/l; yeast extract: 1g/l; saccharose: 10 g/l; agar: 15 g/l) for 

10 days. Conidia were removed by flooding the plates with sterile distilled water and filtration 

through a 45µ sieve. Their concentrations were determined with a Mallassez cell. Two hours 

after application of the conidial suspension, the clusters were packed in punched polyfilms 

normally used in the industry, placed in commercial boxes, and stored at 13°C for 10 days to 

simulate shipment. Artificial ripening was then initiated by dipping the bananas for 5 seconds 

in an ethrel solution (480 g/l), after which the clusters remained at 20°C for another 3 days 

before crown rot assessment. The internal progression of rot was determined by cutting the 
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cluster crown longitudinally in two and measuring the surface of rot spread into the crown, 

from the original inoculation point. This “internal necrotic surface” (INS), calculated by 

assuming a rectangular shape, was expressed in mm2. Its average value was taken as a 

measure of fruit susceptibility to crown rot.  

2.2.3. Intra-bunch variation of fruit susceptibility to crown rot  

From March to May 2005 and during 10 weeks, 1 bunch per week having reached 

900dd was harvested (Figure 2). Hands were separated from the bunch to evaluate the 

susceptibility to crown rot of each hand and numbered from 1 to 8 by order of appearance on 

the bunch. Hand 1 being the first to have appeared at the top of the bunch (Figure 1). Each 

hand was then divided into 3 clusters of 4 fingers. The susceptibility of each cluster to crown 

rot was assessed as described in section 2.2.2. The average INS values calculated for the 3 

clusters of a hand were subjected to two-way crossed-mixed ANOVA (Hand, Bunch) 

performed with Minitab software. Finally, results were submitted to a linear regression 

analysis. 

2006 20072005

Objectives
Intra-bunch variation of fruit 
susceptibility to crown rot

Effect of modifying the source-sink ratio on the crown rot 
susceptibility level

JuneHarvest periods March May10 weeks February April9 weeks May 4 weeks

Modalities • 1 bunch per week • 5 bunches per week

Evaluation of 
susceptibility 

On 3 clusters (4 fingers) 
from each 8 first hands of a 

bunch

On 3 clusters (4 fingers) from only the 2nd hand of each 
bunch

Years

Fruits 
characteristics 
measured 

• Length (cm)
• Grade (mm)

 

Figure 2: Chronology and modalities of the various tests performed 
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2.2.4. Effect of modifying the source-sink ratio on the crown rot susceptibility  

The source-sink ratio was modified as follows during fruit growth by removal of leaves 

(L) and hands (H) at the flowering stage (horizontal finger stage) so as to obtain the following 

treatments:  

12L/2H: 12 leaves and two hands (the first two to have appeared on the bunch) 

remaining at the flowering stage; 

12L/8H: 12 leaves and eight hands (the first eight to have appeared on the bunch) 

remaining at the flowering stage; 

5L/2H: 5 leaves (the last to have emerged) and two hands (the first two to have 

appeared on the bunch) remaining at the flowering stage; 

5L/8H: 5 leaves (the last to have emerged) and eight hands (the first eight to have 

appeared on the bunch) remaining at the flowering stage; 

An empirical source-sink ratio was also calculated. As the banana plants with 12 leaves 

and bunches of 8 hands (12L/8H) did not undergo leaf or hand removal, they were considered 

as reference to calculate an empirical source-sink ratio (So-Si ratio). The empirical So-Si 

ratios for the other treatments including leaf or hand trimming were estimated with the 

following formula: [(Number of leaves/number of hands) for the treatment] / [(Number of 

leaves/number of hands) of the reference treatment]  

For example, the empirical source-sink ratio calculated for the plant with the 12L/2H 

configuration was [(12/2)/(12/8)] = 4. 

Five banana plants per week were selected for each ratio, and bunches were harvested 

when the fruits had accumulated 900 dd (Jullien et al., 2008). Two test series were conducted 

(Figure 2): 9 successive repetitions (weeks) between February and April 2006 and 4 

successive repetitions (weeks) between May and June 2007. Fruit susceptibility was assessed 

on 3 clusters of 4 fingers on hand 2 of each bunch, as described in 2.2. The average INS 

values calculated for the 3 clusters were subjected to partially hierarchical mixed four-way 

ANOVA (Treatment, Bunch, Week, Year), each cluster being taken as an experimental unit. 

This was followed by the contrast hypothesis testing to separate leaves and hands effects.  
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In addition to assessment of fruit susceptibility, some fruit pomological characteristics 

were measured. On each harvested hand 2, the lengths (cm) and diameters name grades (mm) 

of the fruits were systematically measured. Statistical analysis consisted of two partially 

hierarchical mixed three-way ANOVAs (Treatment, Week, Year) carried out with Minitab 

software followed by the contrast hypothesis testing to separate leaves and hands effects. 

2.3. Results 

2.3.1. Intra-bunch variation of fruit susceptibility to crown rot  

The position of fruit on the bunch was found to influence fruit susceptibility to crown 

rot very highly significantly (p <0.001) (Table 1). Although very highly significant 

differences were observed between bunches (weeks) (p <0.001), the trend was the same 

whatever the bunch, as no effect of the interaction ‘hand x bunch’ was observed (p = 0.218). 

 

Table 1: Results of a two-way crossed-mixed ANOVA (hand, bunch) on Internal Necrotic Surface (mm2). 

  Internal Necrotic Surface 

Source d.f. F-value P-value 

Hand 7 17.85 <0.001 

Bunch 9 6.95 <0.001 

Hand * Bunch 63 1.17 0.218 

 

A gradient of susceptibility was observed between hand 8, with an INS average of 73.6 

mm2, and hand 1, with an INS average of 150.9 mm2 (Figure 3). Hand rank is an equidistant 

ordinal variable that can be compared to a quantitative value in the calculations. Hence, a 

linear correlation was found (r = -0.95) between the hand position on the bunch and the 8 

corresponding INS means.  
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1 2 3 4 5 6 7 8

Mean 150,9 135,0 129,1 93,7 97,1 88,8 84,7 73,6

y = -10,83x + 155,3

R² = 0,910

0
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100

150

200

250

IN
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m

m
2

)

Hands position in the bunch  

Figure 3: Mean values and standard deviations of internal necrotic surface (INS mm2) as a function of the 
hand position on the bunch.  

2.3.2. Effect of the source-sink ratio modification on the crown rot susceptibility 

The change in the source-sink ratio imposed during flowering by removal of both leaves 

and hands from the bunch had a highly significant effect on the fruit susceptibility to crown 

rot (p = 0.004) (Table 2). Although there was also a highly significant effect of the year factor 

(p = 0.004), the trend was the same in both years because no interaction was observed 

between the treatments and the years (p = 0.225) leading to analyze the results of both years 

together. The fruit susceptibility to crown rot showed a very highly significant variation 

(p<0.001) from week to week within a year without consequence on the preceding 

conclusions.  
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Table 2: Results of a partially hierarchical mixed four-way ANOVA (Bunch, Treatment, Week, Year) on 
Internal Necrotic Surface (mm2) and of two partially hierarchical mixed three-way ANOVAs (Treatment, 
Week, Year) on fruit grade and length. 

  Internal Necrotic 
Surface  Grade  Length  

Source d.f. F-value P-value F-value P-value F-value P-value 

Treatment 3 57.87 0.004 140.46 <0.001 103.49 <0.001 
Year 1 13.29 0.004 10.85 0.001 102.91 <0.001 
Treatment * Year 3 1.52 0.225 4.80 0.003 2.44 0.065 
Week (Year) 11 10.14 <0.001 7.65 <0.001 2.58 0.005 
Treatment * Week (Year) 33 1.77 0.009 1.14 0.283 1.64 0.022 

Bunch (Treatment Year Week) 191 2.32 <0.001 / / / / 

The ranking of different treatments (Table 3) shows that the fruits of bunches from 

which 6 hands were removed (treatments 12L/2H and 5L/2H) were significantly less 

susceptible to crown rot (INS = 138.3 mm2) than those of bunches with 8 hands (12L/8H 

treatment and 5L/8H, INS = 237.9 mm2). There appeared no susceptibility difference, 

however, between treatments 12L/8H and 5L/8H or between treatments 12L/2H and 5L/2H. 

Thus, the removal of 6 out of 8 hands had a significant effect on fruit susceptibility to crown 

rot but the removal of 7 out of 12 leaves did not. Table 3 also shows the classification of the 

INS by order of decreasing empirical source-sink ratio. It is noteworthy that in trend terms, 

the crown susceptibility increased as the empirical source-sink ratio decreased.  
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Table 3: Mean values and standard deviations of Internal Necrotic Surfaces (INS) mm2, fruit grade (mm), 
and length (cm) after treatments affecting the source-sink ratio. All fruits were obtained from hand 2. The 
letters a, b, c, d, e and f represent groups of statistically similar fruits based on contrast testing. 12L/2H: 
banana plant with 12 leaves and 2 hands; 5L/2H: banana plant with 5 leaves and 2 hands; 12L/8H: 
banana plant with 12 leaves and 8 hands; 5L/8H: banana plant with 5 leaves and 8 hands. The source-sink 
ratio was estimated according to the number of leaves and fruits removed in each treatment, as compared 
to unaltered banana plants (12L/8H). 

Treatment  Source-sink 
ratio  INS (mm2)  Grade (mm)  Length (cm)  

12L/2H  4  130.2±65.4a  37.9 ± 0.3c 22.0 ± 0.2e  

5L/2H  1.7  146.4±60.2a 36.8 ± 0.3c 21.3 ± 0.2e  

12L/8H  1  227.4±66.7b  33.3 ± 0.2d  19.5 ± 0.2f  

5L/8H  0.4  248.4±72.0b 32.0 ± 0.2d 18.6 ± 0.2 f 

2.3.3. Effect of the source-sink ratio modification on fruit grade and length  

The source-sink ratio change imposed during flowering by removal of both leaves and 

hands had a very highly significant effect on fruit length (p < 0.001) and grade (p < 0.001) 

(Table 2). The ranking of the different treatments (Table 3) shows that the fruits of bunches 

from which 75% of the hands were removed (treatments 12L/2H and 5L/2H) were 

significantly longer and had a significantly higher grade (average length = 21.6 cm and 

average grade = 37.3 mm) than those of bunches with 8 hands (treatments 12L/8H and 5L/8H, 

average length = 19 cm and average grade = 32.6 mm). Removal of many hands thus has a 

significant effect on the morphometric characters of the fruit. No difference in fruit grade or 

length was observed, however, between treatments 12L/8H and 5L/8H or treatments 12L/2H 

and 5L/2H. Thus, leaf removal had no significant effect on these morphometric characteristics 

(Table 3). It is noteworthy that the fruit pomological characteristics and banana yield 

increased as the empirical source-sink ratio decreased (Table 3). The various changes in the 

source-sink ratio had an effect on fruit filling. 

2.4. Discussion  

We show here that fruit development stage and filling characteristics are parameters 

influencing post-harvest susceptibility of bananas to crown rot. Within a bunch, there is a 

gradient of susceptibility to crown rot, the hands initiated first (the upper ones) being more 

susceptible than those initiated last (the lower ones). It has already been established that 

morphological differences between hands of a same bunch result from differential 

development associated with cell division and fruit filling characteristics (Jullien et al. 
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2001a). Here it appears that competition within a bunch affects not only the morphological 

characteristics of the fruits but also the fruit quality potential. Taking into account the 

observation of Jullien et al. (2001a) that the hands initiated first are approximately 70dd ahead 

those initiated last, the susceptibility gradient might be due to this physiological age gap 

between fruit in the same bunch. Effectively, in the case of anthracnose of banana, the fruit 

susceptibility has been shown to increase with the physiological age of the fruit expressed in 

dd (Chillet et al., 2007; Chillet et al., 2006).  

The position of a hand on the bunch has also been shown to influence fruit filling. This 

results in gradients of pulp dry weight, cell number per fruit, and starch grain number per cell 

(Jullien et al. 2001a) and also in differences in sap concentration and composition within the 

same bunch (Kurien et al., 2000). Furthermore, it is well known that partitioning of 

assimilates between various sink organs are complex and not equally distributed (Kozlowski, 

1992). These differences in filling characteristics within a bunch may be involved in the 

observed susceptibility changes.  

We confirm here that source-sink ratio changes have a significant effect on fruit 

morphology, as previously demonstrated in several studies (Chillet et al., 2006, Daniells et 

al., 1987, Daniells et al. 1994; Israeli et al., 1995, Johns 1996, Jullien et al. 2001b; Kurien et 

al. 2000; Mouen Bedimo et al., 2003). We reveal, furthermore, a new effect of a source-sink 

ratio change on the fruit quality potential: when the sink is decreased by removal of many 

hands, the fruit susceptibility to crown rot decreases. Few studies on various plants have 

linked the importance of source-sink ratio, and thus photosynthetic assimilate distribution, in 

plant-pathogen interactions (Barrière, 1985; Barrière et al., 1981; Dodd, 1980; Pegg, 1986; 

Seetharama et al., 1991). However, in the case of bananas, the present results contrast with 

the previously reported observation that modifying the source-sink ratio has no effect on fruit 

susceptibility to anthracnose or on the fruit conservation potential (Chillet et al., 2006). This 

suggests that different mechanisms govern the susceptibility of fruit to crown rot and 

anthracnose. Jullien et al. (2001b) have also highlighted the impact of this source-sink ratio 

on fruit filling characteristics, and notably on the rate of cell filling. In our study, we consider 

that hand and leaf removal result in a modification of the empirical source-sink ratio. In 

keeping with the observation of Jullien et al. (2001b), we assume that an increased empirical 

source-sink ratio results in an increased fruit filling rate. One might hypothesize that this 

increased cell filling rate is involved in the observed reduction of the fruit susceptibility to 

crown rot. On the other hand, the impact of the source-sink ratio on nutrient availability, 

distribution, storage, and assimilative transformation has been extensively documented in 
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many models (Noquet et al., 2004; Savin et al., 2006; Famiani et al. 2000; Dordas, 2009; 

Zhenming et al., 2008). We suggest that a modification of the source-sink ratio lead to a 

change in the partitioning of assimilates between various sink which influences the formation 

of secondary metabolites involved in plant-pathogen interaction. When hands are removed, 

the competition between sinks is reduced and the availability of mobile assimilates for 

remaining hands is more important.  

It is noteworthy that in our study source reduction (leaf removal) had a lesser effect on 

fruit susceptibility to crown rot than sink reduction, since removal of about 60% of the leaves 

(7 out of 12) had little effect on fruit susceptibility, in contrast to removal of 75% of the fruits 

(6 out of 8). It is recognized that the impact of defoliation on the qualitative and quantitative 

development of bananas is variable and highly dependent on (i) when the defoliation is 

performed (Arcila et al., 1995), (ii) the intensity of defoliation (Israeli et al. 1995, Robinson 

and Anderson, 1990, Rodriguez et al., 2005), and (iii) how defoliation is done: mechanically 

or through the action of pathogens (Robinson et al., 1992). Here, mechanical defoliation 

appears not to have been sufficiently early and/or severe to influence the processes 

determining fruit susceptibility to crown rot. On the other hand, a compensatory phenomenon 

reducing the impact of defoliation might also be involved, as the development of a bunch 

results from the distribution of dry matter not only from the leaves but also from other parts of 

the plant. In this way, the rachis and pseudostem may partially compensate for late-occurring 

defoliation (Eckstein et al., 1995). It has also been shown that an increased photosynthetic 

capacity of the remaining leaves may partially compensate for losses caused by defoliation 

(Robinson et al., 1992). 

2.5. Conclusion 

The susceptibility of bananas to crown rot is thus likely to be influenced by the stage of 

fruit development and by filling characteristics, these parameters being in close interaction 

and dependent on the soil-climate conditions and agro-technical factors of the production 

area. It is essential not to lose sight of the fact that the regulation of plant susceptibility is, in 

all cases, the result of nutritional balance established during plant growth. This balance is the 

consequences of all physiological relations of the whole plant and the environmental factors 

and might affect plant-pathogen interaction by two ways. First by influencing the ability of 

the plant to establish defense mechanisms, notably through changes in secondary metabolism. 

Secondly by altering the bioavailability of nutrients necessary for pathogen development.  
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However, the molecular underlying mechanisms implied in the susceptibility variations 

observed in this study still unknown.  

The fact that the fruit susceptibility depends on the hand position in the bunch shows the 

importance of standardizing the sampling method when measuring the susceptibility of 

bananas to crown rot. The hands collected for an experiment should be collected 

systematically from the same position on each bunch. As the hands in the upper portion have 

more fruits and allow division into more 4-fruit clusters, it has been recommended to use the 

third hand of the bunch, which is more stable from one bunch to another than the first two 

hands (Jannoyer, 1995). If more than one hand per bunch is needed to carry out the 

experiment, it is essential to work with successive hands like demonstrated in this paper.  

Lastly, the main method used to control crown rot is a systematic chemical post-harvest 

treatment. Apart from the environmental, social, and legislative problems resulting from this 

chemical control strategy, growers also face problems of treatment efficiency which are 

notably related to the fruit susceptibility in some specific areas. Only a truly integrated pest 

management strategy applied to the whole chain can provide effective alternatives to chemical 

treatment (Lassois et al., accepted). We have shown that an increase in the empirical source-

sink ratio makes it possible to reduce fruit susceptibility to crown rot while increasing fruit 

size at harvest. Thus, early hand removal in the field might be used as part of an integrated 

pest management scheme. 
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1. Development of molecular biology techniques for the 
identification of genes differently expressed  

1.1. General introduction 

Prior to identify genes which could be implicated in banana quantitative defence-

response to crown rot, it was necessary to develop all techniques necessary for the study of 

differently expressed genes.  

The first difficulty was in the crown collected conservation in order to transport sample 

from Njombé, Cameroun to Gembloux, Belgium without affecting the RNA expression profil 

and quality. Indeed, for technical reasons, RNA extraction could not be realized in Cameroon. 

Among the various tested solutions, the most efficient and practical in our conditions was to 

freeze-dried our freshly collected sample. It is an original method because it has not been used 

extensively in plant tissues.  

Another difficulty was to obtain good quality RNA from banana crown tissues which is 

a prerequisite to studying gene expression. Because of its high level in polysaccharides and 

polyphenols, banana RNA could not be extracted with standard methods. We have tested 

several methods, from simple to more time-consuming, and comparing them to choice the 

best one. 

