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ABSTRACT

Ganoderma fungal disease is a plague suffered kst ofdhe oil-palm plantations in
South-East Asia. Its detection is a major issuesitate management and production.
However, diagnostic is today far from reliable whagone only by visual symptom
observation, and very expansive and damaging whé&aireed by root or stem tissue
chemical analysis. As an alternative, we proposethis study to evaluate the
potential of hyperspectral reflectance data to hdgiecting efficiently the disease
without destruction of tissues. This study focuseshe calibration of a statistical
model of discrimination between several stages afidderma attack on oil palm,
based on field hyperspectral measurements at themascale. Field protocol and
measurements are first described. Then, combinatdpre-processing, partial least
square regression and factorial discriminant anayare tested on a hundred of
samples to prove the efficiency of canopy reflexaio provide information about
the plant sanitary status. A robust algorithm isgtderived, allowing classifying oil
palm in a 4-level typology, based on disease sgvévels from the sane to the
critically sick tree with a global performance ofore than 92%. Basic
discrimination of trees in two classes: “sane” afisick”, is efficient at 100%.
Applications and further improvements of this expent are finally discussed.

INTRODUCTION

Early and non-destructive diagnostic of crop dise@sa major issue in precision
farming and sustainable agriculture in general-palm plantations, in particular,



strongly suffer of fungi (eg. Ganoderma) but ladk efficient tools to manage
properly this threat without great losses in prdutuncor the large use of chemicals
(Wood, 2007).

Ganoderma here is used as the common word desigrthg basal stem rot induced
by fungi belonging to the genius Ganoderma, sucBasoderma boninense (Breton
et al., 2006). This disease can cause considedan®ge and is one of the major
issues in oil-palm crop management, especiallyantisEast Asia. Together with
the appearance of fruiting bodies at the base efstiem, several symptoms can
indicate its contamination, like unopened spearsrenor less yellowing of the
crown, and appearance of dip cracks at the baskeostem (Flood et al., 2000).
However, most of the time, only sampling of stegsuies and chemical analysis can
evaluate with confidence the level of attack by @enoderma (Utomo & Nielpold,
2000; Bridge et al., 2000).

Hyperspectral reflectance spectroscopy theordticakets the requirements of
non-destructive detection at large scales, thaoksttong relationships existing
between the plant optical properties on one hand,leaf pigment concentration,
and foliar and canopy structures on the other l{@hderle & VanDerStraeten, 2000;
Larsolle & Muhammed, 2007; Liew et al., 2008 Mulmaed, 2005; Wang et al.,
2008). Some authors have even shown that hyperapdata acquired by satellite or
airborne remote sensing might be actually relewantletect crop diseases or to
assess crop damage severity (Nilsson, 1995; Apaal.e2004; Goodwin et al.,
2005). However, these studies are always crop ardisease-dedicated and new
experiments need to be performed to validate theectability of a different
pathology of another crop.

At least, some robust methodologies have provebhetefficient whatever the
context, to classify spectra into different grougss long as a good sample helps
training a statistical model of discrimination. €er analyses, for instance, allow
good classifications of plant stress levels whemlmioed with Partial Least Square
Regression (PLS) (Jorgensen, 2007; Huang & Apa@6R6r Principal Component
Analysis (PCA) (Zhang et al., 2002).

In this paper, we propose to apply these appraatthealidate the efficiency of
hyperspectral reflectance spectroscopy to discateirseveral levels of Ganoderma
fungus contamination on oil palm trees. Indeed; #utual plague in oil-palm estates
disease will largely benefit from an appropriatsotely sensed diagnosis tool. We
will thus evaluate different statistical models foe classification of spectra acquired
at the canopy level depending on the number oftlattiegrees. Then, we will
analyze the possibility of developing a remote sengool on this basis, in the aim
of precision farming applications.

MATERIAL AND METHOD
TEST SITE AND GROUND-TRUTH

Field measurements were achieved in an oil palnmtaien located in North

Sumatra, Indonesia: Padang Halaban Estate, whiglbéen drastically attacked by
the Ganoderma fungus for years. It thus providesda variety of disease severity.
We have surveyed more specifically a hundred opalim trees, geo-localized and
spotted in the plantation grid for easy subsegudantification, and we have

assigned them a score in a four-level disease agyolO for sane (not sick) trees, 1
for a light attack, 2 for a medium one, and 3 faesaere (close to death) infestation.



Among the different sampled trees, even the saes,@ome showed symptoms of
nutritional stress like nitrogen, iron, bore or magium deficiencies.

