An Agent-Based Model to Explore Scenarios of Adaptation
to Climate Change in an Alpine Tourism Destination

Stefano Balbi a, Pascal Perez b d, Carlo Giupponi a c

a CEEM, Department of Economics, Ca’ Foscari University of Venice (stefano.balbi@unive.it)
b RMAP, Australian National University, Canberra (pascal.perez@anu.edu.au)
c Foundation Eni Enrico Mattei (carlo.giupponi@feem.it)
d CSIRO

Abstract. The European Alpine region is one of the most sensitive to climate change impacts. ClimAlpTour is a European research project of the Alpine Space Programme, dealing with the expected decrease in snow and ice cover. The research reported herein analyses the municipality of Auronzo di Cadore (22,000 ha) in the Dolomites. The local economy depends on tourism which is currently focused on the summer season. Since recently the Community Council is considering options on how to stimulate a further development of the winter tourism. This paper refers to a prototype agent-based model, called AuronzoWinSim, for the assessment of alternative scenarios of future local development, taking into account complex spatial and social dynamics and interactions. Different typologies of winter tourists compose the set of human agents. Climate change scenarios are used to produce snow cover projections. AuronzoWinSim is planned for use in a participatory context with groups of local stakeholders.

Keywords: alpine winter tourism; climate change adaptation

1 Introduction

The Alpine region in Europe is among the areas that are most rapidly affected by climate change. In general, the mean temperature of this region has increased up to +2°C for some high altitude sites over the 1900-1990 period against +0.78°C in the last 100 years at a global level [1], [2]. With a certain degree of local variability, glaciers have lost 50% of their volume since 1850 and snow cover is decreasing especially at the lowest altitudes and in fall and spring. A clear signal of climate change about precipitations is not detectable yet, but increasing risks of extreme events have been projected including floods, debris flows, avalanches, glacial hazards, and mountain mass movements [3]. The main expected impacts on the Alps concern the hydrological conditions and water management, forests and biodiversity, agriculture, energy management, and eventually tourism, which is the focus of this paper.

While summer tourism is most probably going to be favored by climate change [4], the World Tourism Organization started warning about the possible negative implications for winter tourism and sports since 2003 [5]. Nowadays already 57 of the main 666 ski resorts of the European Alps are considered to not be snow-reliable [6]. However, climate change
is also an opportunity for those resorts that are snow-reliable, as they will face less
competition in the future [7].
The Alpine people are often unaware of or simply ignore the problem, which is a common
problem of climate change adaptation. Perhaps, at a very local level, climate patterns are
not evident enough to question the development model based on the “white dream” which
has prevailed since the seventies. Indeed, a model of development based on snow, no
matter if natural or artificial, is still somehow surviving notwithstanding the maturity of
the traditional ski product and the stagnation of the market demand [8]. At this point very
careful assessments should be carried on before any further snow-based development plan
[9].
ClimAlpTour is a European project of the Alpine Space Programme, bringing together
institutions and scholars from all countries of the Alpine arch, in view of dealing with the
expected decrease in snow and ice cover, which may lead to a rethinking of tourism
development beyond the traditional vision of winter sports. The project analyses 22 pilot
areas with diverse environmental, social and economic conditions in order to provide a
global perspective on the Alpine tourism. Raising the awareness of the stakeholders
including tourists, population and businesses on the impact of climate change on tourist
economy of the Alps and on possible adaptation strategies is one of the goals of the whole
project.
The research reported herein analyses the municipality of Auronzo di Cadore located in
the province of Belluno, in the Veneto region, in the north-east of Italy. It covers a vast
area (22,000 ha) which includes Misurina (1754m above the sea level) with its lake and
the most famous mountain of the Dolomites, namely the “Tre Cime di Lavaredo”, part of
the UNESCO world heritage since 2009. The village of Auronzo (866m above the sea
level) hosts almost the entire population of the municipality of approximately 3,600
inhabitants. The local economy depends on tourism which is currently focused on the
summer season, while the winter season is weak, with only 25% of arrivals [10]. The
main problem at stake is how to develop winter tourism in the next 40 years, in a context
of climate change and market demand that is not favorable. In particular, the spatial
heterogeneity given by the bipolarity of the case study, suggested the elaboration of a
spatially explicit ABM.
This paper explores the conceptualization phase of an agent-based model (ABM) capable
of gathering the available heterogeneous information and assessing different scenarios of
future local development, and eventually tourist supply, taking into account complex
spatial and social dynamics and interactions. This methodology has already proven to be
successful for other tourism related issues (i.e. [11]). However, to our knowledge, this is
one of the first attempts to explore the interactions between climate change and winter
mountain tourism by means of an agent-oriented approach (see also [12]). Our work is
still in progress and is meant to complement a decision support system (DSS) [13], which
will be implemented during a series of participatory workshops.

2 Model Development
The development of a conceptual model has been carried out to support the design of the ABM by integrating three methods gravitating around different research groups of the heterogeneous ABM scientific community. The ARDI (Actor, Resources, Dynamics, and Interactions) method belongs to the companion modeling tradition, mainly applied to natural resource management. It can be extremely efficient for jumpstarting the process of visual formalization of the domain model [14]. The ODD (Overview, Design concepts, Details) protocol belongs to the individual-based modeling branch of ecology, but is gaining further diffusion in social science. Differently from the other methods, it consists of a narrative description of the various elements of an ABM, contributing to a more rigorous formulation phase [15]. Finally, the UML (Unified Modeling Language) belongs to the computer science tradition and is probably the most effective methods, preceding the coding phase, which can guarantee the full replicability of the model [16]. These methods have been firstly applied in the order in which are presented, subsequently leading to a more iterative approach. By means of ARDI we identified the tourist facilities as the main resources of the system, the winter tourists as the acting agents and the meta-economic agents as the economic units in charge of accounting the economic flows for each tourism sub-sector. The application of ODD led to the definition of the tourists’ heterogenic behavior and of the future scenarios. Finally, through UML, we were able to formalize in diagrams all the details. The clear advantage is that the modeler is endowed with a set of tools mutually checking the model internal consistency with regards to both its static and the dynamic aspects.