Finally the cDNA-AFLP was evaluated like method which could be used for studying 

gene expression between bananas showing various level of susceptibility. 

All these results have been published:  

Lassois L., de Lapeyre de Bellaire L. and Jijakli H. 2009. Combining an original 

method for preserving RNA expression in situ with an effective RNA extraction method makes 

it possible to study gene expression in any banana fruit tissue. Fruits, 64: 127-137. 



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

96 

Combining an original method for preserving RNA expression in situ with an effective 

RNA extraction method makes it possible to study gene expression in any banana fruit 

tissue 

Ludivine Lassois 1, Luc de Lapeyre de Bellaire 2, Haïssam Jijakli 1* 

1 Gembloux Agricultural University, Plant Pathology Unit, Passage des Déportés 2,  
B-5030 Gembloux, Belgium, jijakli.h@fsagx.ac.be* 
 
2 CIRAD, Persyst, UPR Syst. Banan. Ananas, TA B-26 / PS4, Blvd. de la Lironde, 34398 Montpellier Cedex 5, 
France 
 
Received 24 October 2008 
 
Accepted 5 December 2008 
 
* Correspondence and reprints 

 

Running title: RNA extraction from banana fruit tissue  



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

97 

Abstract 

Introduction. RNA isolation is a prerequisite to studying gene expression in banana 

and to understanding changes occurring in response to the environment. Standard extraction 

methods do not efficiently extract RNA from plants such as banana, with high levels of 

phenolics, carbohydrates, or other compounds that bind to and/or coprecipitate with RNA. 

Materials and methods. Five to seven RNA extraction methods were compared. Four crown-

tissue storage methods were also compared. cDNA-AFLP was used to ensure that the 

obtained RNA was of sufficient quality for molecular applications and that RNA expression 

was unaltered by in situ storage. Results and discussion. The modified hot-borate method 

proved to be the best RNA extraction method, allowing high yields of good quality, 

undegraded RNA from the crown, fruit peel and pulp at all stages of ripening. The RNA 

obtained by this method was of sufficient quality for molecular applications such as cDNA-

AFLP that give highly reproducible results. Freeze-drying of fresh tissues and tissue 

conservation in hot-borate buffer, two original storage methods, appear appropriate for 

preserving RNA in situ without ultra-low temperature. The RNA obtained was of high 

quality, undegraded, and useful for all downstream applications. The genome expression 

profile obtained by cDNA-AFLP analysis was unaltered by these methods for storing 

collected tissues. Conclusion. By applying all the suggested procedures in this work, it is 

possible to store and study gene expression in any banana fruit tissue, whatever the maturity 

stage, without affecting the RNA expression level. 

Keywords: Belgium / Musa sp. / bananas / freeze-drying / RNA / storage / extraction 
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1.2. Introduction 

Banana is cultivated in more than 120 countries and holds the second place in world 

fruit production, just behind orange and in front of grape. Exported dessert bananas belong to 

the Cavendish subgroup. Gene expression studies are essential to understanding the 

physiological processes of this plant species [1, 2]. Expression profiling, however, requires 

adequate sample conservation and high-quality RNA isolation for cDNA library construction 

and molecular analysis. The total RNA and mRNA obtained must notably be free of protein, 

genomic DNA and secondary metabolites. RNA extraction is thus a crucial step, but it can be 

problematic because of the relative instability of RNA, largely due to RNA degradation by 

ribonucleases [3]. Conservation and isolation of RNA from plant material, particularly from 

fruit tissues, presents special challenges [4, 5]. First, most plant materials contain relatively 

high levels of RNase activity, mostly located in the vacuoles [6]. They also contain various 

plant metabolites, such as polysaccharides and polyphenols. They bind to and/or co-

precipitate with RNA, affecting the yield and quality of RNA [7] and rendering it unsuitable 

for cDNA synthesis. Thus, qualitative and quantitative differences in polysaccharide and 

polyphenol content among different plant tissues significantly influence the efficiency of 

nucleic acid extraction and purification procedures [3, 8]. Many procedures [4, 5, 8–14] have 

been developed to cope with endogenous polysaccharides, phenolics and RNases during RNA 

isolation from various plants, but the efficiency of an extraction method depends largely on 

the kind of plant or tissue.  

Another potential problem with RNA is its rapid degradation or alteration during tissue 

storage. In some cases, plant tissues must be preserved as collected, especially when a 

genome-wide expression profile is to be studied. The most commonly used method to store 

tissues for preparation of RNA is to remove fresh tissues and to maintain them at a strictly 

ultra-low temperature [(–50 to –70) °C] [15]. However, other efficient storage methods 

without ultra-low temperature could be of interest but have not been extensively documented. 

Freeze-drying is proposed in some cases to conserve animal tissues [16–20], human tissues 

[21, 22] and bacteria [23] in order to further RNA extraction. However, in plant tissues, 

freeze-drying has not been used extensively to preserve RNA [4, 24] and contradictory results 

have been reported [25, 26]. 

The first aim of our study was to evaluate various techniques of RNA extraction from 

fresh banana tissues for quantity, quality and integrity, but also its adequacy for downstream 

molecular analyses such as cDNA-Amplified Fragment Length Polymorphism analysis 
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(cDNA-AFLP). This RNA fingerprinting technique derives from AFLP (Amplified Fragment 

Length Polymorphism), a method described by Vos et al. [27] for genomic DNA 

fingerprinting, which was applied for the first time like cDNA-AFLP to plants by Bachem et 

al. [28].  

Classical RNA isolation techniques were compared with methods specifically 

elaborated for banana or other plants rich in polyphenols and polysaccharides.  

As collected materials sometimes have to be stored prior to RNA extraction, the second 

aim of our study was to assess different methods for preserving RNA in situ. This means both 

avoiding RNA degradation between sample collection and RNA extraction and ensuring that 

nothing happens, during storage, to alter the expression profile obtained. Checking that this 

latter criterion is met requires obtaining pre- and post-storage differential expression profiles 

by cDNA-AFLP. 

1.3. Materials and methods 

1.3.1. Plant materials 

Ripe yellow bananas of the Cavendish subgroup were bought on the market. 

Preclimacteric green bananas of the Cavendish subgroup were obtained from a commercial 

source in Belgium (Van Damme, Brussels) just before the ethylene treatment that triggers 

ripening. 

1.3.2. RNA extraction methods 

RNA extraction methods were tested on various fruit tissues from green and ripe 

bananas. Samples of peel, pulp and crown tissue were sliced, immediately frozen in liquid 

nitrogen, and ground to a fine powder with a pre-cooled mortar and pestle before extraction. 

Five extractions were performed for each tested method. All materials and reagents were 

treated so as to be RNase-free. Glassware was oven-baked at 240°C overnight. Sterile 

disposable plastic wares were used when it was possible and non-disposable plastic wares 

were rinsed with 0.1 M NaOH, 1 mM EDTA, followed by RNase-free water. Solutions (water 

and other solutions) were treated with 0.1% DEPC (diethyl pyrocarbonate), incubated 

overnight at 37 °C, then autoclaved to eliminate residual DEPC.  

Five RNA extraction methods were applied to peel and pulp from green bananas. 

Methods based on commercial products were carried out according to the supplied 
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instructions. Methods taken from the literature were carried out according to the authors’ 

protocols. These methods were: 

1. The commercial ready-to-use RNA isolation product TRIZOL® Reagent (Invitrogen, 

Carlsbad, CA, USA), according to the protocol proposed for extraction from plant tissues: this 

is an improved version of the single-step RNA isolation method developed by Chomczynski 

and Sacchi [29]. During sample homogenization or lysis, TRIZOL Reagent maintains RNA 

integrity while disrupting cells and dissolving cell components. 

2. The ‘SV Total RNA Isolation System’ developed by Promega (Madison, WI, USA): 

this is a quick and simple technique for preparing purified, intact total RNA. The system 

combines the disruptive and protective properties of guanidine thiocyanate and β-

mercaptoethanol to inactivate the ribonucleases present in cell extract. The system also 

incorporates a DNase treatment step, and purification is achieved without any 

phenol/chloroform extraction. 

3. The method elaborated by Liu et al. [30] to isolate total RNA from banana fruit 

tissues: RNA was extracted at room temperature with a high-ionic-strength buffer. Proteins, 

genomic DNA and secondary metabolites were then removed from the extract by 

precipitation with pre-cooled potassium acetate and repeated phenol/chloroform/isoamyl 

alcohol extractions. RNA was recovered by ethanol precipitation without LiCl. This 

procedure can be completed in less than 4 h. 

4. The hot-borate method [31], adapted from that described for cotton [32]: RNA 

extraction was performed in a basic hot-borate/proteinase K buffer. A RNA-enriched pellet is 

precipitated from the supernatant with lithium chloride and dissolved in DEPC water. Two 

phenol/chloroform/isoamyl alcohol (25/24/1) extractions and one chloroform/isoamyl alcohol 

(24/1) extraction are incorporated into the RNA purification protocol to remove contaminant 

proteins. Total RNA is precipitated with ethanol. 

5. The simple procedure developed by Asif et al. [33] for RNA isolation from banana 

tissue: these authors have modified the CTAB/NaCl method [11] by removing PVP from the 

extraction buffer and including a simple polysaccharide precipitation step. A RNA-enriched 

pellet is precipitated from the supernatant with lithium chloride and dissolved in DEPC water 

before phenol/chloroform extraction. Total RNA is precipitated with ethanol. 
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On peel and pulp from ripe bananas, in addition to these five protocols, two additional 

ones among those proposed by Gehrig et al. [7] were tested. Their techniques based on GITC 

(guanidium isothiocyanate) (for technique 6) and GHCL (guanidium hydrochloride) (for 

technique 7) buffers were selected. Both methods use a high-molecular-weight polyethylene 

glycol (HMW-PEG). The hot-borate method [31] was also tested on crown tissues. All 

extractions were performed on a small scale in a 1.5- or 2-mL tube, by using the protocols 

proportionally. 

1.3.3. Evaluation of RNA quality, quantity and integrity 

After extraction, RNA was recovered by centrifugation for 20 min at 16,000 g and 4 °C. 

The pellet was washed once in 1 mL of 70% cold ethanol, vortexed, and centrifuged for 5 min 

at 16,000 g and 4 °C. The pellet was air-dried at 37 °C, and then resuspended in RNase-free 

water. The purified RNA was quantified by measuring the absorbance at 260 nm (A260) with a 

Nanodrop (ND-1000 spectrophotometer, Isogen Life Sciences, Maarssen, Netherlands). An 

A260 of 1 is equivalent to 40 ng RNA•µL–1. The absorbance at 280 nm was also measured, and 

sample purity was estimated by the [A260 / A280] absorbance ratio. RNA integrity was 

evaluated by the sharpness of the bands corresponding to 28S and 18S ribosomal RNA 

(rRNA) visualized by ethidium bromide staining on a 1% agarose gel.  

1.3.4. Evaluation of the RNA adequacy for downstream molecular analyses  

RNA extracts were treated for 30 min at 37 °C with 20 units of RNase-free DNase 

(Roche, Basel, Switzerland) in the presence of 40 units of RNase inhibitor (Roche 

Diagnostics, Mannheim, Germany). The cDNA-AFLP technique involves three steps: (1) 

restriction of cDNA and ligation of oligonucleotide adapters; (2) selective amplification of 

sets of restriction fragments using PCR primers bearing selective nucleotides at the 3’ end; (3) 

gel analysis of the amplified fragments. Double-stranded cDNA was synthesized from total 

RNA according to the instructions for use of the Superscript Double-Stranded cDNA 

Synthesis kit (Invitrogen, Carlsbad, CA, USA). The double-stranded cDNA was digested with 

EcoRI and MseI, ligated with EcoRI and MseI adapters, and pre-amplified with the Eco (5’-

GACTGCGTACCAATTC-3’) and Mse (5’-GATGAGTCCTGAGTAA-3’) primers, 

following the instructions of the AFLP Analysis System kit for microorganisms (Invitrogen, 

Carlsbad, CA, USA). After twenty-fold dilutions of the PCR fragments, specific 

amplifications were carried out with combinations of an Eco primer and a Mse primer 

containing two additional bases at their 3’ ends. The Eco primers were labeled with γ
33P 
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dATP. Amplification products were separated by electrophoresis at 50 W on a vertical 

denaturing polyacrylamide gel (6%) containing 7 M urea. Gels were dried on a Whatman 

paper before screening with a phosphoimager (BioRad, Richmond, CA, USA). To evaluate 

the reproducibility of the cDNA-AFLP, a single banana crown was ground in liquid nitrogen 

to a fine powder and divided into two pools. RNA was extracted according the hot-borate 

method [31]. After DNase treatment, two different pre-amplifications were performed per 

sample and two different selective amplifications were performed per pre-amplified sample 

(Figure 1). Two replicates were performed.  

 

Figure 1. Protocol applied to test the reproducibility of the cDNA-AFLP analyses based on RNA extracted 
from banana fruit tissues. 

1.3.5. In situ RNA preservation methods 

Four tissue storage methods were compared on crown tissue material. The first two 

methods involved placing the tissues on RNAlater (Ambion, Austin, TX, USA) according to 

the manufacturer’s instructions. Here, crown tissue was first either sliced into tiny lamellas 

before storage in RNAlater at 4 °C or ground in liquid nitrogen before storage in RNAlater at 

4 °C. 

The third conservation method (buffer storage) consisted of storing crown tissues 

(ground to a fine powder in liquid nitrogen) in the hot-borate buffer [31] (200 mM BORAX, 

pH 9.0; 30 mM EGTA; 1% SDS; 10 mM DTT; 2% PVP 40; 2% DIECA; 0.5% Igepal) to 

which 0.5 mg proteinase K•mL–1 buffer was added. This was stored at room temperature. 
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The last method consisted of freeze-drying the crown sample at –80 °C for 24 h 

(Telstar, Cryodos, Barcelona, Spain) and storing it at room temperature before RNA 

extraction (freeze-drying storage). The freeze-dried crown samples were stored with silica gel 

to avoid an aqueous environment. 

In each case, RNA extraction was performed 21 d later by the hot-borate method [31]. 

The extraction efficiency was assessed by analysis of RNA quality, quantity and integrity as 

described in section 1.3.2.. 

The adequacy of the RNA, obtained after a buffer or a freeze-drying storage, for 

downstream molecular application was evaluated by cDNA-AFLP as described in 

section 1.3.4. Furthermore, this technique allows evaluating the effect of the storage 

conditions on gene expression by comparing pre- and post-storage differential expression 

profiles. To do this, three samples were collected from a single crown. One of these served as 

control and RNA extraction was performed immediately; both of the others were stored either 

by freeze-drying or in hot-borate storage buffer [31] as described above prior to RNA 

extraction and cDNA-AFLP. This experiment was repeated twice. 

1.4. Results and discussion 

1.4.1. Compared performances of the RNA extraction methods 

Among the RNA extraction methods tested, the hot-borate method [31] emerges as 

particularly adequate for banana pulp and peel, whatever the maturity stage, and for the 

crown, which is particularly fibrous. Total RNA isolated by this method was of high purity 

and integrity and of sufficient yield, making it suitable for molecular analysis. This was 

confirmed in several ways. 

First, spectrophotometric analysis revealed an [A260 / A280] ratio ranging consistently 

from 2.0 to 2.2, indicating that the RNA isolated by this approach was largely free of 

contaminating proteins. This was true whatever the tissue type and maturity stage (Table 1). 

Pure RNA has an [A260 / A280] ratio of 2.0, but, for most applications, a lower or higher ratio 

probably will not affect the results [3]. As a result of variations between individual starting 

materials and in performing the procedure, the expected range of the [A260 / A280] ratio for 

RNA is 1.7-2.2. Three other methods gave this ratio: Liu et al. [30] and both methods 

described by Gehrig et al. [7]. Both commercial kits failed to extract RNA from banana fruit 

tissues. The TRIZOL reagent was developed for animal tissues, especially those rich in 

RNase, but it seems unsuitable for recalcitrant plant tissues such as banana. This is in 
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agreement with the results obtained by other authors [12]. The method based on CTAB [33] 

was also unsuccessful. The same conclusion was reached with different recalcitrant plant 

species [13]. 

Table 1: [A260 / A280] ratio values according to different tissue and RNA extraction methods. The best 
methods give ratios between 1.7 and 2.2. GHCL: guanidium hydrochloride; GITC: guanidium 
hydrochloride 

Methods Peel Pulp Crown 

 Green Mature Green Mature  

Trizol® Reagent (Invitrogen) 0.9-1.1 0.9-1.2 0.1-3.4 1.0-1.3 - 

SV Total RNA Isolation System (Promega) 0.2-0.8 0.4-1.0 0.06-0.20 0.6-0.9 - 

Liu et al.[30] 1.7 1.7-2.0 1.7-1.8 1.8-2.1 - 

Mbéguié-A-Mbéguié et al. [31] 2.0-2.2 2.0-2.2 2.0-2.2 2.0-2.1 2.00-2.14 

Asif et al. [33] 1.2-1.4 1.2-2.3 1.1-1.5 0.8-1.5 - 

Gehrig et al. (GITC) [7] - 1.7-2.0 - 1.0-2.3 - 

Gehrig et al. (GHCL)[7] - 1.7-2.0 - 1.7-2.0 - 

Secondly, a comparison of RNA yields based on spectrophotometric determinations 

showed a significantly lower yield (as much as 15 times lower) for the method of Liu et al. 

[30] than for the hot-borate method [31] (Table 2). The yield obtained in this study by this 

latter method is comparable with those reported for other methods designed for high-phenol 

fruit tissues [4, 7]. The yield obtained in this study by the hot-borate [31] protocol depended 

heavily on the tissue type and, to a lesser extent, on the maturity stage. By decreasing yield 

(Table 2), the different tissues can be ranked as follows: green pulp (67.8–79.5 µg•g–1 FW) > 

mature pulp (61.8-65.9 µg•g–1 FW) > green peel (45.2-60.2 µg•g–1 FW) > mature peel (43.4-

50.5 µg•g–1 FW) > crown (10.2-17.4 µg•g–1 FW).  
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Table 2: Yield values (µg RNA•g–1 fresh material), based on A260, according to different tissue and RNA 
extraction methods. (x) means that the yield could not be calculated because the [A260 / A280] ratio was not 
between 1.7 and 2.2. GHCL: guanidium hydrochloride; GITC: guanidium hydrochloride. 