HYPERSPECTRAL DATA

Then, we performed hyperspectral reflectance measemts above the canopy of
these trees with a Unispedttp://www.ppsystems.com/LiteratuEdSUniSpec-
SC.pdf) from PP-SYSTEMS, equipped with a CosineeRtar and fibre optics with
20° of field of view. This spectroradiometer cov@&6 spectral bands in the range
310-1130nm.

Climbing on scaffoldings to reach the top of e&&® (up to six to ten meters
high), we made six to ten radiance acquisitiongritliged around the crown (about
nine meters in diameter), each one integratingfase of about nine square-meters.
Each canopy reflected radiance measurement wastldifellowed by a diffuse
incident light radiance acquisition for a scalingreflectance. Then, we averaged
these intermediate reflectance values to deriveriban reflectance of the whole tree
crown taking into account the directional effeatsl ghe canopy asymetry.

Due to high level of noise in the resulting spadtr the two extreme domains
(310-450nm) and (1100-1130nm), only the range 4BIBfhm was actually analyzed
in this study (Figure 2).

At the end of the campaign, the data base cortaihe canopy reflectance
spectra of 36 palm trees belonging to score OpZore 1, 36 to score 2, and only 3
to score 3, for a total of 95 trees.
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Figure 1. Examples of reflectance spectra formalm canopies when the tree is
sane (black solid lines) or attacked by the Ganowerisease at the respective
levels 1 (grey solid lines) and 2 (grey dotteddine



SPECTRA PRE-PROCESSING

As spectral signatures associated with Ganodersease symptoms might be very
faint, it seems necessary to avoid any noise sauraggnal contamination due, for
instance, to variations of sunlight and skylighturination, soil and other
backgrounds reflectance or even instrumentatiatfit¥he Savitzky—Golay filtering
(Savistky & golay, 1964) consisting in a polynomiging followed by a derivative
computation is commonly performed to meet this meguoent (Tsai & Philpot, 1998;
Estep & Carter, 2005; Ruffin et al., 2008).

However, its major constraint is the choice of, @me hand, the smoothing
window size and, on the other hand, the degrebeopolynomial fit (Browne et al.,
2007) along with the derivative order (Tsai & Pbilp1998). We have thus chosen to
test a large set of combinations of these parasyetafculating derivative-spectra at
the null, first, and second order of derivation fmlynomials of second and third
degrees, each smoothed at nine different windoassselected to broom the spectral
bins from 10 nm to 160 nm. It thus results in 54abases of derivative spectra.
Higher orders of derivation were not tested becdhsecanopy architecture effects
on reflectance is blurred at higher orders, andbdamma symptoms largely appear
on the tree canopy structure. The original unpreegsreflectance data was also
tested to evaluate the actual gain of preprocessing
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Figure 2. Example of second-order derivative ofhad-degree polynomial fitted
spectra (smoothing window of 26 nm).

PARTIAL-LEAST-SQUARE DISCRIMINATION

We have applied on each database the Partial-ISspstre Discrimination Analysis
(PLS-DA) (Roger et al., 2005; Gorretta et al., 2006)ohgists in:



1. Partial Least Square Regression (PLS) applied ¢opiteprocessed derivative
spectra, reducing the spectral data to little draworelated latent variables that are
fewer than the number of variables in the samptepé&rform a simple PLS, we
have chosen to set a specific scale fixing a ptablie value for each analyzed class
in the bin [0,1].

2. Discriminant Analysis (DA) applied to the most gigrant latent variables,
enhancing the interclass variability while mininmgithe intraclass variability of
the sample to build a classification model. Theestn of the number of PLS-
variables is guided by the compromise between maation of Root Mean Square
Error of Prediction (RMSEP) and gain in correlatiooefficient (R) between
predicted and reference values, on one hand, abditst of the model thanks to the
fewer number of implied variables, on the otherchan

PLS-DA was achieved on the entire sample of 9%iddals by cross-validation
based on the “leave-one-out” method. The poterdfathe method was tested
following two objectives independently:

1. potential discrimination between the healthy (“sc&®”; 36 individuals in the
sample) and the sick (“scores 17, “2”, and “3” ttger; 56 individuals in the
sample) trees,

2. potential of classification of a given tree in thdevel scoring of disease severity.

Classification results were then compared on #msbof the confusion matrix
and the global precision values.

RESULTSAND DISCUSSION

The first discrimination objective, aiming at deten wether an oil-palm tree is sick
or not whatever its level of attack, was perfeatigt (100% of good classification for
each of the two classes) with a PLS-DA applied lom first-order derivative of a
second-degree polynomial fitted on a smoothing wmaf 32 nm. PLS-predictable
values were set to 0 for “sane” and 1 for “sick’A Dvas applied on the ten first
latent variables derived from the PLS with a ro&am square error of prediction of
0.27 and a correlation coefficient of 70%.

