Effects of clay microstructure and compost quality on chlordecone retention in volcanic tropical soils: consequences on pesticide lability and plant contamination

Fernandes P.\(^A\), Jannoyer-Lesueur M.\(^B\), Soler A.\(^C\), Achard R.\(^C\), Wognier T.\(^B, D\)

IRD/PRAM, UPR Fonctionnement agroécologique et performances des systèmes de culture horticoles, B. P. 214 Petit Morne, 97232, Le Lamentin, Martinique. paula.fernandes@cirad.fr

IRD/PRAM, UPR Fonctionnement Systèmes de cultures bananiers (plantains et annaïne), B. P. 214 Petit Morne, 97232, Le Lamentin, Martinique

CNRS-Université de Montpellier, France.

Abstract

The scientific and economic context of our study is related to the pollution of the soils, fresh and marine water by a persistent organochlorine pesticide (chlordecone) in a tropical context (French West Indies). The former application of chlordecone results today in a diffuse pollution in agricultural soils, which are sources of contamination for cultivated roots, tubers, vegetables and terrestrial and marine ecosystems. Chlordecone is a very though and stable molecule (considered as a POP), it is mainly present in solid phase and has a strong affinity with organic matters. To prevent consumers and ecosystems exposure, it is thus necessary for us to evaluate the factors that influence chlordecone migration in the environment. In our research, we studied the impacts of clay microstructure on the chlordecone retention, comparing allophanes (amorphous clays present in andosols) and halloysite clays (type 1/1). We showed that allophane aggregates had a greater ability to trap chlordecone mainly due to their fractal structure. We also measured the effects of added composts on soil microstructure and on chlordecone lability and transfer rate from soil to plant 3 and 6 months after incorporation. The intensity and persistence of these effects were related to the initial quality and richness of the added composts.

Material and methods

- SEM of a nitisol (Halloysite)
- SEM of an andosol (Allophanes) with Fractal structure.

Results

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Incubation conditions:</th>
<th>Mineral N g/kg dry soil</th>
<th>Pore size distribution from 0 to 90 days after compost addition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additon of 5% (w/w) of compost</td>
<td>28-30°C - 90% of maximal retention capacity</td>
<td>Andosol: 20.6%</td>
<td>Allophane aggregates had a greater ability to trap chlordecone</td>
</tr>
<tr>
<td>Biogwa</td>
<td></td>
<td>Andosol: 40% treated</td>
<td>Halloysite clays (type 1/1). We showed that allophane aggregates had a greater ability to trap chlordecone mainly due to their fractal structure.</td>
</tr>
<tr>
<td>Vegethumus</td>
<td></td>
<td>Nitisol: 46.6%</td>
<td>We also measured the effects of added composts on soil microstructure and on chlordecone lability and transfer rate from soil to plant 3 and 6 months after incorporation. The intensity and persistence of these effects were related to the initial quality and richness of the added composts.</td>
</tr>
<tr>
<td>control</td>
<td></td>
<td>Nitisol: 5% treated</td>
<td>The addition of compost reduces noticeably, in both cases, the contamination of plant tissues, 3 months after compost addition.</td>
</tr>
</tbody>
</table>

CONCLUSION

Andosol and nitisol behave differently in the processes involved in chlordecone retention. The structural properties and the spatial arrangement of allophane aggregates constitute a trap for chlordecone molecule, thus mechanically retained. Compost addition modified the andosol porosity according to the compost quality and highly reduced chlordecone lability. In the case of nitisol, the retention of the molecule seems more directly affected by added organic matters such leading to a chemical retention of chlordecone. The intensity of the compost effects is driven by its initial richness while the persistence could depend on the complexity of its biochemical composition. Andosol is able to retain pesticides stronger than nitisol, combining physical trapping and chemical retention. Andosol could be highly polluted but less contaminant. The addition of compost reduces noticeably, in both cases, the contamination of plant tissues, 3 months after compost addition. Chlordecone content (µg/kg of fresh material) of radish (in yellow : small roots ; in pink : main root ; in green : leaves) cultivated on contaminated andosol according to the different added composts. Means with different letters are significantly different (p < 0.05).

Effect of compost after 6 months of incubation on chlordecone transfert (% from the andosol to the plant (lettuce). Means with different letters are significantly different (p < 0.05).

Dramatic reduction of porosity and specific area in the andosol by the addition of organic matter, more important in the case of Vegethumus. In nitisol, no compost effect

Contamination increased with Vegethumus, compared to Vegethumus, 6 months after compost addition

This work was co-funded by the French Ministry of Overseas Region, the European Regional Development Fund (ERDF – 2007/2013) and the French National Research Agency through the CES program (Chlordexco project).