Methods Peel Pulp Crown 

 Green Mature Green Mature  

Trizol® Reagent (Invitrogen) (x) (x) (x) (x) - 

SV Total RNA Isolation System (Promega) (x) (x) (x) (x) - 

Liu et al.[30] 3.9-5.7 7.6-8.9 3.6-9.9 50.3-56.8 - 

Mbéguié-A-Mbéguié et al. [31] 45.2-60.2 43.4-50.5 67.8-79.5 61.8-65.9 10.2-17.4 

Asif et al. [33] (x) (x) (x) (x) - 

Gehrig et al. (GITC) [7] - 72.0-75.8 - (x) - 

Gehrig et al. (GHCL)[7] - 102.4-109.7 - 117.5-125.2 - 

Thirdly, denaturing agarose gel electrophoresis yielded clear rRNA bands with a 28s 

rRNA band equal to or more abundant than the 18s rRNA band (Figure 2), indicating that 

little or no degradation had occurred during extraction with the hot-borate [31] and Liu et al.'s 

[30] methods. In high-quality RNA, the 28s band should be approximately twice as intense as 

the 18s band [3]. In degraded RNA samples, the 18s band will be enhanced, since the 28s 

ribosomal RNA is typically degraded to an 18s-like species. No rRNA was observed with any 

other technique, and notably not with either of those described by Gehrig et al. [7]. The latter 

methods did give, however, a good [A260 / A280] ratio (Table 1) and thus a high estimated 

yield (Table 2). An explanation might be that A260 could be falsely boosted by contaminants 

such as salt, organic solvent or protein, or by one or more of the many chemicals used in 

nucleic acid purification which absorb at 260 nm [34]. Thus, the [A260 / A280] ratio can 

accurately describe nucleic acid purity, but it can also be misleading [35]. For this reason, it is 

essential to have both the [A260 / A280] ratio and an agarose gel result to evaluate a RNA 

extraction method.  
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Figure 2. Band patterns obtained by ethidium bromide staining after electrophoresis, through a 1% 
agarose gel, of total RNA extracted from green banana peel (1 and 3) or pulp (2 and 4). The extraction 
protocols used were that of Liu et al., [30] (1 and 2) and the hot-borate method [31] (3 and 4). (5) is a RNA 
ladder and the positions of of the 28S and 18S rRNAs are shown. Similar results were obtained for both 
protocols with peel and pulp from ripe banana. No rRNAs were observed with any other method tested in 
this work (resumts not shown). 

Finally, the adequacy of the hot-borate method [31] for extracting total RNA from 

banana tissues in order to generate cDNA for downstream molecular analyses was 

successfully performed by cDNA-AFLP after DNase treatment (Figures 3 and 4). 

For these reasons, although the hot-borate method [31] is labor-intensive and time-

consuming, it seems to be the most suitable for extracting RNA from banana tissues in order 

to carry out genome-wide expression analyses. This RNA extraction technique is applicable to 

large samples of up to 25 g fresh material [36], but also to small samples of 0.24 g of material 

in a 2-mL tube, as in this work. It could be more convenient to extract RNA from a small 

sample, because many samples can be extracted at the same time, and the yield obtained is 

still sufficient for subsequent molecular applications. 
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Figure 3. Reproducibility of cDNA-AFLP based on total RNA. cDNA-AFLP was applied to various pools 
of total RNA from from a single crown according to figure 1. (1) to (8) represent the various cDNA-AFLP 
pools and (9) is a blank. 

1.4.2. In situ RNA preservation methods 

On the basis of quality, quantity and integrity, it appears that all four methods tested can 

preserve RNA (Table 3). The choice of a method must thus be based on the experimental 

constraints and the equipment available. Yet, although all four techniques appeared to 

preserve RNA quality and integrity, their yields were different. RNAlater is an aqueous tissue 

storage reagent that stabilizes and protects cellular RNA in intact, unfrozen tissue samples. 

According to Ambion (Austin, TX, USA), it eliminates the need to process tissue samples 

immediately or to freeze them in liquid nitrogen for later processing. Tissue pieces can be 

harvested and submerged in RNAlater for storage without jeopardizing the quality or quantity 

of RNA obtained by subsequent RNA isolation. 
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Table 3: [A260 / A280] ratio and yield values (based on A260) according to four RNA in situ preservation 
methods. Extractions were performed by the hot-borate method [31]. 

Methods 
[A 260 / A280] 

ratio 

Yield  
(µg RNA.g-1  

fresh material) 
28s:18s RNA bands 

Crown sliced into tiny lamellas and stored 
in RNAlater at 4°C for 21 d 

1.9-2.0 3.2-5.7 Yes 

Crown ground in liquid nitrogen and stored 
in RNAlater at 4°C for 21 d 

1.8 1.5-3.7 Yes 

Crown ground in liquid nitrogen and stored 
in hot-borate buffer [31] + proteinase K at 
room temperature for 21 d 

1.9 10.2-14.0 Yes 

Crown freeze-dried and stored for 21 d at 
room temperature before extraction 

2.2 12.0-16.2 Yes 

In this study, RNAlater has the advantage of being a simple and fast technique, but its 

yield is two to five times lower than those obtained by tissue storage in extraction buffer or 

freeze-drying. For the latter two methods, the yields are similar. These two techniques present 

the advantages of storage at room temperature and a similar RNA extraction quality and yield 

to those obtained after immediate extraction of RNA from fresh crowns (Tables 2 and 3). 

Freeze-drying has not been used extensively in plant tissues [4, 24]. Contradictory results, 

ranging from good RNA preservation in leaf tea [25] to complete degradation in cotton [26], 

have been reported. In these previous studies, only the RNA quantity and quality on agarose 

gel were analyzed [24]. In some cases, authors have tested the expression conservation of a 

single or two particular genes [19–21, 23, 25]. In this original study, the entire pre- and post-

storage genome-wide expression profile were compared, in order to evaluate the eventual 

global modification of RNA expression that could happen during the freeze-drying process or 

storage. The results obtained by cDNA-AFLP clearly indicate that the RNA obtained by both 

buffer storage and freeze-drying was of sufficient quality for molecular application and that 

cDNA-AFLP pre- and post-storage differential expression profiles were identical (Figure 4). 

Thus, these two storage methods do not affect either the RNA quantity and quality, or the 

genome expression. For this study, cDNA-AFLP was selected because it is a non-biased 

technique based on PCR amplification, offering the advantage of almost no false positives 

[37]. It provides a straightforward way to check band identity and homogeneity [37] and it is 

more sensitive than hybridization-based techniques and highly specific. It was also confirmed 

in this study that cDNA-AFLP is a highly reproducible method for genome-wide expression 

profile analysis (Figure 3). In both replicates, the steps comprising DNase treatment, 

amplification and selective amplification led to the same AFLP profile. Reproducibility of 
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cDNA-AFLP has already been reported by many authors [28, 38–40]. Khun [37] even 

evaluates the reproducibility of cDNA-AFLP at 100%.  

 

Figure 4. Reproducibility of the cDNA-AFLP gene expression profile whatever the in situ preservation 
method. (10)-(13) = replicate 1; (14)-(17) = replicate 2. (10) and (14) are blanks; (11) and (15) are profiles 
obtained after immediate RNA extraction from fresh material; (12) and (16) are profiles obtained with 
RNA from freeze-dried tissues; (13) and (17) are profiles obtained with RNA from tissue samples stored in 
the hot-borate buffer [31].  

Both storage techniques are thus perfectly suitable for cDNA-AFLP applied to the study 

of differential gene expression in different cell populations. However, freeze-drying, which 

preserves enzymatic activity, offers further advantages highlighted in this study; they can be 

summarized: (1) the extraction yield, quality and integrity equal those obtained by fresh tissue 

RNA extraction or by conventional storage techniques; (2) the freeze-dried RNA can be 

stored even at room temperature, without any alteration of the expression profile, for further 

RNA extraction; (3) freeze-drying is an easy way to obtain a fine dry power without using 

liquid nitrogen, which is not always available or economically feasible in all banana-

producing countries; (4) freeze-dried tissues can be easily transported from one laboratory to 

another and even between countries; (5) a final advantage of freeze-drying is the large amount 
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of RNA that can be obtained in a single extraction carried out in a 2-mL tube. Such a tube can 

hold only about 0.25 g fresh sample material, but if the material is freeze-dried, a mere 0.2 g 

is equivalent to about 2.4 g fresh weight. Assuming the same yield from freeze-dried material 

as from fresh material, the amount of RNA that can be obtained per tube is ten to twelve times 

higher when the material is freeze-dried. In applications requiring a lot of RNA, it could be 

very convenient to meet this requirement while working on a small scale with a 2-mL tube. 

These advantages make freeze-drying an attractive alternative to conventional storage.  

Moreover, the two efficient storage methods proposed in this study to conserve fruit 

banana RNA in situ without altering the quality, quantity or expression profile could probably 

be applied to other plant tissues in particular fruits which are particularly recalcitrant. 

1.5. Conclusion 

We thus evaluated and made choices among various techniques spanning all steps 

required to study differential gene expression in banana fruit. Our results highlight two good, 

reliable and practical storage methods that preserve RNA in situ before extraction without 

requiring ultra-low temperature. We also identified a RNA extraction method yielding high-

quality RNA suitable for gene expression profiling. To illustrate this, we used the extracted 

RNA successfully to generate cDNA-AFLP differential expression profiles. Thus, it is 

possible to study gene expression in any banana fruit tissue, whatever the maturity stage, by 

applying all the procedures selected in our work. 
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2. Identification of genes that may influence quantitatively the 
banana response to crown rot disease. 

To study the molecular mechanisms underlying the susceptibility variation it was 

important to develop a sampling that allows selecting at harvest two kinds of banana. On one 

hand fruits with a high susceptibility level to crown rot and on the other hand fruits with a low 

susceptibility level to compare gene expression between them. The difficulty of such 

sampling was that crown for molecular analysis should be collected at harvest time whereas 

the fruit susceptibility can only be assessed once the symptoms appeared on ripe fruit. This 

corresponds in our essays at 13 days post-harvest. The results presented in chapter 3.2 show 

that by modifying the source-sink ratio at flowering it could be expected that fruit 

susceptibility would be highly different. Thus to identify gene expression implied in banana 

quantitative defence-response to crown rot disease, we have decided to selected our sample on 

base of their source-sink ratio. cDNA-AFLP method was applied on these samples and results 

obtain were confirmed by real-time RT-PCR. By this way, genes potentially implied in 

banana quantitative defence response to crown rot disease were identified. 

Results are presented hereafter and will be soon submitted for publication to 

Physiological and Molecular Plant Pathology.  

Lassois Ludivine, Frettinger Patrick, de Lapeyre de Bellaire Luc, Lepoivre Philippe and 

Jijakli Haissam. Identification of genes that may influence quantitatively the banana response 

to crown rot disease.  
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Abstract 

Variations in banana fruit susceptibility to the crown rot post-harvest disease have been 

observed but the molecular mechanisms underlying these quantitative host-pathogen 

relationships were still unknown. The present study was designed to compare gene expression 

between crowns of bananas (Musa acuminata, AAA, ‘Grande-Naine’) showing a high 

susceptibility (S+) and crowns of bananas showing a low susceptibility (S-) to Colletotrichum 

musae responsible for crown rot disease. This comparison was performed at two situation 

time: (i) between crowns (S+ and S-) collected one hour before infection and (ii) between 

crowns (S+ and S-) collected 13 days after infection. Gene’s expression comparisons were 

performed with cDNA-AFLP technique and differential expression results obtained were 

confirmed by real-time RT-PCR for two biological replicate. The limitations of the cDNA-

AFLP and the importance of the results validation by an independent method and for two 

biological replicates are discussed. Among the 3161 transcript-derived fragments (TDFs) 

screened by cDNA-AFLP, 443 were differently expressed between bananas showing different 

susceptibility. Only 10% were selected, successfully recovered from the gel, cloned, 

sequenced and showed non redundant similarities with the data base. Among those, only 

eleven TDFs differently expressed were finally confirmed for both biological replicates. Two 

identified genes were involved in signal transduction and three in proteolytic machinery. In 

addition, two TDFs were similar to pathogenesis-related protein 14, one was similar with a 

CCR4-associated factor (CAF1) protein, one with a cellulose synthase. Paradoxically, the 

over-expression of the cellulose synthase gene is associated with banana showing a high 

susceptibility both in pre- and post-inoculation situation. Finally, the cDNA-AFLP allows 

identifying that a gene, coding for a dopamine-β-monooxygenase, involved in catecholamine 

pathway seems to be associated in the quantitative banana responses to crown rot disease. To 

our knowledge, this work is the first to address both pre- and post-infection gene expression 

with the same host-pathogen combination and different susceptibility.  
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2.1. Introduction  

Crown rot disease affects export bananas in all producing countries and is considered as 

one of the main post-harvest diseases of bananas (for a review see Lassois et al., accepted a). 

The symptoms appear on the crown, i.e. the tissue joining the fruit pedicels with each other. 

The disease develops during shipping, ripening, and storage and has a negative impact on the 

market value of bananas (Slabaugh and Grove, 1982).  

Variations, notably geographic and seasonal, have been reported in the post-harvest 

development of crown rot disease symptoms (Krauss and Johanson, 2000; Lassois et al., 

2008; Lukezic et al., 1967; Shillingford, 1978). It has been suggested that these 

spatiotemporal fluctuations reflect the variations in the banana fruit quality potential that 

elaborates during preharvest stages (Lassois et al., accepted a). This quality potential depends 

both on a physiological and a parasitic components, which in turn are influenced by 

agrotechnical and pedoclimatic factors. The parasitic component reflects the level of crown 

contamination by the parasitic complex, as well as the pathogenicity of this parasitic complex. 

Effectively, crown rot results from an unspecific parasitic complex from which 

Colletotrichum musae is the most pathogenic species (Finlay and Brown, 1993). The term 

“physiological component” refers here to the level of fruit susceptibility to crown rot. To 

assess the level of fruit susceptibility it is necessary to overcome the influence of the parasitic 

component. It is then estimated through lesion size after standardized artificial inoculations 

with C. musae (de Lapeyre de Bellaire et al., 2008). Very few studies have linked the spatio-

temporal fluctuations of crown rot disease to preharvest factors influencing the level of fruit 

susceptibility (Lassois et al., 2008). Nevertheless, it has been shown recently that source-sink 

ratio and the hand position in the bunch affect the banana susceptibility to crown rot disease 

(Lassois et al., acceptedb). The genetic and molecular mechanisms underlying these 

quantitative host-pathogen relationships have not been identified.  

Plant defense mechanisms to diseases are mediated by both preformed and inducible 

responses which lead to significant transcriptional changes in the host (Lucas, 1998). One way 

to understand the reactions involved in the variation of banana responses to crown rot is then 

to identify genes involved in these processes via the study of their expression. The cDNA-

AFLP technique (Bachem, 1996) has been used to compare genome-wide expression patterns 

and to identify differently expressed genes potentially related to plant defense mechanisms. 

This technique does not require prior hypothesis on defense mechanisms and allows the 

identification of genes without a priori. It can thus be used for any biological system, 
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especially when genomic resources are lacking. In addition, the mechanisms responsible for 

compatibility interactions and for the quantitative variation of symptoms after infection 

remain poorly understood, and it is likely that some of the factors involved remain to be 

discovered. The sensitivity and specificity of cDNA-AFLP analysis are comparable to those 

of a microarray approach (Reijans et al., 2003). Its reproducibility has also been proved 

(Kuhn, 2001; Lassois et al., 2009).  

The present study was designed to identify genes influencing the susceptibility to crown 

rot disease in a same banana cultivar. A cDNA-AFLP technique has been used to compare 

gene expression in banana crowns from plants (Musa acuminata, AAA, cv ‘Grande-Naine’) 

showing different susceptibility to crown rot disease. In this study, the variation of source-

sink ratio previously described (Lassois et al., acceptedb) has been used to obtain banana 

plants showing different susceptibility to crown rot disease. Samples were collected before 

and after infection in order to differentiate constitutive and induced defense responses. The 

differential expression deduced from cDNA-AFLP data was latter confirmed by an 

independent technique, the real-time RT-PCR. This latter technique  is quick and, thanks to its 

high sensitivity, requires only a small amount of starting material (Massart and Jijakli, 2006). 

2.2. Materials and methods 

2.2.1. Fruit sampling  

Banana fruits were harvested from plants (Musa acuminata, AAA, cv ‘Grande-Naine’) 

grown on the Dia-Dia commercial plantation (PHP) in Njombé, Cameroon (altitude: 80 m; 

annual mean temperature: 26.5°C; annual mean rainfall: 3500 mm). The date of flowering 

was indicated by tying a colored belt to each bunch (banana inflorescence) at the horizontal 

finger stage in order to predict the time of harvest. Bunches were also covered with a plastic 

sleeve at this stage. Bunches were harvested at a constant physiological age (Jullien et al., 

2008), i.e. when the mean daily temperature sum accumulated by the fruit at the 14°C 

threshold between flowering and harvest reached 900 dd. Temperatures were recorded at a 

weather station on the plantation. The daily average temperature (Td) was estimated from 

measurements of maximum temperature (Tmax) and minimum temperature (Tmin). To obtain 

bananas with different levels of susceptibility to crown rot, fruits were harvested from plants 

characterized by different source/sink ratios (Lassois et al., acceptedb) established at the 

flowering stage, leaves being viewed as sources and fruits as sinks:  
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− Plants showing a low susceptibility to crown rot disease were called “S-“. These plants 

were obtained through severe trimming of bunches at flowering stage. These plants had 

12 leaves and 2 hands (a hand is a group of bananas) left on the bunch. Two plants of 

this treatment were used, namely, “S- plant 1” and “S- plant 2” and constitute the 2 

biological replicates. 

− Plants showing a high susceptibility to crown rot disease were called “S+“. These plants 

were reference plants without severe trimming of bunch.  At flowering, bunches were 

not trimmed, so these plants had 12 leaves and 8 hands left on the bunch. Two plants of 

this treatment were used, namely, “S+ plant 1” and “S+ plant 2” and constitute the 2 

biological replicates. 