The second objective was best met, corresponding global accuracy of
92.6%, while using the second-order derivative tfial-degree polynomial fitted on
a smoothing window of 26 nm. PLS-predictable valuese set on the basis of a
simple unmixing of mean spectra of each class baEiwiee two endmembers “score
0” and “score 4”: 0 for “score 07, 0.4 for “scoré, D.6 for “score 2”, and 1.0 for
“score 3”. DA was applied on the seven first lateatiables derived from the PLS
with a root mean square error of prediction of Gah® a correlation coefficient of
80%. The two first discriminant factors are thereatn split the space into four
clusters clearly separated (Figure 3). The cormedipg confusion matrix is given
Tablel.

As a factor of comparison, the best result obthioe the original (not filtered
and not derived) reflectance spectra only gavielaad precision of 63%, with strong

confusion between sane and sick trees and badnasisig of individuals inside
distant classes.



Score | O 1 2 3 % of good classification
0 34| 2 0 0 94 %
1 0| 17| 3 0 85 %
2 0 2 1 34| 0 94 %
3 0 0 0 3 100 %
Global precision 92.6%

Table 1: Confusion matrix obtained for the clagsifion
in four levels of disease severity.
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Figure 3: Representation of oil-palm trees indivatkiin the new two-dimensionnal
space defined by the discrimant analysis appliedtlon PLS: sane palms are
displayed in black “0” symbols, level 1 in green.40 symbols, level 2 in yellow
“0.6” symbols, and level 3 in red “1” symbol. Theur populations of trees are
clearly split in this space, defining sickness siéyelasses’ contours.

Both models thus allow a very good discriminatletween the sane and the

sick trees, even if 6% of false alarms can be eepem the 4-level classification
process. Even though, the remaining false alarmsera only two individuals that
are classified as lightly attacked by the disedsées still possible that the visual
symptoms on which was based the ground-truth dstgnevere not yet observed



while the reflectance spectrum already featureseschmnges compared to sane
individuals.

Moreover, errors occurring in this classificatialh shift the trees from one class
to the direct next one. Considering that the lirbg$ween one score evaluated in-situ
and the closer one is very fuzzy, these errorsbeagither due to the classification or
to the field diagnosis without clue to concludeekvf it is purely a classification
error, they are very rare and allow a good configen the overall results. The cross
validation process also allows a good confidendbérrobustness and stability of the
model.

The tests also show that the preprocessing ofidkee has a considerable impact
on the detectability of the spectral features aased with the disease presence, and
its level of severity too.

Considering the loadings of the PLS, no privileggzectral range seems to
contribute more than others do, and no range seam$rmative. This proves the
essential need of the entire spectral richnesstect discriminating features in the
canopy reflectance. Applications in remote senssgems thus limited to
hyperspectral sensors only, but this still has ¢ochecked by dedicated studies.
Indeed, airborne acquisitions would be of greatphfdr fast mapping of the
Ganoderma infestation in plantations, comparedeid imeasurements that are still
long, difficult, and dangerous to set up at thisagay height.

CONCLUSION

Statistical algorithms like PLS-DA applied to prepessed hyperspectral reflectance
data acquired in the fields over oil palm canomes thus efficient to detect the
Ganoderma fungal disease attack with a very highfidence. They can even
classify it into four levels of severity from satee highly damaged trees with more
than 92% accuracy. Even sane trees that presentional deficiencies are not
misclassified as sick. It proves the potential yidrspectral reflectance spectroscopy
for oil palm crop sanitary status evaluation anghms for further improvements
towards remote sensing applications.

Indeed, present measurements using field spedtoongter on top of oil
palm canopies is still very hard to set up and swwedangerous, especially for
mature and older trees. It might also be long tdope with a good quality.
Acquiring such hyperspectral data on board an a&rcfor instance, or even a
satellite, would be of major interest to cover eyéa area in less time and better
conditions. Moreover, hyperspectral imagery woudd ¢éhe spatial information, and
so the opportunity to map quickly the location tiheked trees and thus the disease
focus, and, furthermore, to analyze the epidemiplotside a palm block, the
plantation, or even the planting region dependifigth® width of the survey.
Nevertheless, new protocols would then to be fiti@dairborne or satellite-borne
hyperspectral images, to calibrate a dedicated htbdewould take into account the
imaging specificities (e.g. radiometric noise arehsbility, transfer of scales,
spectral contribution of neighbors, effects of m@im objects and of background
vegetation, etc...).
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