Figure 1 outlines the experimental sampling design for fruit susceptibility evaluation 

and molecular analysis, while table 1 identifies the samples, with their respective sources and 

processing modalities. Only the second hand of each bunch was collected and each one was 

divided into 4 clusters of 4 fingers (fruits) without defects. Each sample group consisted of 

clusters from the same hand, so as to avoid variability due to susceptibility variations among 

different hands (Lassois et al., acceptedb). At harvest for each bunch, 1 cluster was used for 

sampling crown 1 hour before inoculation of C. musae (1 hbi - clusters A, C, E and G 

according to the treatment and the biological replicate) and 3 clusters were inoculated with C. 

musae (figure 1). These 3 clusters were used for fruit susceptibility evaluation in order to 

confirm the expected S+ or S- status of each treatment. One of these 3 was collected for crown 

sampling 13 days after inoculation when symptoms are developed (13 dpi - clusters B, D, F 

and H according to the treatment and the biological replicate). The crowns collected at each 

period (1hbi and 13dpi) for molecular analyses were immediately frozen in liquid nitrogen, 

freeze-dried at -80°C for 24h (Telstar, Cryodos, Barcelona, Spain), and stored at room 

temperature before RNA extraction (Lassois et al., 2009) and molecular analysis. 
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Figure 1: Experimental procedure. As bananas from plants with 12 leaves and 2 hands are waiting to be 
less susceptible than bananas from plants with 12 leaves and 8 hands (Lassois et al., acceptedb), two plants 
with each configuration were used as source material (S- plant 1, S- plant 2, S+ plant 1 and S+ plant 2). 
Only the second hand of each bunch was collected and each one was divided into 4 clusters of 4 fingers 
without defects. The “S- plant 1” (S- for low susceptibility) and “S+ plant 1” (S+ for high susceptibility) 
were used as sources of material for cDNA-AFLP analysis and for one replicate of the real time RT-PCR. 
Samples A and B were collected from “S- plant 1” respectively 1 hour before inoculation (1hbi) and 13 
days post-inoculation (13dpi). Likewise, samples C and D were collected from the “S+ plant 1” 
respectively 1 hour before inoculation (1hbi) and 13 days post-inoculation. Following the same procedure, 
samples E (1 hbi) and F (13 dpi) were collected from “S- plant 2” and samples G (1 hbi) and H (13 dpi) 
from “S+ plant 2”. These samples provided the second biological replicate used for result confirmation by 
real time RT-PCR. Furthermore, 3 clusters of each selected hand were used to evaluate fruit susceptibility 
to Colletotrichum musae at 13 dpi to confirm the expected S+ or S- status of each source. 
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Table 1: Presentation of the various collected samples used for molecular analysis in order to identify 
genes differently expressed in banana crowns showing high and low susceptibility to crown rot disease. S- 

stands for low susceptibility and S+ for high susceptibility. 1 hbi: Crowns collected 1 hour before 
inoculation of clusters from the second hand; 13 dpi: Crowns collected 13 days after inoculation of 
clusters from the second hand. The cDNA pools obtained after RNA extraction and reverse transcription 
are labeled A to H. In the cDNA-AFLP analysis, sample A was compared with C (two susceptibility levels, 
1 hbi) and sample B with D (two susceptibility levels, 13 dpi). In the real-time RT-PCR assays, A and E 
yielded biological replicates, as did B and F, C and G, D and H. 

 Biological replicate 1 Biological replicate 2 

Susceptibility level S- plant 1  S+ plant 1 S- plant 2 S+ plant 2 

Source/sink ratio 12leaves/2hands 12leaves/8hands 12leaves/2hands 12leaves/8hands 

Collecting time 1hbi 13dpi 1hbi 13dpi 1hbi 13dpi 1hbi 13dpi 

Crown identification 
(cfr Figure 1) 

A B C D E F G H 

cDNA-AFLP comparison 
  

      

 

2.2.2. Inoculation of fruits for the evaluation of susceptibility to crown rot  

The C. musae strain was isolated in Njombé, Cameroon. It is sensitive to thiabendazole 

and was stored at –20°C in a glycerol solution (30%). Before use, it was grown at 25°C in 

Mathur medium (MgSO4.7H2O: 2.5g/l; KH2PO4: 2.7g/l; peptone: 1 g/l; yeast extract: 1g/l; 

saccharose: 10 g/l; agar: 15 g/l) for 10 days. Conidia were removed by flooding the plates 

with sterile distilled water and filtration through a 45-µm sieve. The concentrations of the 

conidial suspension was determined with a Mallassez cell.  

Smoothly and similarly cut crowns were obtained with a sharp knife, leaving as much 

crown tissue as possible. The latex from the crown tissue was eliminated with absorbent paper 

and the crowns were surface-sterilized by immersion in 50% ethanol. Fifty microliters of C. 

musae conidial suspension containing 104 conidia/ml was applied to the centre of the freshly 

exposed crown tissue and covered with a small paper filter. Two hours after application of the 

conidial suspension, the clusters were packed in punched polyfilms normally used in the 

industry, placed in commercial boxes, and stored at 13°C for 10 days to simulate shipment. 

Artificial ripening was then initiated by dipping the bananas for 5 seconds in an ethrel 
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solution (480 g/l), after which the clusters remained at 20°C for another 3 days before crown 

rot assessment. The internal progression of the rot was determined by cutting the cluster 

crown longitudinally in two and measuring the surface of rot spread into the crown, from the 

original inoculation point. This “internal necrotic surface” (INS), calculated by assuming a 

rectangular shape, was expressed in mm2 (figure 2). The average value of the 3 replicates was 

taken as a measure of fruit susceptibility to crown rot.  

 

Figure 2: Evaluation of crown susceptibility. The internal necrotic surface (INS) was calculated assuming 
a rectangular shape and is expressed in mm2. 

2.2.3. RNA isolation and reverse transcription 

Total RNA was extracted from the eight lyophilized crown samples (A to H, table 1) by 

the hot borate method (Wan and Wilkins, 1994) modified by Mbéguié-A-Mbéguié et al. 

(2008) and as described by Lassois et al. (2009). RNA extracts were treated for 30 min at 

37°C with 20 units of RNase-free DNase (Roche, Basel, Switzerland) in the presence of 40 

units of RNase inhibitor (Roche Diagnostics, Mannheim, Germany). The RNA yield was 

determined by measuring the absorbance at 260 nm with an ND-1000 nanodrop 

spectrophotometer (Isogen Life Sciences, Maarssen, the Netherlands), and sample purity was 

estimated by the A260/A280 absorbance ratio. RNA integrity was evaluated by the sharpness of 

the bands corresponding to 28S and 18S ribosomal RNA (rRNA) visualized by ethidium 

bromide staining on a 1% agarose gel. Double-stranded cDNA was synthesized from total 

RNA according to the instructions for use of the Superscript Double-Stranded cDNA 

Synthesis Kit (Invitrogen, Carlsbad, CA, USA). 
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2.2.4. Identification of genes differently expressed between crowns of high and 

low susceptibility to crown rot disease 

The cDNA pools derived from S+ plant 1 and S- plant 1 (samples A to D in table 1 and 

figure 1) were subjected to cDNA-AFLP. For each collection time (1 hbi or 13dpi) the S+ and 

S- samples were compared. A was thus compared with C (1 hbi) and B with D (13 dpi). 

2.2.4.1. cDNA-AFLP 

Double-stranded cDNA was digested with EcoRI and MseI, ligated with EcoRI and 

MseI adapters, and pre-amplified with Eco (5’-GACTGCGTACCAATTC-3’) and Mse (5’-

GATGAGTCCTGAGTAA-3’) primers according to the instructions of the AFLP Analysis 

System kit for microorganisms (Invitrogen, Carlsbad, CA, USA). After 20-fold dilution of the 

PCR fragments, specific amplifications were carried out with 8 primer combinations of an 

Eco primer and an Mse primer containing two additional bases at their 3’ ends. The Eco 

primers were labeled with γ33P dATP. Amplification products were separated by 

electrophoresis at 50 W on a vertical denaturing polyacrylamide gel (6%) containing 7 M 

urea. Gels were dried on Whatman paper before autoradiography. 

2.2.4.2. Isolation and reamplification of differently expressed transcription-derived 

fragments (TDFs) 

The film and gel were aligned and the fragments of interest were excised from the gel 

with a sterile razor blade and immersed overnight in 100 µl distilled water. Of this solution 

5µl was used in a standard PCR with the same EcoRI and MseI primers as used in the 

preamplification step described above. After separation of the amplified products in a 1.2% 

agarose gel, the bands were excised and purified as recommended with the QiaEx II gel 

extraction Kit (Quiagen, Venlo, Pays-Bas).  

2.2.4.3. Cloning and sequencing of reamplified differently expressed TDFs 

The DNA fragments were ligated to the pJET1.2 vector according to the instructions of 

the Clonejet PCR Cloning Kit (Fermentas, Vilnius, Lithuania) and cloned into Escherichia 

coli (UltracompTM INVαF’, Invitrogen, Carlsbad, CA, USA). After transformation, bacterial 

cells were spread onto NZY medium (2.1% NZY, 1.5% agar; pH 7.0) containing 100 µg/ml 

ampicillin. After incubation for at least 30 h at 37°C, 5 colonies per fragment were chosen and 

cultured overnight at 37°C in liquid NZY medium containing ampicillin. Plasmids containing 
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the PCR product were extracted with the GeneJet Plasmid miniprep Kit (Fermentas, Vilnius, 

Lithuania), according to the instructions. The presence of inserts in plasmids was checked by 

standard PCR amplification with pJET Forward and Reverse primers (Fermenta,Vilnius, 

Lithuania). 

2.2.4.4. Sequence analysis 

Three colonies were selected for sequence analysis for each TDF. Sequencing was 

carried out with an automated sequencer (AbiPrism3730XL, Applied Biosystems, Foster City, 

CA, USA) by Macrogen Inc. (Seoul, South Corea) with the pJET Forward primer of the 

ClonjetTM PCR Cloning Kit (Fermentas, Vilnius, Lithuania). Sequence alignments were 

performed and the sequence of each fragment corrected by means of the Bioedit sequence 

alignment editor software developed by the Microbiology Department of North Carolina 

University (USA). Sequence homology was determined with the Basic Local Alignment and 

Search Tool (BlastX program) from the National Center for Biotechnology Information 

(NCBI). The identified putative protein sequences were used in queries against the UniProt 

database. Homologies with E-value scores below 10-8 were considered significant. 

2.2.5. cDNA-AFLP fragment validation by real-time RT-PCR 

2.2.5.1. Experimental design 

The results obtained by cDNA-AFLP were confirmed for selected TDFs by real-time 

RT-PCR (with two independent biological replicates, table 1). In these confirmation tests, 

expression-level differences between identically processed S- and S+ samples were 

determined for both collection times (1 hbi and 13 dpi) and expressed as described in the 

legend of table 5. Hence, samples A and E yielded biological replicate, as did B and F, C and 

G, D and H. Template-free controls (water instead of cDNA) were included. Three technical 

replicates were done for each biological replicate.  

2.2.5.2. Primer design 

For each TDF, the forward and reverse primers were designed on the basis of the 

isolated sequence, with the online Primer3 software under default settings. Newly designed 

primers were ordered from and synthesized at Eurogentec (Seraing, Belgium).  
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2.2.5.3. Real time RT-PCR 

Real-time RT-PCR was carried out with StepOne+ Real-Time PCR systems (Applied 

Biosystems, Foster City, CA, USA). Each PCR amplification was performed in 20 µl reaction 

mixture consisting of 10 µl Maxima Sybr Green qPCR Master Mix 2X (Fermentas), 2 µl each 

of the forward and reverse primers (10 µM), 1 µl cDNA template (1ng/µl), and 5µl PCR-

grade water. The cycling conditions were: pre-incubation for 10 min at 95°C, followed by 40 

cycles, each consisting of 30s denaturing at 95°C, 40s annealing at 52°C, and 45s elongation 

at 72°C, the last cycle ending with a final 10-min extension at 72°C. Melting curve analysis 

(60 to 95°C) was performed to validate the gene specificity of the primers. Only genes with 

clear melting curves were taken for further data analysis. Samples showing irregular melting 

peaks were excluded from the quantification procedure. Differences in expression were 

calculated according to the “Delta-delta method” (Pfaffl, 2001), elongation factor 1-alpha 

(Ef1a) being used as an internal control for normalization (Czechowski et al., 2005; 

Eungwanichayapant and Popluechai, 2009). RT-PCR analyses and subsequent calculations 

were performed with the StepOneTM software (Applied Biosystems, Foster City, CA, USA). 

2.2.5.4. Functional annotation of differently expressed genes 

Genes identified by cDNA-AFLP analysis and confirmed in both real time RT-PCR 

biological replicates to be differently expressed to a significant degree in S+ and S- banana 

crown tissues were grouped into gene ontology (GO) categories according to biological 

process and molecular function. To obtain the GO annotations of our proteins, we 

downloaded those of Arabidopsis proteins from the TAIR website as reference annotations. 

The Arabidopsis protein GO annotations were extended to the proteins found in this study. 

2.3. Results 

2.3.1. Banana samples  

As expected, by modification of the source-sink ratio at flowering we were able to 

obtain banana plants with different susceptibility levels. As shown in figure 3, crowns 

obtained from both 12-leaf/2-hand banana plants (average INS values: 123 mm2 and 168 

mm2) were less susceptible to crown rot disease than the crowns obtained from both 12-

leaf/8-hand banana plants (INS values: 369mm2 and 395mm2). RNA was successfully 

extracted from all 8 freeze-dried crown samples (results not shown).  
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S- plant 1 S+ plant 1 S- plant 2 S+ plant 2

Biological replicate 1 Biological replicate 2
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Figure 3: Susceptibility of the banana crowns used for molecular analyses, as determined by measuring 
the internal necrotic surface (INS, expressed in mm2). The INS average and standard deviation of the 3 
clusters of the same second hand are given for the 2 independent biological replicates and for the 2 
different susceptibility level banana plants.  

2.3.2. Isolation of differently expressed genes 

The cDNA pools from S- plant 1 (less susceptible to crown rot) and S+ plant 1 (more 

susceptible) at both collection times were subjected to cDNA-AFLP screening. A total of 8 

combinations of EcoRI+2/MseI+2 primers were used and more than 3100 bands were 

amplified from the cDNA pools. The cDNA-AFLP technique revealed (table 2, a and b) a 

total of 157 amplicons differentially expressed between the high- (S+) and low- (S-) 

susceptibility samples collected before inoculation (1 hbi) (i.e. about 10% of the total 

amplicons on the corresponding profile); and 286 amplicons differentially expressed between 

the high- and low-susceptibility samples collected 13 days after inoculation (13 dpi) (about 

14% of the total amplicons). Only bands showing a clear intensity difference between S+ and 

S- upon visual inspection, without other bands nearby and with a size superior to 100 bp, were 

excised from the polyacrylamide gels (figure 4), cloned and sequenced.  
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(2)

(3)

Eco RI+cc/Mse I+ag

S- (1hbi) S+ (1hbi) S- (13dpi) S+ (13dpi)

 

Figure 4: Autoradiography showing a typical result for one selective Eco RI/MseI primer combination for 
comparing high-susceptibility (S+) banana tissues with low-susceptibility banana tissues (S-) at two times: 
1 hour before inoculation (1 hbi) and 13 days post-inoculation (13 dpi). Arrows indicate examples of: (1) a 
transcripts of an induced gene; (2) transcripts of an upregulated gene; and (3) transcripts of an unaffected 
gene. Differentially expressed transcript-derived fragments (TDFs) were excised from the gel, reamplified, 
cloned and sequenced. 

A total of 32 and 99 bands (TDF) were selected respectively from samples collected 

before inoculation (1hbi) and 13 days after inoculation (13 dpi). Among them, 16 (for 1 hbi) 

and 62 (for 13 hpi) were successfully recovered from the gels, reamplified, cloned, and 

sequenced (table 2, a and b). These 78 distinct nucleotide sequences were then subjected to a 

BlastX homology search. This analysis revealed non-redundant significant homology with 

plant gene sequences in the public database for 15 of the 16 selected TDFs from the “ 1 hbi ” 

profile (table 3a); and 31 of the 62 TDFs selected from the “13 dpi” profile (table 3b). The 

remaining 31 TDFs from “13 dpi” profile showed no significant homology to any known 

plant sequence.  
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Table 2a: Overall results of cDNA-AFLP analysis (with 8 primer combinations) and real-time RT-PCR 
confirmation for material harvested 1 hour before inoculation (1hbi). 

Expression profile (1hbi) Number 

cDNA fragments displayed (100-450bp) in S- and S+ 822 and 683 

Differently expressed fragments 157 

Upregulated in S- 62 

Downregulated in S- 95 

TDFs selected and excised 32 

TDFs successfully recovered from the gels, reamplified, cloned and 
sequenced 

16 

Non redundant significant similarities with the database after analysis 15 

Selected TDFs for real time RT-PCR confirmation 7 

cDNA-AFLP result confirmation by real time RT-PCR/ Biological 
replicate 1 

7 

cDNA-AFLP result confirmation by real time RT-PCR/ Biological 
replicate 2 

6 

 

Table 2b: Overall results of cDNA-AFLP analysis (with 8 primer combinations) and real-time RT-PCR 
confirmation for material harvested 13 days post-inoculation (13dpi). 

Expression profile (13dpi) Number 

cDNA fragments displayed (100-450bp) in S- and S+ 811 and 845 

Differently expressed fragments 286 

Upregulated in S- 166 

Downregulated in S- 120 

TDFs selected and excised 99 

TDFs successfully recovered from the gels, reamplified, cloned and 
sequenced 

62 

Non redundant significant similarities with the database after analysis 31 

Selected TDFs for real time RT-PCR confirmation 21 

cDNA-AFLP result confirmation by real time RT-PCR/ Biological 
replicate 1 

17 

cDNA-AFLP result confirmation by real time RT-PCR/ Biological 
replicate 2 

5 

 



Identification of genes potentially implied in quantitative banana response to crown rot disease 

130 

Table 3a: BlastX identities of non-redundant clones identified by comparing the cDNA-AFLP profiles of highly susceptible and less susceptible banana crown 
tissues collected 1 hour before inoculation. The table also shows the number of cases in which differential expression was confirmed by real-time RT-PCR (two 
independent biological replicates). BR1: biological replicate 1; BR2: biological replicate 2. 

cDNA-
AFLP 

Fragment 

Size 
(bp)  

cDNA-AFLP 
regulation S

-
  

Homology  Annotation  Organism origin  E-value 
(%similarity)   

Real Time RT-
PCR confirmation 

BR1 BR2 

48b.1  447  +  ABF71990  Putative protein kinase  Musa acuminata  8e-29 (82%)  yes  yes  

44b.2  620  -  ABF70116  
dual specificity protein 

phosphatase family protein  
Musa balbisiana  2e-18 (57%)  yes  yes  

31.1  411  -  NP_195309  RING-type ubiquitin ligase  Arabidopsis thaliana  8e-21 (79%)  yes  yes  

33.2  348  +  EEF29330  dopamine beta-monooxygenase  Ricinus communis  5e-34 (74%)  yes  yes  

44.1  607  -  NP_001053150  Hypothetical protein  Oriza sativa  5e-65 (87%)  yes  yes  

47.1  490  -  NP_565766  Glycolip transfer protein  Arabidopsis thaliana  7e-39 (87%)  yes  yes  

48.1  454  -  CAN81047  Hypothetical protein  Vitis vinifera  6e-65 (91%)  yes  no  

73.1  245  -  CAO60899  Hypothetical protein  Vitis vinifera  3e-06 (61%)  Not done  

73.2  248  -  CAN81194  Hypothetical protein  Vitis vinifera  7e-33 (98%)  Not done  

32.1  402  +  NP_187791  Unknown protein  Arabidopsis thaliana  1e-20 (68%)  Not done  

36.1  193  -  NP_001060105  Hypothetical protein  Oriza sativa  6e-19 (85%)  Not done  

37.1  186  -  EEC73391  Hypothetical protein  Oriza sativa  2e-16 (80%)  Not done  

51b.1  366  -  NP_001055242  Hypothetical protein  Oriza sativa  9e-15 (56%)  Not done  

70.2  426  -  CAN66568.1|  Hypothetical protein  Vitis vinifera  3e-14 (65%)  Not done  

5.2  282  +  EEE54897  Hypothetical protein  Oriza sativa  7e-07 (54%)  Not done  
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Table 3b: BlastX identities of non-redundant clones identified by comparing the cDNA-AFLP profiles of highly susceptible and less susceptible banana crown 
tissues collected 13 days post-inoculation. The table also shows the number of cases in which differential expression was confirmed by real-time RT-PCR (two 
independent biological replicates). BR1: biological replicate 1; BR2: biological replicate 2. 

cDNA-
AFLP 

Fragment 

Size 
(bp)  

cDNA-AFLP 
regulation S

-
  

Homology  Annotation  Organism origin  E-value 
(%similarity)   

Real Time RT-
PCR confirmation 

BR1 BR2 

294.2  298  +  NP_001104954  Cellulose synthase  Zea mays  3e-43 (96%)  yes  yes  

283.1  444  +  EEF32539  
Putative glycolipid transfer 

protein  
Ricinus communis  4e-20 (92%)  yes  yes  

232.2  119  +  ACG29071  Serine carboxypeptidase II-3  Zea mays  1e-12 (89%)  yes  yes  

317.1  425  -  EEF47930  
Putative ubiquitin carboxyl-

terminal hydrolase  
Ricinus communis  3e-52 (78%)  yes  yes  

190.2  618  +  ABG66307  
CCR4 associated factor 1-

related protein  
Capsicum annuum  1e-58 (77%)  yes  yes  

284.1  434  -  EEF44770  
Putative lactoylglutathione 

lyase  
Ricinus communis  5e-28 (84%)  yes  no  

197.2  418  +  AAF23074  Heat shock protein 70  Triticum aestivum  6e-53 (99%)  yes  no  

145.2  298  -  EEF32493  
Putative ribose-5-phosphate 

isomerase  
Ricinus communis  1e-10 (81%)  yes  no  

220.2  390  +  EEF37576  Putative sulfate transporter  Ricinus communis  1e-27 (86%)  yes  no  

220.3  395  +  BAE99290  
β-N-acetylhexosaminidase -like 

protein  
Arabidopsis thaliana  2e-59 (90%)  yes  no  
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cDNA-
AFLP 

Fragment 

Size 
(bp)  

cDNA-AFLP 
regulation S

-
  

Homology  Annotation  Organism origin  E-value 
(%similarity)   

Real Time RT-
PCR confirmation 

BR1 BR2 

178.1  270  +  A2XDD6  
Homeobox-leucine zipper 

protein HOX13  
Oryza sativa  9e-12 (64%)  yes  no  

233.2  129  +  ABC72694  Granule-bound starch synthase  
Cephalostachyum 

mannii  
3e-12 (97%)  yes  no  

231.3  147  +  NP_195906  
Pentatricopeptide (PPR) repeat-

containing protein  
Arabidopsis thaliana  3e-09 (82%)  yes  no  

241.1  458  +  AAL59042  
Putative tetratricopeptide repeat 

protein  
Oryza sativa  5e-45 (86%)  yes  no  

243.2  343  +  BAD30585  
Putative 2-amino-4-hydroxy-6- 
hydroxymethyldihydropteridine 

diphosphokinase  
Oryza sativa  3e-31 (83%)  yes  no  

291.2  348  +  EEC70392  Hypothetical protein  Oryza sativa  6e-27 (73%)  yes  no  

216.1  466  +  AAX07420  Actin 2  Musa acuminata  1e-74 (98%)  yes  no  

198.1  291  +  ACG32616  expp1 protein precursor  Zea mays  1e-25 (84%)  no   

170.2  405  +  ABF98518  Putative protein kinase  Oryza sativa  3e-59 (89%)  no   

182.2  169  -  AAO43609  
Caffeic acid O-

methyltransferase  
Sorghum bicolor  2e-09 (76%)  no   

288.1  357  +  Q9XF47  
Cytosolic fructose 1,6 

biphosphatase  
Musa acuminata  4e-42 (97%)  no   
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cDNA-
AFLP 

Fragment 

Size 
(bp)  

cDNA-AFLP 
regulation S

-
  

Homology  Annotation  Organism origin  E-value 
(%similarity)   

Real Time RT-
PCR confirmation 

BR1 BR2 

285.1  417  +  Q0JDM0  
Zinc finger CCCH domain-

containing protein 27  
Oryza sativa  9e-41 (81%)  Not done  

283.2  448  -  ACG28752  
Serine/threonine-protein kinase 

NAK  
Zea mays  1e-46 (81%)  Not done  

183.1  170  +  CAN60313  
Putative serine/threonine 

protein kinase  
Vitis vinifera  5e-13 (79%)  Not done  

182.1  167  -  EEF50185  
Putative serine/threonine 

protein kinase  
Ricinus communis  4e-14 (80%)  Not done  

302.1  205  -  CAO46913  Unnamed protein product  Vitis vinifera  2e-09 (89%)  Not done  

143.1  334  +  CAO45614  Unnamed protein product  Vitis vinifera  1e-31 (88%)  Not done  

318.2  419  +  CAO66159  Unnamed protein product  Vitis vinifera  3e-38 (82%)  Not done  

312.2  120  -  CAN71825  Hypothetical protein  Vitis vinifera  7e-10 (88%)  Not done  

290.1  361  -  EEE60281  Hypothetical protein  Oryza sativa  8e-32 (74%)  Not done  

171.1  373  +  CAN72176  Hypothetical protein  Vitis vinifera  5e-37 (82%)  Not done  
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2.3.3. Confirmation of differently expressed fragments by real-time RT-PCR 

All TDFs from tables 3a and 3b, for which specific primer pairs were successfully 

designed, were selected for confirmation of their differential expression by real time RT-PCR: 

Here, cDNA pools from all four plants were used, providing two independent biological 

replicates.  

2.3.3.1. TDFs isolated 1 hbi 

Primer pairs were successfully designed, amplifying the expected products for only 7 of 

the 15 TDFs (table 4).  

Table 4: Nucleotide sequences of the specific primers used in real-time RT-PCR analyses. *collection time 
of the sample from which the fragment was isolated. 

Target  
cDNA  Isolation*  Forward primer sequence (5’-3’)  Reverse primer sequence (5’-3’)  Product 

size (Bp)  

44.1  1hbi  GTGAATAAGCCCCGAGTTGA  GAATCCCTGCAGTTGGATGT  208  

44B.2  1hbi  ATGGTGATGAGGAGGCTTTG  GCTGGTAAAAGGGGGAAAAC  192  

48B.1  1hbi  TTTACTCGGGGAAGGAGGTT  TCTGTCAGCCATTCCTTGTG  150  

31.1  1hbi  CAACAGGGGAGAAGAATTGC  CGCCTACACAGTGGACAAGA  151  

47.1  1hbi  TGTTCACTCCCTCATTGGAAG  CCAGCCTCGTTATGTTACCC  168  

48.1  1hbi  GCTATGATGCTTTCACTCTTG  GTTCTTCACGGGGATTCG  119  

33.2  1hbi  GACGCAACAGGGGAGAAG  CGAAAGAGAGGAAAGCAAGC  218  

317.1  13dpi  CCATCAGGAAGCATTCCATT  GTGCCCTCAACAACAGTTCC  203  

170.2  13dpi  TGATGGATTCCAAGAAAAACG  AAGACTTGGAGCCAATGGTG  160  

197.2  13dpi  AACCCTGATGAGGTTGTTGC  TGTTGTGTTCCTTGGGATGA  156  

216.1  13dpi  GTTTGGATCTTGCTGGTCGT  GATCAAGGATGGCTGGAAGA  272  

190.2  13dpi  TCCGCTACATCTGGGAGTTC  ACCAGTCCCGACGACATTAG  169  

220.3  13dpi  AGGTACACGGTTGAGGATGC  GCTCACATCTAGGGGCTCAG  162  

291.2  13dpi  TCGAGGAAGACTGCCAAGAT  GTCAGATGCCCGATCGTTAT  169  

288.1  13dpi  TGGCAAATGCTGTCAAATGT  GCGATGGATCCACAAAAGTT  242  

294.2  13dpi  GAATGAACCACATTCCAGCA  CTTTTGGAGAGGGTGGCATA  151  

241.1  13dpi  CGAGGCTATTGCTGACATGA  ACCAATTCCCCATCTCCTTC  155  

243.2  13dpi  AAAGCTTGGCTGCTTCACAT  CATTGCATCACAGACCTTCG  203  

283.1  13dpi  ACCAATTCCCCGTATCCTTC  AACCTCCTTCCCCGAGTAAA  256  

178.1  13dpi  GCTGCTCCTAGCCGAGATAA  CGCCGTCCTTGTAGATCAAT  125  

284.1  13dpi  TGCTGAGGAAGAAGGCTCAT  CCTGAGTAACCCCAAGGACA  258  

198.1  13dpi  TTGTGTGTCTCAGGGAGCAG  CAGCTTGGAAACCTCGTACC  155  
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The real-time RT-PCR results for biological replicate 1 (material from S+ plant 1 and S- 

plant 1) confirmed the changes in expression of all 7 tested TDFs (table 3a). Only one TDF 

(48.1) coding for a hypothetical protein did not show the same regulation in the biological 

replicate 2 (table 3a). The 6 TDFs which had the same pattern of expression for the two 

biological replicates were found to encode proteins showing similarity to 1 putative protein 

kinase (48b.1), 1 protein of the dual specificity protein phosphatase family (44b.2), 1 protein 

of the RING-type ubiquitin ligase family (31.1), 1 dopamine-β-monooxygenase (33.2), 1 

hypothetical protein (44.1), and 1 glycolipid transfer protein (47.1) (table 3a). The 6 

corresponding primer combinations were also used in real-time RT-PCR experiments on the 

cDNA pools obtained from the samples collected 13 dpi from all four plants (table 5). The 

putative protein kinase and the dopamine-β-monooxygenase appeared upregulated in the S- 

tissues collected 1 hbi, becoming highly upregulated in the tissues collected 13 dpi. The 

member of the dual specificity phosphatase family, the RING-type ubiquitin ligase family, 

and the glycolipid transfer protein appeared downregulated in the S- tissues collected 1 hbi, 

becoming highly upregulated in the S- tissues collected 13 dpi. The last protein, a hypothetical 

one, showed high downregulation in the tissues collected at both times (table 5). 

 

231.3  13dpi  GCAGGCCAAATGAGAATACC  GCGTACCAATTCCACGATCT  120  

232.2  13dpi  TAATGGAGGTCCCGGGTGT  CCAATTCCAAGCATAAGGATTC  115  

182.2  13dpi  CTCACAGCGATGGAGGTAGG  GCGGCGAAGAGATAAGTGAC  100  

145.2  13dpi  TGGTTGCTTTTGTGTTGGTT  CCTCAAATTTTCTCCGTCCA  113  

220.2  13dpi  AGGTACACGGTTGAGGATGC  GCTCACATCTAGGGGCTCAG  162  

233.2  13dpi  ATGCCCTGAAGCTGGATAAG  TCCTGAGTAATGCACCTTTGG  103  
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Table 5: Genes differently expressed to a significant degree in S+ and S- banana crown tissues and results of real-time RT-PCR confirmations of differential 
transcription (two biological replicates). Genes identified by cDNA-AFLP were grouped into gene ontology categories according to biological process and molecular 
function. The leftmost column shows the time of collection (1 hbi: 1 hour before pathogen inoculation; 13 dpi: 13 days post-inoculation) of the tissues in which the 
genes were identified by cDNA-AFLP analysis. The rightmost column provides, on a semi-quantitative scale, an estimate of the extent of differential transcription of 
the selected genes, as measured in confirmatory real-time RT-PCR assays performed on material collected at both times. A “+” sign means upregulation in S- as 
compared to S+ crown tissue, and a “-”sign means downregulation in S- as compared to S+ crown tissue. The “regulation levels” defined for S- tissue are ±±±±1: less than 
2-fold up- or downregulation; ±±±±2: 2- to 5-fold up- or downregulation; ±±±±3: 5- to 10-fold up- or downregulation; ±±±±4: more than 10-fold up- or downregulation. When 
only one level appears, it is the mean of the results of the two biological replicates. When two levels appear, the two replicates showed different regulation trends 
and the values obtained for both replicates are given separately.”  

Isolation TDF Annotation GO biological process GO molecular function 
Regulation level 
1 hbi 13 dpi 

1hbi 48b1 Putative protein kinase GO: 0006468 
Protein amino acid 
phosphorylation 

GO: 0004672 
Protein kinase 

activity 
+2 +4 

1hbi 44b2 
Dual specificity 

phosphatase family protein 
GO: 0006470 

Protein amino acid 
dephosphorylation 

GO: 0016791 Phosphatase activity -4 +4 

1hbi 31.1 
RING-type ubiquitin ligase 
(C3H4 RING zinc finger 

family protein) 
GO: 0006511 

Ubiquitin-dependent 
protein catabolic process 

GO: 0005515 Protein binding -2 +3 

13dpi 317.1 
Putative ubiquitin 
carboxyl-terminal 

hydrolase 
GO: 0006511 

Ubiquitin-dependent 
protein catabolic process 

GO: 0004221 
Ubiquitin 

thiolesterase activity 
-1; +1 +2 

13dpi 232.2 Serine carboxypeptidase GO: 0006508 Proteolysis GO: 0004185 
Serine-type 

carboxypeptidase 
activity 

+2 +3 

1hbi 47.1 Glycolipid transfer protein GO: 0046836 Glycolipid transport GO: 0017089 
Glycolipid transporter 

activity 
-1 +3 

13dpi 283.1 Glycolipid transfer protein GO: 0046836 Glycolipid transport GO: 0017089 
Glycolipid transporter 

activity 
-1 +3 

1hbi 33.2 
Dopamine beta-
monooxygenase 

GO: 0042420 
Dopamine catabolic 

process 
GO: 0004500 

Dopamine 
monooxygenase 

activity 
+1 +4 

13dpi 294.2 Cellulose synthase GO: 0030244 
Cellulose biosynthetic 

process 
GO: 0016760 

Cellulose synthase 
activity 

-2 -2 
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Isolation TDF Annotation GO biological process GO molecular function 
Regulation level 
1 hbi 13 dpi 

13dpi 190.2 
CCR4 associated factor 1-

related protein 
GO: 0009451 RNA modification GO: 0004540 Ribonuclease activity -1; +1 +2 

1hbi 44.1 Hypothetical protein     -4 -4 
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2.3.3.2. TDFs isolated 13 dpi 

Twenty-one primer pairs were successfully designed and they amplified the expected 

products (table 4). Among the corresponding 21 TDFs, only 5 had the same pattern of 

expression in both real-time RT-PCR biological replicates (table 3b). They were found to 

encode proteins showing similarity to 1 cellulose synthase (294.2), 1 putative glycolipid 

transfer protein (283.1), 1 serine carboxypeptidase (232.2), 1 putative ubiquitin carboxyl-

terminal hydrolase (317.1), and 1 protein related to the CCR4-associated factor 1 (190.2) 

(table 3b). The 5 corresponding primer combinations were also used in real-time RT-PCR 

experiments performed on the cDNA pools derived from samples collected 1 hbi from all four 

plants (table 5). Serine caroboxypeptidase appeared upregulated in S- tissues collected 1 hbi 

and slightly more so in tissues collected 13 dpi. Cellulose synthase showed similar 

downregulation in S- tissues collected 1 hbi and 13 dpi. The putative glycolipid transfer 

protein appeared downregulated in S- tissues collected 1 hbi, becoming highly upregulated 13 

dpi. For both the putative ubiquitin carboxyterminal hydrolase and the protein related to 

CCR4-associated factor 1, the biological duplicates showed similar results for 13 dpi 

(upregulation in S- tissues) but different results for 1 hbi: slight downregulation in tissues 

from S- plant 1 but slight upregulation in tissues from S- plant 2. 

2.4. Discussion 

Transcriptome analysis is a common way of discovering differences in gene expression 

between two samples because regulation of gene activity occurs primarily on transcription 

level. cDNA-AFLP presents the advantage to be an open-end methods requiring only standart 

instrumentation and incurring low costs. But its drawback is a high fraction of cDNA 

molecules escaping detection. Indeed, although in theory the cDNA-AFLP technique allows 

analysis of the whole transcriptome, in practice the estimated transcriptome coverage ranges 

from less than 20% to 73% (Venkatesh et al., 2005). Means reasons are because (i) of the lack 

of suitable restriction sites (Breyne et al., 2003) ; (ii) gene discovery is based on subjective 

band selection ; and (iii) because this is a laborious and time-consuming technique requiring 

some selection at various steps. Furthermore, in the present study, we have retained only 

fragments showing homology with sequences in a database, amounting to only 60% of our 

fragments. Similar or lower percentages are reported in the literature for cDNA-AFLP (Botton 

et al., 2008; Chen et al., 2003; Dong et al., 2004; Dilger et al., 2003; Guo et al., 2006; 

Trindade et al., 2004). Results obtained in this study provide a supplementary proof of the 

escaping detection. Indeed, different genes were put in evidence between 1hbi and 13dpi 
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detection while the real-time RT-PCR shows that these genes were differently expressed in 

both stages. It is thus essential to bear in mind that some interesting genes involved in banana 

response to crown rot disease might not have been identified in our study and may remain to 

be discovered. 

This study also highlights the importance of confirming results with an independent 

technique. In the runs performed on material derived from S+ plant 1 and S- plant 1 (the same 

material as used for cDNA-AFLP analysis), the real-time RT-PCR confirmed the initially 

differential expression for 86% of the cDNA-AFLP fragments. Non-confirmation is likely due 

to the fact that a band in a gel can contain a mixture of several fragments (Chen et al., 2006; 

Hsu et al., 2008; Zhang, 2003). This introduces artefactual cloning (Bachem et al., 1998) and 

can also possibly lead to misinterpretation (overestimation) of cDNA-AFLP fragment 

expression levels in the gel. In the literature, investigators report confirmation rates of 30% 

(Campalans et al., 2001; Fukuda et al., 1999) to 100% (Ditt et al., 2001) for genes identified 

by cDNA-AFLP analysis and tested with an independent technique. Moreover, our results 

also demonstrate the necessity of confirming results with biological replicates before 

concluding that a gene is involved in a molecular process, since the initial differential 

expression was confirmed in both biological replicates for only 46% of our selected genes. 

Despite these limitations, the cDNA-AFLP technique has provided useful information 

allowing a step towards understanding the mechanisms involved in the variations of banana 

susceptibility to crown rot disease and this is the first work carried on this pathosystem. 

Because of the compatibility of the interaction, we expected significant transcriptional 

changes to occur among genes associated with cellular changes involved in general defense 

responses. It was no surprise to find genes involved in signal transduction or proteolytic 

pathways among those potentially involved in banana defense responses. It is well known that 

these pathways are complex but required to regulate defense responses, even though the exact 

regulatory mechanisms are not yet known.  

The sequences encoded by fragments 48b.1 and 44b.2 respectively show homology with 

a putative protein kinase and a protein of the dual specificity phosphatase (DSP) family. 

Proteins of both types catalyze reversible protein phosphorylations involved in signaling 

pathways. It is known that synthesis of such proteins is triggered by an array of stimuli and 

that they target a broad range of downstream effectors, thereby regulating various processes 

such as defense responses (Agrawal et al., 2002; Agrawal et al., 2003; Lecourieux-Quaked et 

al., 2000; Nurnberger et al., 2004; Rakwal et al., 2001).  



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

140 

The proteins corresponding to fragments 31.1 (a RING-type ubiquitin ligase) and 317.1 

(a putative ubiquitin carboxyl-terminal hydrolase) belong the proteolytic machinery that plays 

key roles in the regulation of biological processes in plants (Edelmann and Kessler, 2008), 

including ones mediating responses to pathogens (Devoto et al., 2003; Ellis et al., 2002; van 

der Hoorn and Jones, 2004; Zeng et al., 2006). More specifically, proteins of this type are 

involved in the 26S proteasome pathway, considered to be the main proteolytic pathway in 

eukaryotes. Over the past years, approximately a dozen ubiquitinylation-related components 

have been identified as being involved in plant-pathogen interactions (Zeng et al., 2006), but 

in most cases, the exact nature of the regulation is not known. Most proteins of this type are 

induced in response to pathogen or elicitor challenges (Boyes et al., 1998; Ramonell et al., 

2005; Salinas-Mondragón et al., 1999; Serrano and Guzman, 2004; Takizawa et al., 2005; 

Zeng et al., 2006). 

In addition to the 26S proteasome pathway, there are other proteases that may be 

involved in plant defense (Avrova et al., 1999; Kruger et al., 2002; Pautot et al., 1993; 

Tornero et al., 1996; Xia et al., 2004). Serine carboxypeptidase (232.2) is a protease with a 

well-established function in protein turnover for the mobilization of N-resources, notably 

during seed germination (Dal Degan et al., 1994; Granat et al, 2003) and wound stress (Moura 

et al., 2001). Our results suggest that serine carboxypeptidase could be also implied in plant-

pathogen response. This protein appears to be upregulated in S- crown both pre- and post-

infection, but to a lesser extent 1hbi. 

The proteins corresponding to fragments 47.1 and 283.1 show high similarity to 

glycolipid transfer protein type 1 of Arabidopsis thaliana (AtGLTP1). They belong to the 

lipid-transfer protein 1 (LTP1) family, classified as pathogenesis-related family 14 (PR-14). 

Such proteins can be activated by elicitation and accumulate in plants, mounting a defensive 

response against pathogens, including fungi (Van Loon et al., 2006; Buhot et al., 2004). Yet 

the precise role of LTPs in defense responses remains to be discovered. AtGLTP1 has been 

shown in vitro to enhance the intervesicular trafficking of glycosphingolipids (GSLs), but the 

precise in vivo biological function is still unknown (Brown and Mattjus, 2007). Both banana 

genes showed the same regulation profile: slightly lower expression in S- than in S+ crown 

tissue before pathogen inoculation and much higher expression in the former than in the latter 

13 days post-inoculation. 

On the other hand, cDNA-AFLP providing clues that may contribute to understanding 

the mechanisms involved in banana responses to crown rot disease. One is CCR4-associated 
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factor 1 (CAF1). CAF1 proteins are required for regulated deadenylation of a broad spectrum 

of stress-responsive mRNAs (Liang et al., 2009), but the biochemical and physiological 

functions of CAF1 proteins are not clearly established (Liang et al., 2009). They have been 

implicated in the regulation of plant growth (Sarowar et al., 2007) and defense responses to 

biotic (Lee et al., 2004; Liang et al., 2009; Sarowar et al., 2007) and abiotic stress (Liang et 

al., 2009; Walley et al., 2007). In our study, as in all known cases, CAF1 overexpression 

appears to result in enhanced resistance. No constitutive differential expression was noted 

prior to inoculation. Investigators have linked up-regulation of multiple pathogenesis-related 

genes to over-expression of CAF1 genes (Liang et al., 2009; Sarowar et al., 2007). It will be 

interesting to study in our model the expression levels of some pathogenesis-related proteins 

in order to corroborate previous results and to attempt to better understand the role of CAF1 

in resistance mechanisms. 

Expression of the gene encoding a protein similar to cellulose synthase (294.2) is down-

regulated in S- banana crowns. This is somewhat surprising, as cellulose is a cell-wall 

component expected to play a role in forming a physical barrier against fungal penetration. 

Nevertheless there is evidence that when cellulose synthesis is reduced by mutation, lignin 

synthesis (Cano-Delgado et al., 2003) and defense responses are activated through various 

signaling pathways (Cano-Delgado et al., 2003; Ellis et al., 2002). Here we provide no 

information on lignin synthesis, but we do show a correlation between reduced expression of 

the cellulose synthase gene and enhanced resistance. This downregulation seems constitituve, 

as S- crowns showed the same level of downregulation both pre- and post-infection. Perhaps a 

plant more exposed to pathogen attack because of a low cellulose synthase level produces 

compensating defense mechanisms that are more efficient. 

Finally, cDNA-AFLP analysis has enabled us to identify a gene showing homology 

with a dopamine-β-monooxygenase (DoH) combined with a cytochrome B561 (CB) (33.2). 

DoH-CB proteins form a recently identified group of proteins, likely to play a key role in 

catecholamine biosynthesis pathway in plants (Tsubaki et al., 2005; Verelst and Asard, 2004). 

Cathecholamines are biogenic amines possessing a 3,4-dihydroxy-substituted phenyl ring. 

Among them are phenylethylamine, tyramine, dopamine, norepinephrine, and epinephrine 

(Kuklin and Conger, 1995). In banana fruits, dopamine is formed only through hydroxylation 

of tyramine (Smith, 1980). Dopamine hydroxylation by dopamine-β-monooxygenase leads to 

synthesis of norepinephrine, which is subsequently methylated to epinephrine. From a broad 

range of plants, bananas, and particularly Cavendish bananas, have the richest content in 

cathecolamines and particularly in dopamine : 100 µg/g FW in Cavendish banana peel as 
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compared with 7 µg/g FW for potato, the second richest plant of this list (Kulma and Szopa, 

2007). This observation suggests that cathecolamines might play an important role in banana 

physiology. 

Various functions, including plant pathogen resistance, have been proposed for 

catecholamines (Swiedrych et al., 2004; reviewed in Kulma and Szopa, 2007). Effects are 

probably due to the antioxidant properties of catecholamines themselves and also to cell-wall 

deposition and to the antioxidant properties of derivatives (Kulma and Szopa, 2007). Whether 

catecholamines can stimulate some defense responses more directly remains to be seen 

(Kulma and Szopa, 2007). However, catecholamine, dopamine, or oxidation products are 

suggested to be involved in banana resistance mechanisms (Mace, 1963; Muirhead and 

Deverall, 1984; Valette et al., 1998; Wuyts et al., 2006; Wuyts et al., 2007). Particularly, it 

has been shown that dopamine oxidation products have a brown-red color and show a strong 

antifungal activity against C. musae (Muirhead and Deverall, 1984). These authors suggested 

that four of the five antifungal products reported (Brown and Swinburne, 1980; Brown and 

Swinburne, 1981; Swinburne, 1978) subsequently to the infection of green bananas by hyaline 

appressoria of Colletotrichum musae were dopamine oxidation products (contrarily to 

melanized appressoria that do not germinate on green bananas, these infections from hyaline 

appressoria are rapidly blocked and a brown-red coloration of neighboring tissues is 

observed). It is noteworthy that the peripheral necrotic tissues observed here in the S- banana 

crowns showed a specific red-brown color (data not shown). Then, our results suggest that 

dopamine oxidation products might play an important role in susceptibility to crown rot 

disease. 

The factors involved in overexpression of dopamine oxidation in S- plants might be 

complex. Effectively, catecholamine biosynthesis and content depend on various factors: 

plant development stage (Lyte, 1997; Swiedrych et al., 2004b; Szopa et al., 2001); growth 

conditions (Swiedrych et al., 2004b); environmental factors (Kulma and Szopa, 2007) such as 

the pH (Homeyer and Roberts, 1984), brightness (Endress et al., 1984; Protacio et al., 1992), 

temperature (Swiedrych et al., 2004); and stress conditions including (i) biotic factors such as 

pathogen infection (Facchini et al., 1996), and (ii) abiotic stresses such as drought, ABA 

treatment, UV light, and wounding (Swiedrych et al., 2004b; Swiedrych et al., 2004; Szopa et 

al., 2001). In the case of cactus (Steelink et al., 1967) and potato (Szopa et al., 2001) 

wounding is accompanied by a rise in the dopamine concentration, and wounded tissues 

appear to stimulate dopamine production in the surrounding healthy tissue.  
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Similarly, in the case of crown rot of bananas we can hypothetize that wounding at 

harvest could also influence cathecolamine biosynthetic pathway. 

It would be interesting to learn more about the role of dopamine-β-monooxygenase and 

other catecholamines in the response of bananas to crown rot. We have shown that the 

dopamine-β-monooxygenase gene is overexpressed in bananas less susceptible to the disease. 

One should make sure, however, that this enzyme and some others are active and that their 

substrates are present in the crowns. By determining the levels of various catecholamines in 

crowns with different levels of susceptibility it might be possible to gain interesting 

information about their respective roles. Furthermore, by measuring the potential antifungal 

activities of catecholamines one could learn whether they are active by themselves in defense 

mechanisms or whether they are precursors of other active compounds. 

Finally, it is necessary to evaluate the expression levels of all these genes in other 

situations of susceptibility level variation. To be sure that they are really involved in 

quantitative regulation of banana defense responses and not in other pathways that might be 

triggered by a change in the source-sink ratio quite independently of any plant defense 

response. Furthermore, because plant defense responses invariably are by nature 

multicomponent processes, it is not easy to determine which components are both necessary 

and sufficient to confer protection.  



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

144 

References 

Agrawal, G.K., R. Rakwal, and H. Iwahashi. 2002. Isolation of novel rice (Oryza sativa L.) 

multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates 

rapidly in response to environmental cues. Biochemical and Biophysical Research 

Communications 294:1009-1016. 

Agrawal, G.K., H. Iwahashi, and R. Rakwal. 2003. Rice MAPKs. Biochemical and 

Biophysical Research Communications 302:171-180. 

Albertazzi, G., J. Milc, A. Caffagni, E. Francia, E. Roncaglia, F. Ferrari, E. Tagliafico, E. 

Stefani, and N. Pecchioni. 2009. Gene expression in grapevine cultivars in response to 

Bois Noir phytoplasma infection. Plant Science 176:792-804. 

Alvindia, D.G., T. Kobayashi, Y. Yaguchi, and K.T. Natsuaki. 2000. Symptoms and the 

associated fungi of postharvest diseases on non-chemical bananas imported from the 

Philippines. Japanese Journal of Tropical Agriculture 44:87-93. 

Appel, H.M. 1993. Phenolics in ecological interactions: The importance of oxidation. Journal 

of Chemical Ecology 19:1521-1552. 

Avrova, A.O., H.E. Stewart, W. De Jong, J. Heilbronn, G.D. Lyon, and P.R.J. Birch. 1999. A 

Cysteine Protease Gene Is Expressed Early in Resistant Potato Interactions with 

Phytophthora infestans. Molecular Plant-Microbe Interactions 12:1114-1119. 

Bachem, C. 1996. Visualization of differential gene expression using a novel method of RNA 

fingerprinting based on AFLP: Analysis of gene expression during potato tuber 

development. The Plant Journal 9:745-753. 

Bachem, C., R. Oomen, and R. Visser. 1998. Transcript imaging with cDNA-AFLP: a step by 

step protocol. Plant Molecular Biology Reporter 16:157-173. 

Botton, A., D. Ferrigo, C. Scopel, R. Causin, C. Bonghi, and A. Ramina. 2008. A cDNA-

AFLP approach to study ochratoxin A production in Aspergillus carbonarius. 

International Journal of Food Microbiology 127:105-115. 

Boyes, D.C., J. Nam, and J.L. Dangl. 1998. The Arabidopsis thaliana RPM1 disease 

resistance gene product is a peripheral plasma membrane protein that is degraded 

coincident with the hypersensitive response. Proceedings of the National Academy of 

Sciences USA 95:15849-15854. 

Breyne, P., R. Dreesen, B. Cannoot, D. Rombaut, K. Vandepoele, S. Rombauts, R. 

Vanderhaeghen, D. Inze, M. Zabeau. 2003. Quantitative cDNA-AFLP analysis for 

genome-wide expression studies. Molecular Genetics and Genomics 269: 173-179. 



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

145 

Brodersen, P., M. Petersen, H.M. Pike, B. Olszak, S.r. Skov, N. Ã˜dum, L.B. JÃ¸rgensen, 

R.E. Brown, and J. Mundy. 2002. Knockout of Arabidopsis ACCELERATED-CELL-

DEATH11 encoding a sphingosine transfer protein causes activation of programmed 

cell death and defense. Genes & Development 16:490-502. 

Brown, A.E., and T.R. Swinburne. 1980. The resistance of immature banana fruits to 

anthracnose Colletotrichum musae (Berk. & Curt.) Arx. Journal of Phytopathology 

99:70-80. 

Brown, A.E., and T.R. Swinburne. 1981. Influence of iron and iron chelators on formation of 

progressive lesions by Colletotrichum musae on banana fruits. Transactions of the 

British Mycological Society 77:119-124. 

Brown, R.E., and P. Mattjus. 2007. Glycolipid transfer proteins. Biochimica et Biophysica 

Acta  1771:746-776. 

Campalans, A., M. Pagès, and R. Messeguer. 2001. Identification of differentially expressed 

genes by the cDNA-AFLP technique during dehydration of almond. Tree physiology 

21:633-643. 

Cano-Delgado, A., S. Penfield, C. Smith, M. Catley, and M. Bevan. 2003. Reduced cellulose 

synthesis invokes lignification and defense responses in Arabidopsis thaliana. The Plant 

Journal 34:351-362. 

Chen, G.P., W.S. Ma, Z.J. Huang, T. Xu, Y.B. Xue, and Y.Z. Shen. 2003. Isolation and 

characterization of TaGSK1 involved in wheat salt tolerance. Plant Science 165:1369-

1375. 

Chen, W.H., I.C. Tseng, W.C. Tsai, M.S. Chiang, Y.H. Chen, and H.H. Chen. 2006. AFLP 

fingerprinting and conversion to sequence-tag site markers for the identification of 

Oncidium cultivars. Journal of horticultural science & biotechnology 81:791-796  

Cheung, M.-Y., N.-Y. Zeng, S.-W. Tong, F. Wing-Yen Li, K.-J. Zhao, Q. Zhang, S. Sai-Ming 

Sun, and H.-M. Lam. 2007. Expression of a RING-HC protein from rice improves 

resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis 

thaliana. Journal of Experimental Botany 58:4147-4159. 

Christou, P., and K.A. Barton. 1989. Cytokinin Antagonist Activity of Substituted 

Phenethylamines in Plant Cell Culture. Plant Physiology 89:564-568. 

Collart, M.A., and H.T. Timmers. 2004. The eukaryotic Ccr4-not complex: a regulatory 

platform integrating mRNA metabolism with cellular signaling pathways? Progress in 

Nucleic Acid Research and Molecular Biology 77:289-322. 



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

146 

Costa Mondego, J.M., J.L. Simões-Araújo, D.E. de Oliveira, and M. Alves-Ferreira. 2003. A 

gene similar to bacterial translocase I (mra Y) identified by cDNA-AFLP is expressed 

during flower bud development of Arabidopsis thaliana. Plant Science 164:323-331. 

Czechowski, T., M. Stitt, T. Altmann, M. K. Udvardi, and W. Scheible. 2005. Genome-Wide 

Identification and Testing of Superior Reference Genes for Transcript Normalization in 

Arabidopsis. Plant Physiology 139:5-17. 

Dai, Y., P. Michaels, and H. Flores. 1993. Stimulation of ethylene production by 

catecholamines and phenylethylamine in potato cell suspension cultures. Plant Growth 

Regulation 12:219-222. 

Dal Degan, F., A. Rocher, V. Cameron-Mills, and D. von Wettstein. 1994. The expression of 

serine carboxypeptidases during maturation and germination of the barley grain. 

Proceedings of the National Academy of Sciences USA 91:8209-8213. 

de Lapeyre de Bellaire, L., M. Chillet, and Y. Chilin-Charles. 2008. Determination of banana 

fruit susceptibility to post-harvest diseases: wound anthracnose, quiescent anthracnose 

and crown-rot. Fruits 63:183-186. 

Delauré, S.L., W. Van Hemelrijck, M.F.C. De Bolle, B.P.A. Cammue, and B.M.A. De 

Coninck. 2008. Building up plant defenses by breaking down proteins. Plant Science 

174:375-385. 

Denis, C.L., and J. Chen. 2003. The CCR4-NOT complex plays diverse roles in mRNA 

metabolism. Progress in Nucleic Acid Research and Molecular Biology 73:221-250. 

Devoto, A., P.R. Muskett, and K. Shirasu. 2003. Role of ubiquitination in the regulation of 

plant defence against pathogens. Current Opinion in Plant Biology 6:307-311. 

Dilger, M., F.G. Felsenstein, and G. Schwarz. 2003. Identification and quantitative expression 

analysis of genes that are differentially expressed during conidial germination in 

Pyrenophora teres. Molecular Genetic and Genomic 270:147-155. 

Ditt, R.F., E.W. Nester, and L. Comai. 2001. Plant gene expression response to 

Agrobacterium tumefaciens. Proceeding of the National Academy of Sciences USA 

98:10954-10959. 

Dixon, R.A., and N.L. Paiva. 1995. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 

7:1085-1097. 

Dong, W., M. Latijnhouwers, R.H.Y. Jiang, H.J.G. Meijer, and F. Govers. 2004. Downstream 

targets of the Phytophthora infestans Gα subunit PiGPA1 revealed by cDNA-AFLP. 

Molecular plant pathology 5:483-494. 

Dreher, K., and J. Callis. 2007. Ubiquitin, Hormones and Biotic Stress in Plants. Annals of 

Botany :mcl255. 



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

147 

Edelmann, M.J., and B.M. Kessler. 2008. Ubiquitin and ubiquitin-like specific proteases 

targeted by infectious pathogens: Emerging patterns and molecular principles. 

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1782:809-816. 

Ellis, C., J.G. Turner, and A. Devoto. 2002. Protein complexes mediate signalling in plant 

responses to hormones, light, sucrose and pathogens. Plant Molecular Biology 50:971-

980. 

Elstner, E.F., J.R. Konze, B.R. Selman, and C. Stoffer. 1976. Ethylene formation in sugar beet 

leaves. Plant Physiology 58:163-168. 

Endress, R., A. Jager, and W. Kreis. 1984. Catecholamines biosynthesis dependent on the 

dark in betacyanin-forming Portulaca callus. Journal of Plant Physiology 115:291-295. 

Eungwanichayapant P.D., and S. Popluechai. 2009. Accumulation of catechins in tea in 

relation to accumulation of mRNA from genes involved in catechin biosynthesis. 

Plant Physiology and Biochemistry 47 : 94-97. 

Facchini, P.J., A.G. Johnson, J. Poupart, and V. De Luca. 1996. Uncoupled Defense Gene 

Expression and Antimicrobial Alkaloid Accumulation in Elicited Opium Poppy Cell 

Cultures. Plant Physiology 111:687-697. 

Finlay, A.R., and A.E. Brown. 1993. The relative importance of Colletotrichum musae as a 

crown-rot pathogen on Windward Island bananas. Plant Pathology 42:67-74. 

Fukuda, T., A. Kido, K. Kajino, M. Tsutsumi, Y. Miyauchi, T. Tsujiuchi, Y. Konishi, and O. 

Hino. 1999. Cloning of differentially expressed genes in highly and low metastatic rat 

osteosarcomas by a modified cDNA-AFLP method. Biochemical and biophysical 

Research Communications 261:35-40. 

Gonzalez-Lamothe, R., D.I. Tsitsigiannis, A.A. Ludwig, M. Panicot, K. Shirasu, and J.D.G. 

Jones. 2006. The U-Box Protein CMPG1 Is Required for Efficient Activation of 

Defense Mechanisms Triggered by Multiple Resistance Genes in Tobacco and Tomato. 

Plant Cell 18:1067-1083. 

Granat, S.J., K.A. Wilson and A.L. Tan-Wilson. 2003. New serine carboxypeptidases in mung 

bean seedling cotyledons. Journal of Experimental Botany 160:1263–1266. 

Grandmaison, J., G.M. Olah, M.R. Van Calsteren, and V. Furlan. 1993. Characterisation and 

localisation of plant phenolics likely involved in the pathogen resistance expressed by 

endomycorrizal roots. Mycorhizza 3:155-164. 

Griffiths, L.A. 1959. Detection and identification of polyphenol oxidase substrate of banana. 

Nature 184:58. 

Griffiths, L.A. 1961. Relationship between 3,4-dihydroxyphenylethylamine content and the 

genome of Musa acuminata. Nature 192:84-85. 



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

148 

Guo, J., R.H.Y. Jiang, L.G. Kamphuis, and F. Govers. 2006. A cDNA-AFLP based strategy to 

identify transcripts associated with avirulence in Phytophthora infestans. Fungal 

Genetics and Biology 43:111-123. 

Hershko, A., and A. Ciechanover. 1998. The ubiquitin system. Annual Review of 

Biochemistry 67:425-479. 

Hohlfeld, H., W. Schurmann, D. Scheel, and D. Strack. 1995. Partial Purification and 

Characterization of Hydroxycinnamoyl-Coenzyme A: Tyramine Hydroxycinnamoyl-

transferase from Cell Suspension Cultures of Solanum tuberosum. Plant Physiology 

107:545-552. 

Homeyer, B., and M. Roberts. 1984. Dopamine accumulation in Papaver somniferum latex. 

Journal of Phytopathology 39c:1034–1037. 

Hsu, T.-W., W.-C. Tsai, D.-P. Wang, S. Lin, Y.-Y. Hsiao, W.-H. Chen, and H.-H. Chen. 

2008. Differential gene expression analysis by cDNA-AFLP between flower buds of 

Phalaenopsis hsiang fei cv. H. F. and its somaclonal variant. Plant Science 175:415-

422. 

Huang, Y.-C., Y.-L. Chang, J.-J. Hsu, and H.-w. Chuang. 2008. Transcriptome analysis of 

auxin-regulated genes of Arabidopsis thaliana. Gene 420:118-124. 

Jullien, A., M. Chillet, and E. Malezieux. 2008. Pre-harvest growth and development, 

measured as accumulated degree days, determine the post-harvest green life of banana 

fruit. Journal of Horticultural Science and Biotechnology 83:506-512. 

Kanazawa, K., and H. Sakakibara. 2000. High Content of Dopamine, a Strong Antioxidant, in 

Cavendish Banana. Journal of Agricultural and Food Chemistry 48:844-848. 

Kaur, A., and A. Thurkral. 1990. Effect of animal hormones on the growth, protein and sugar 

contents of Vigna unguiculata L. seedlings. Indian Journal of Plant Physiology 33:259-

261. 

Khurana, J.P., B.K. Tamot, N. Maheshwari, and S.C. Maheshwari. 1987. Role of 

catecholamines in promotion of flowering in a short-day duckweed, Lemna paucicostata 

6746. Plant Physiology 85:10-12. 

Krauss, U., and A. Johanson. 2000. Recent advances in the control of crown rot of banana in 

the Windward Islands. Crop Protection 19:151-160. 

Kruger, J., C.M. Thomas, C. Golstein, M.S. Dixon, M. Smoker, S. Tang, L. Mulder, and 

J.D.G. Jones. 2002. A Tomato Cysteine Protease Required for Cf-2-Dependent Disease 

Resistance and Suppression of Autonecrosis. Science 296:744-747. 



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

149 

Kuhn, E. 2001. From library screening to microarray technology: strategies to determine gene 

expression profiles and to identify differentially regulated genes in plants. Annals of 

Botany 87:139-155. 

Kuklin, A., and B. Conger. 1995. Catecholamines in plants. Journal of Plant Growth 

Regulation 14:91-97. 

Kuklin, A., and B. Conger. 1995b. Enhancement of somatic embryogenesis in orchardgrass 

leaf cultures by epinephrine. Plant Cell Reports 14:641-644. 

Kulma, A., and J. Szopa. 2007. Catecholamines are active compounds in plants. Plant Science 

172:433-440. 

Lassois, L., L. de Lapeyre de Bellaire, and M.H. Jijakli. 2008. Biological control of crown rot 

of bananas with Pichia anomala strain K and Candida oleophila strain O. Biological 

Control 45:410-418. 

Lassois, L., L. De Lapeyre de Bellaire, and M.H. Jijakli. 2009. Combining an original method 

for preserving RNA expression in situ with an effective RNA extraction method makes 

it possible to study gene expression in any banana fruit tissue. Fruits 64 : 127-137. 

Lassois, L., M.H. Jijakli, M. Chillet, and L. De Lapeyre de Bellaire. Accepteda. Crown rot of 

bananas : pre-harvest factors involved in post-harvest expression and integrated control 

methods. Plant Disease. 

Lassois, L., H. Bastiaanse, M. Chillet, A. Jullien, H. Jijakli, and L. de Lapeyre de Bellaire. 

Acceptedb. Hand position on the bunch and source-sink ratio influence the level of 

banana fruit susceptibility to crown rot disease. Annals of Applied Biology. 

Lecourieux-Quaked, F., A. Pugin, and A. Lebrun-Garcia. 2000. Phosphoproteins involved in 

the signal transduction of cryptogein, an elicitor of defense reactions in tobacco. 

Molecular Plant Microbe Interaction 13:821-829. 

Lee, S., S.-Y. Kim, E. Chung, Y.-H. Joung, H.-S. Pai, C.-G. Hur, and D. Choi. 2004. EST and 

microarray analyses of pathogen-responsive genes in hot pepper (Capsicum annuum L.) 

non-host resistance against soybean pustule pathogen (Xanthomonas axonopodis pv. 

glycines). Functional & Integrative Genomics 4:196-205. 

Liang, W., C. Li, F. Liu, H. Jiang, S. Li, J. Sun, X. Wu, and C. Li. 2009. The Arabidopsis 

homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a 

role in plant defence responses. Cell Research 19:307-316. 

Lu, Z., D. Liu, A. Hornia, W. Devonish, M. Pagano, and D.A. Foster. 1998. Activation of 

Protein Kinase C Triggers Its Ubiquitination and Degradation. Molecular and Cellular 

Biology 18:839-845. 



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

150 

Lucas, J.A. 1998. Plant pathology and plant pathogens. Blackwell Science, Oxford, U.K. 

(Malden, MA, USA). 

Lukezic, F.L., W.J. Kaiser, and M.M. Martinez. 1967. The incidence of crown rot of boxed 

bananas in relation to microbial populations of the crown tissus. Canadian Journal of 

Botany 45:413-421. 

Lyte, M. 1997. Induction of Gram-negative bacterial growth by neurochemical containing 

banana (Musa x paradisiaca) extracts. FEMS Microbiology Letters 154:245-250. 

Mace, M.E. 1963. Histochemical localization of phenols in healthy and diseased banana roots. 

Physiologia plantarum 16:915-925. 

Massart, S., and H. Jijakli. 2006. Identification of Differentially Expressed Genes by cDNA-

Amplified Fragment Length Polymorphism in the Biocontrol Agent Pichia anomala 

(Strain Kh5). Phytopathology 96:80-86. 

Mattjus, P., B. Turcq, H.M. Pike, J.G. Molotkovsky, and R.E. Brown. 2003. Glycolipid 

Intermembrane Transfer Is Accelerated by HET-C2, a Filamentous Fungus Gene 

Product Involved in the Cell—Cell Incompatibility Response. Biochemistry 42:535-542. 

Mbéguié-A-Mbéguié, D., B. Fils-Lycaon, M. Chillet, O. Hubert, C. Galas, and R. Gomez. 

2008. Extraction and purification of total RNA from banana tissues (small scale). Fruits 

63:255-261. 

Meredith, D.S. 1971. Transport and storage diseases of bananas: biology and control. Tropical 

Agriculture 48:35-50. 

Montesano, M., G. Brader, and E.T. Palva. 2003. Pathogen derived elicitors: searching for 

receptors in plants. Molecular Plant Pathology 4: 73-79. 

Moura, D.S., D.R. Bergey, and C.A. Ryan. 2001. Characterization and localization of a 

wound-inducible type I serine-carboxypeptidase from leaves of tomato plants 

(Lycopersicon esculentum Mill.). Planta 212:222-230. 

Muirhead, I.F., and B.J. Deverall. 1984. Evaluation of 3,4-dihydrobenzaldehyde, dopamine 

and its oxydation products as inhibitors of Colletotrichum musae (Berk. et Curt.) Arx in 

green banana fruits. Australian Journal of Botany 32:575-582. 

Newman, M.-A., E. von Roepenack-Lahaye, A. Parr, M.J. Daniels, and J.M. Dow. 2001. 

Induction of Hydroxycinnamoyl-Tyramine Conjugates in Pepper by Xanthomonas 

campestris, a Plant Defense Response Activated by hrp Gene-Dependent and hrp Gene-

Independent Mechanisms. Molecular Plant-Microbe Interactions 14:785-792. 

Nishimura, M.T., M. Stein, B.-H. Hou, J.P. Vogel, H. Edwards, and S.C. Somerville. 2003. 

Loss of a Callose Synthase Results in Salicylic Acid-Dependent Disease Resistance. 

Science 301:969-972. 



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

151 

Nurnberger, T., F. Brunner, B. Kemmerling, and L. Piater. 2004. Innate immunity in plants 

and animals: striking similarities and obvious differences. Immunological reviews 

198:249-266. 

Ohn, T., Y.-C. Chiang, D.J. Lee, G. Yao, C. Zhang, and C.L. Denis. 2007. CAF1 plays an 

important role in mRNA deadenylation separate from its contact to CCR4. Nucleic 

Acids Research 35:3002-3015. 

Palmer, J.K. 1963. Banana polyphenoloxydase: preparation and properties. Plant Physiology 

38:508-513. 

Pautot, V., F.M. Holzer, B. Reisch, and L.L. Walling. 1993. Leucine aminopeptidase: an 

inducible component of the defense response in Lycopersicon esculentum (tomato). 

Proceedings of the National Academy of Sciences USA 90:9906-9910. 

Peng, M., C. Hannam, H. Gu, Y. Bi, and S.J. Rothstein. 2007. A mutation in NLA, which 

encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to 

nitrogen limitation. Plant Journal 50:320-327. 

Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-

PCR. Nucleic Acids Research 29:2002-2007. 

Promyou, S., S. Ketsa, and W.G. van Doorn. 2008. Hot water treatments delay cold-induced 

banana peel blackening. Postharvest Biology and Technology 48:132-138. 

Protacio, C.M., Y.-r. Dai, E.F. Lewis, and H.E. Flores. 1992. Growth Stimulation by 

Catecholamines in Plant Tissue/Organ Cultures. Plant Physiology 98:89-96. 

Rakwal, R., K. Shii, G.K. Agrawal, and M. Yonekura. 2001. Protein phosphatase inhibitors 

activate defense responses in rice (Oryza sativa) leaves. Physiologia Plantarum 

111:151-157. 

Ramakers, C., J.M. Ruijter, R.H.L. Deprez, and A.F.M. Moorman. 2003. Assumption-free 

analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience 

Letters 339:62-66. 

Ramonell, K., M. Berrocal-Lobo, S. Koh, J. Wan, H. Edwards, G. Stacey, and S. Somerville. 

2005. Loss-of-Function Mutations in Chitin Responsive Genes Show Increased 

Susceptibility to the Powdery Mildew Pathogen Erysiphe cichoracearum. Plant 

Physiology 138:1027-1036. 

Reijans M., R. Lascaris, A.O. Groeneger, A. Wittenberg, E. Wesselink, J. van Oeveren, E.d. 

Wit, A. Boorsma, B. Voetdijk and H. van der Spek (2003). Quantitative comparison of 

cDNA-AFLP, microarrays, and genechip expression data in Saccharomyces cerevisiae. 

Genomics 82:606-618. 



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

152 

Roshchina, V.V. 1990. Biomediators in chloroplasts of higher plants.4. Reception by 

photosynthetic membranes. Photosynthetica 24:539-549. 

Salinas-Mondragón, R., C. Garcidueñas-Piña, and P. Guzmán. 1999. Early elicitor induction 

in members of a novel multigene family coding for highly related RING-H2 proteins in 

Arabidopsis thaliana. Plant Molecular Biology 40:579-590. 

Sarowar, S., H.W. Oh, H.S. Cho, K.H. Baek, E.S. Seong, Y.H. Joung, G.J. Choi, S. Lee, and 

D. Choi. 2007. Capsicum annuum CCR4-associated factor CaCAF1 is necessary for 

plant development and defence response. The Plant Journal 51:792-802. 

Schenk, R.U., and A.C. Hildebrandt. 1972. Medium and techniques for induction and growth 

of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of 

Botany 50:199-204. 

Serrano, M., and P. Guzman. 2004. Isolation and Gene Expression Analysis of Arabidopsis 

thaliana Mutants With Constitutive Expression of ATL2, an Early Elicitor-Response 

RING-H2 Zinc-Finger Gene. Genetics 167:919-929. 

Shillingford, C.A. 1978. Climatic factors affecting post-harvest decay of jamaican bananas. 

Journal of Agriculture of the University of Puerto Rico:45-49. 

Simmonds, J.H. 1963. Studies in the latent phase of Colletotrichum species causing ripe rots 

of tropical fruits. Queensland Journal of Agricultural and Animal Science 20:373-424. 

Slabaugh, W.R., and M.D. Grove. 1982. Postharvest diseases of bananas and their control. 

Plant Disease 66:746-750. 

Smith, T.A. 1977. Phenethylamine and related compounds in plants. Phytochemistry 16:9-18. 

Smith, T.A. 1980. Plant amines, p. 433-460, In C. B. e. Bell IA, ed. Secondary Plant Products, 

Encyclopedia of Plant Physiology New Series, Vol. 8. Springer Verlag, Berlin. 

Steelink, C., M. Yeung, and R.L. Caldwell. 1967. Phenolic constituents of healthy and wound 

tissues in the giant cactus (Caregiea gigantea). Phytochemistry 6:1435-1440. 

Su, K., M.D. Roos, X. Yang, I. Han, A.J. Paterson, and J.E. Kudlow. 1999. An N-terminal 

Region of Sp1 Targets Its Proteasome-dependent Degradation in Vitro. The journal of 

Biological Chemistry 274:15194-15202. 

Swiedrych, A., J. Stachowiak, and J. Szopa. 2004b. The catecholamine potentiates starch 

mobilization in transgenic potato tubers. Plant Physiology and Biochemistry 42:103-

109. 

Swiedrych, A., K. Lorenc-Kukula, A. Skirycz, and J. Szopa. 2004. The catecholamine 

biosynthesis route in potato is affected by stress. Plant Physiology and Biochemistry 

42:593-600. 



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

153 

Swinburne, T.R. 1978. Post-infection antifungal compounds in quiescent or latent infections. 

Annals of Applied Biology 89:322-325. 

Szopa, J., G. Wilczynski, O. Fiehn, A. Wenczel, and L. Willmitzer. 2001. Identification and 

quantification of catecholamines in potato plants (Solanum tuberosum) by GC-MS. 

Phytochemistry 58:315-320. 

Takizawa, M., A. Goto, and Y. Watanabe. 2005. The tobacco ubiquitin-activating enzymes 

NtE1A and NtE1B are induced by tobacco mosaic virus, wounding and stress 

hormones. Molecules and Cells 19:228-231. 

Tornero, P., V. Conejero, and P. Vera. 1996. Primary structure and expression of a pathogen-

induced protease (PR-P69) in tomato plants: Similarity of functional domains to 

subtilisin-like endoproteases. Proceedings of the National Academy of Sciences USA 

93:6332-6337. 

Trindade, L.M., B.M. Horvath, R. van Berloo, and R.G.F. Visser. 2004. Analysis of genes 

differentially expressed during potato tuber life cycle and isolation of their promoter 

regions. Plant Science 166:423-433. 

Tsubaki, M., F. Takeuchi, and N. Nakanishi. 2005. Cytochrome b561 protein family: 

Expanding roles and versatile transmembrane electron transfer abilities as predicted by 

a new classification system and protein sequence motif analyses. Biochimica and 

Biophysica Acta (BBA) - Proteins & Proteomics 1753:174-190. 

Valette, C., C. Andary, J.P. Geiger, J.L. Sarah, and M. Nicole. 1998. Histochemical and 

Cytochemical Investigations of Phenols in Roots of Banana Infected by the Burrowing 

Nematode Radopholus similis. Phytopathology 88:1141-1148. 

Van Der Biezen, E.A., and J.D.G. Jones. 1998. Plant disease-resistance proteins and the gene-

for-gene concept. Trends in Biochemical Sciences 23:454-456. 

van der Hoorn, R.A.L., and J.D.G. Jones. 2004. The plant proteolytic machinery and its role 

in defence. Current Opinion in Plant Biology 7:400-407. 

Vaughn, K.C., and S.O. Duke. 1984. Function of polyphenol oxidase in higher plants. 

Physiologia Plantarum 60:106-112. 

Venkatesh, B., U. Hettwer, B. Koopmann, and P. Karlovsky. 2005. Conversion of cDNA 

differential display results (DDRT-PCR) into quantitative transcription profiles. BMC 

Genomics 6:Art. No. 51. 

Verelst, W.i.m., and H.a.n. Asard. 2004. Analysis of an Arabidopsis thaliana protein family, 

structurally related to cytochromes b 561 and potentially involved in catecholamine 

biochemistry in plants. Journal of Plant Physiology 161:175-181. 



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

154 

von Roepenack-Lahaye, E., M.-A. Newman, S. Schornack, K.E. Hammond-Kosack, T. 

Lahaye, J.D.G. Jones, M.J. Daniels, and J.M. Dow. 2003. p-coumaroylnoradrenaline, a 

novel plant metabolite implicated in tomato defense against pathogens. The Journal of 

Biological Chemistry 278: 43373-43383. 

Waalkes, T.P., A. Sjoerdsma, C.R. Creveling, H. Weissbach, and S. Udenfriend. 1958. 

Serotonin, Norepinephrine, and Related Compounds in Bananas. Science 127:648-650. 

Walley, J.W., S. Coughlan, M.E. Hudson, M.F. Covington, R. Kaspi, G. Banu, S.L. Harmer, 

and K. Dehesh. 2007. Mechanical Stress Induces Biotic and Abiotic Stress Responses 

via a Novel  cis-Element. PLoS Genetics 3:e172. 

Wan, C., and T. Wilkins. 1994. A modified hot borate method significantly enhances the yield 

of high-quality RNA from cotton (Gossypium hirsutum L.). Analytical Biochemistry 

223:7-12. 

West, G., L. Viitanen, C. Alm, P. Mattjus, T.A. Salminen, and J. Edqvist. 2008. Identification 

of a glycosphingolipid transfer protein GLTP1 in Arabidopsis thaliana. The FEBS 

Journal 275:3421-3437. 

Wilkinson, K.D. 1999. Ubiquitin-Dependent Signaling: The Role of Ubiquitination in the 

Response of Cells to Their Environment. Journal of Nutrition 129:1933-1936. 

Wuyts, N., D. De Waele, and R. Swennen. 2006. Extraction and partial characterization 

of polyphenol oxidase from banana (Musa acuminata Grande naine) roots. Plant 

Physiology and Biochemistry 44:308-314. 

Wuyts, N., G. Lognay, M. Verscheure, M. Marlier, D. De Waele, and R. Swennen. 2007. 

Potential physical and chemical barriers to infection by the burrowing nematode 

Radopholus similis in roots of susceptible and resistant banana (Musa spp.). Plant 

Pathology 56:878-890. 

Xia, Y., H. Suzuki, J. Borevitz, J. Blount, Z. Guo, K. Patel, R.A. Dixon, and C. Lamb. 2004. 

An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. 

The EMBO Journal 23:980-988. 

Yang, C.-P., S. Fujita, K. Kohno, A. Kusubayashi, M.D. Ashrafuzzaman, and N. Hayashi. 

2001. Partial Purification and Characterization of Polyphenol Oxidase from Banana 

(Musa sapientum L.) Peel. Journal of Agricultural and Food Chemistry 49:1446-1449. 

Yang, C.-P., Z.-R. Nong, J.-L. Lu, L. Lu, J.-S. Xu, Y.-Z. Han, Y.-J. Li, and S. Fujita. 2004. 

Banana Polyphenol Oxidase: Occurrence and Change of Polyphenol Oxidase Activity in 

Some Banana Cultivars during Fruit Development. Food Science and Technology 

Research 10:75-78. 



Identification of genes potentially implied in quantitative banana response to crown rot 
disease 

155 

Yang, Y., J. Shah, and D.F. Klessig. 1997. Signal perception and transduction in plant disease 

responses. Genes and development 11:1621-1639. 

Zeng, L.-R., M.E. Vega-Sanchez, T. Zhu, and G.-L. Wang. 2006. Ubiquitination-mediated 

protein degradation and modification: an emerging theme in plant-microbe interactions. 

Cell Research 16:413-426. 

Zhang, L.H.M.a.M.D. 2003. Isolation of genes expressed during compatible interactions 

between leaf rust (Puccinia triticina) and wheat using cDNA-AFLP. Molecular Plant 

Pathology 4:469-477. 





Conclusions and Perspectives 

156 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V 

 

Conclusions and PerspectivesConclusions and PerspectivesConclusions and PerspectivesConclusions and Perspectives    

    





Conclusions and Perspectives 

157 

We propose a new way to view the post-harvest development of banana crown rot 

disease. The idea is that that crown rot development depends notably on fruit physiology at 

harvest, which in turn depends on pre-harvest factors. Although it has been suggested 

previously that fruit physiology may affect disease incidence, this has never been investigated 

in detail. Two aspects of the fruit physiology were considered in this study. In the first part (i), 

the importance of the fruit physiological component at harvest in post-harvest crown rot 

disease was highlighted (a) and the influence of some environmental pre-harvest factors on 

this component was studied (b). The second part of the study (ii) focused on the genetic 

determinant implied in the observed variation of susceptibility. 

 (i)  a. The conducted assays have shown that the fruit physiological component at 

harvest has a significant effect on post-harvest crown rot development. In two 

production areas (Cameroon and Guadeloupe), fruit susceptibility was found to 

fluctuate significantly over time. Under Guadeloupian growth conditions, bananas 

harvested over an 11-week period interval showed a trend towards increasing 

susceptibility by 4-fold. However, the pre-harvest factors affecting fruit physiology 

and determining the susceptibility remained unknown. In both cases we suggested 

that climate conditions during banana growth were probably the most important pre-

harvest parameter influencing the post-harvest susceptibility to crown rot. Indeed, 

climate conditions can vary from week to week whereas other parameters can be 

assumed to be reasonably constant in our assays (although they were not actively 

monitored). It quickly became apparent, however, that the environment-plant 

relationship determining fruit susceptibility is very complex. It was notably difficult 

to correlate fruit susceptibility with any particular environmental parameter, as 

different parameters tended to vary simultaneously in the field (results not shown).  

b.  Because of the apparent complexity of plant-environment interactions in determining 

susceptibility, we chose to focus on two pre-harvest factors: the source-sink ratio at 

flowering and the hand position on the bunch. Both were found to influence 

significantly the susceptibility of banana to crown rot. Within a bunch, there 

appeared a gradient of susceptibility to crown rot (r=-0.95), the hands initiated first 

(the upper ones) being more susceptible than those initiated last (the lower ones). 

Furthermore, when the sink was decreased by removal of many hands, the fruit 

susceptibility decreased. These observations suggest that susceptibility is influenced 

by the stage of fruit development and by fruit filling characteristics. These two 

parameters are in close interaction with − and dependent on − the soil-climate 
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conditions and agro-technical factors of the production area. We propose that plant 

susceptibility is regulated according to the nutritional balance established during 

plant growth. This balance varies between plants and also between fruits of the same 

bunch. It should result from all physiological interactions between the whole plant 

and environmental factors, however slight. Macro-environmental stress factors such 

as cloudiness, drought, fertilizer imbalance, poor soil water-holding capacity, the 

presence of pathogens, etc. probably have a greater impact on this balance than 

micro-environmental factors. Yet because plants growing close to one another can 

show very different susceptibility, we hypothesize that the nutritional balance of 

each plant, and even of each fruit, is affected by soil and leaf micro-environmental 

factors and by plant competition. The nutritional balance might affect the plant-

pathogen interaction in two ways: by influencing the ability of the plant to establish 

defence mechanisms (notably through changes in secondary metabolism) and by 

altering the bioavailability of nutrients necessary for pathogen development.  

Prospects: The ubiquitous nature of the fungi encountered in the disease complex, their 

diversity, and their highly variable occurrence and pathogenicity complicate the 

study of the parasitic component of the fruit quality potential. To reduce the disease, 

a better understanding of the pre-harvest factors that predispose bananas to crown 

rot would be helpful, rather than focusing on the fungi involved. Physiological 

studies should be designed under standardized and controlled conditions throughout 

the banana growth phase. These conditions should allow to examine separatly the 

effect of each parameter of the complex environment-host-pathogen interactions. On 

the basis of such knowledge, it should be possible to reduce crown rot disease by 

controlling environmental factors, rather than through systematic chemical control 

with its known drawbacks. 

Practical applications: As a first measure liable both to reduce fruit susceptibility and 

to increase fruit size, we recommend early hand removal on the field. This practice 

should be easy to apply on a large scale on industrial plantations. It is already 

applied in some areas to increase fruit size.  

On the basis of our results, we further propose advices when evaluating fruit 

susceptibility to crown rot disease. It is important to standardize the hand sampling 

method. The hands to be used in an experiment should be collected from the same 

position on each bunch, with a preference for the third one. If more than one hand 
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per bunch is needed, it is essential to work with successive hands. Furthermore, 

samples should be collected over the shortest possible time period, to avoid the high 

week-to-week variability described in this study. 

(ii)  The second part of this work focused on genes whose expression-level variations 

may be linked to the fruit susceptibility variation observed. cDNA-AFLP analysis 

was used, so as to keep our approach as broad and as unbiased as possible. We 

obtained fundamental information about genes that may quantitatively influence 

banana defence mechanisms. To our knowledge, this work is the first to address 

both pre- and post-infection gene expression with the same host-pathogen 

combination and different susceptibility. Some of the genes identified as potentially 

influencing the defence-response participate in signalling pathways or are part of the 

plant’s proteolytic machinery. These mechanisms are nonspecific regulatory 

processes known to respond to environmental modifications generally. Their 

identification thus sheds no light on the mechanisms involved in susceptibility 

variation. The products of other identified genes show homology with glycolipid 

transfer proteins, a CAF1 protein, and a cellulose synthase. These proteins have 

already been linked to responses to pathogens in other models, but their precise role 

remains to be discovered. Expression of the CAF1 gene seems to be induced by the 

pathogen, as no constitutive differential expression was noted prior to inoculation. 

Overexpression of the CAF1 gene is associated with enhanced resistance, and we 

found this overexpression to persist 13 days post-inoculation. Paradoxically, 

overexpression of the cellulose synthase gene is associated with high banana 

susceptibility both pre- and post-inoculation. cDNA-AFLP analysis, furthermore, 

highlighted a gene whose predicted product shows homology with a dopamine-β-

monooxygenase (DoH) combined with a cytochrome B561. Such genes play a key 

role in catecholamine action in plants. This seems particularly interesting, because 

other investigators have previously suggested that catecholamines, dopamine, or 

their oxidation products play a key role in banana resistance mechanisms. More 

detailed research is necessary to determine whether catecholamines contribute to 

determining the strength of the banana defence-response to crown rot disease. 

Our results confirm the reproducibility of the cDNA-AFLP method. It is a 

sensitive method allowing the discovery of new genes (40% of the identified 

fragments showed no similarity to any database gene) and of genes whose 

expression is low. Our work also shows the limitations of cDNA-AFLP analysis. 
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Although in theory this technique allows visualizing and analysing the whole 

transcriptome, in practice it allows only partial coverage, because it is laborious and 

time-consuming and requires selection at various steps. In our case, selection 

resulted from using only one restriction enzyme pair on the cDNA pool (genes 

lacking the corresponding restriction site could not be detected), from using only 8 

primer combinations for the amplifications, and from selecting only some of the 

differently expressed fragments for further analyses. We retained only fragments 

that were successfully recovered from the gels, re-amplified, cloned, and sequenced, 

for which specific primers could be designed and which showed homology to 

database genes. It is worth stressing that only 60% of the selected fragments showed 

homology to database genes. All these selection steps were necessary and they are 

frequently applied (Costa Mondego et al., 2003), but it is essential to bear in mind 

that interesting genes involved in plant stress responses may have escaped 

identification in our study and would thus remain to be discovered.  

This study also illustrates the importance of validating cDNA-AFLP results by 

an independent method and on two biological replicates before concluding that a 

gene is involved in a biological process. The expression-level differences observed 

by cDNA-AFLP analysis were confirmed by an independent technique for 86% of 

the identified fragments, and only 46% of them were validated on the second 

biological replicate.  

Prospects: It is necessary to confirm the involvement of the identified genes in banana 

defence responses to be sure that the observed expression differences are not merely 

a side effect of the change in the source-sink ratio and of the mechanical injury of 

the bunch. This could be done by studying the expression of these genes under other 

conditions of susceptibility variation. Furthermore, it would be interesting to 

evaluate the expression level of these genes between varieties showing different 

degrees of resistance to crown rot. This would make it possible to assess the 

potential utility of these genes as selection markers for varietal improvement. Then 

it would be interesting to measure the catecholamine level and associated enzyme 

activities in fruits showing different susceptibility levels so as to gain interesting 

information about their respective roles in defence responses. Furthermore, by 

testing catecholamines for antifungal activity, one could learn whether they are 

active by themselves in defence mechanisms or whether they are precursors of other 

active compounds.  



Conclusions and Perspectives 

161 

The present results give fundamental informations about mechanisms which 

govern the fruit susceptibility to crown rot disease. However, no one could be use, 

in the current state of knowledge, to direct the crop management. Nevertheless, 

further characterization and functional analyses of the genes that are identified in 

this study should lead to a more comprehensive understanding of plant-pathogen 

interactions.  

Another important contribution may come from the fragments (40% of the 

total) that showed no similarity to any database gene. Although we excluded them 

from the present study, their isolation constitutes a first step to a better 

understanding of the plant-pathogen interactions. However, further caracterization is 

needed and could allow to identify original and/or specific mechanisms that govern 

the banana-crown rot interactions.  

Practical applications: To perform our gene expression study we had to solve two 

major problems. Firstly, we wanted to study banana gene expression at the harvest 

stage and 13 days post-harvest on samples collected in Cameroon, where the 

necessary materials for extracting RNA are not available. We demonstrated that by 

freeze-drying our samples it was possible to preserve RNA without affecting its 

quality, and hence without compromising the results of our expression studies. This 

technique offers several advantages and can probably be transposed to other plant 

models.  

The second difficulty was to extract efficiently, from bananas containing high 

levels of polyphenols and polysaccharides, RNA of sufficient quality to allow 

differential gene expression analysis. The proposed methods in this work, from in 

vivo sample RNA conservation to differentially expressed gene analysis by passing 

throught the RNA extraction step, allow studying differently expressed genes in any 

banana fruit tissue. These methods should prove useful wathever the transcriptome 

analysis method applied. 

The results of this original study constitute the first demonstration of the importance of 

the fruit physiological component at harvest in post-harvest crown rot development. This 

observation is probably transferable to other plant-pathogen systems. Indeed plant stress 

responses depend on the plant-environment interactions that determine the physiological state 

of the plant. This should encourage researchers to view disease development more broadly, as 

a process that depends not only of a parasitic component but also on the plant physiological 
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status. Characterizing the banana fruit physiological component is complex, but there is 

evidence that integrated control management must take into account the pre-harvest factors 

that influence fruit susceptibility. We hope our pioneering research will make possible more 

detailed studies leading to practical agronomic transfer and to developing a banana crop 

management system that is more sustainable in terms of human and environmental constraints 

and needs. 
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