2.1 Representing Heterogeneous Market Behavior

Even though winter sports, and especially downhill skiing, are still the essence of winter mountain tourism the market has reached its maturity and is challenged by (a) loss of shares in the tourist market in the Alpine countries throughout Europe, (b) competition from other tourist destinations, (c) the growing economic and territorial divide between large and small resorts, (d) the need for huge new investments against the background of a reduction of public funding, (e) new recreational practices (freestyle and freeride), (f) the ageing of the tourist population, (g) demand for environmental quality, (h) the changed notion of resort, (i) the inclination toward shortened and repeated holidays, (j) behavioral unpredictability, due to wheatear forecasts, and finally (k) the search for new markets [4], [8], [17], [18]. However, according to [18] and [19], a new light ski industry, with less investments and more flexibility with regard to climate conditions, is possible and the small resorts may thus be advantaged. ABMs can be of great value in dealing with such dynamics because they are particularly well suited to incorporate heterogeneity of behavior. Drawing on the above cited literature and especially on secondary data from marketing surveys of the tourism statistical observatories of Trentino and Alto Adige [20], [21], we created a set of eight tourist profiles which is rich enough to take into account (1) the actual winter tourists of
Auronzo, (2) the actual winter tourist visiting Auronzo’s main competitors, and (3) the potential winter tourist of tomorrow.

In this first release we focus on the simulation of tourists’ response (demand-side) to alternative and exogenously modeled strategies of development of tourism facilities of the destination (supply-side) in order to provide the local stakeholders (residents, entrepreneurs, local tourism organizations, community council), with quantitative indicators of possible futures which depend on their collective decisions. These strategies are infrastructure oriented and consider snow and non snow related facilities.

2.2 Representing Alternative Futures

Every simulation run requires the users to make three choices: (1) the development strategy to be tested; (2) the societal scenario that sets the conditional context in terms of number of tourists that could be available to choose the destination; and (3) the climate projection, in terms of snow cover and temperature. The combination of these choices defines the future conditions, from 2011 to 2050, under which the tourists’ response is simulated. The underlying idea that has inspired the model is to identify the most robust development strategy. In this regard, we have defined four spatially explicit alternative strategies which are able to take into account various orientation towards tourism and the perception of climate change from the local stakeholders’ point of view. The first strategy is the pursuit of the traditional ski intensive paradigm. Indeed, one of the most familiar measures in the struggle against snow-deficient winters is the construction of high cost artificial snowmaking facilities [22]. However, in this strategy Auronzo not only maintains its original ski areas, but also develops two new ski areas with snowpark,, which have different spatial conditions. The overall hosting capacity remains untouched while a minor increase concerning restaurants and retailers supply is included.

The second strategy embraces the vision of [4] and [18] of an alternative light ski oriented and post-modern development. It integrates the wilderness and the playground concepts increasing the supply of controlled off-piste tracks, cross-country itineraries and snow parks. These are assisted by a very limited development of the existing ski lifts and a more sober artificial snowmaking behavior.

The third is the non-snow strategy that is the well established, but often not self-sustaining, process of diversification and enlargement of tourist offer by means of higher quality hotels, shopping, gastronomy, pubs and bars, and, most of all, wellness and spa centers. The ski areas remain in function without the support of artificial snow. Finally the fatalistic strategy consists of no changes in the supply behavior, which could also be described as “business as usual”.

The societal scenarios serve the purpose of both considering the overall alpine winter tourism trend and the level of competition with other neighboring winter destinations. We include scenarios that allow us to take into account two situations, where market demand is decreasing and competition high (conservative) and where the demand for alpine winter tourism is stable and competition less decisive (optimistic). The climate projections are
based on an external model and represent two regional climate scenarios, REMO UBA A1B and B1, from the Max Planck Institute of Hamburg.

3 Model Description

This concise model description loosely follows the ODD protocol [15]. We also provide the complete UML class, sequence and activities diagrams in the project’s website: http://www.dse.unive.it/clim/climalptour.htm).

The model purpose is to analyze alternative winter development strategies for the case study simulating the tourists’ response under different climate scenarios. Entities and state variables are visually presented in the UML class diagram. The main entities are the tourists, the tourism facilities and the meta-economic agents. According to the profile they belong to, tourist agents have different preferences and behavior with regards to the tourism facilities. The tourism facilities, which in turn compose the destination supply structure, are divided in eight types: four are snow related (facilities dedicated to downhill skiing, snowparks, cross-country skiing and off-piste skiing) and four are non-snow related (accommodations, restaurants, retailers, and other facilities including those for kids, wellness and spa, and other sports). The meta-economic agents are the accountants of the tourism facilities. One meta-economic agent is in charge of managing one type of tourism facility. They keep track of the investment required to put in place their facilities, defined by the development strategy to be analyzed, and of their money flow. The development strategies, are set exogenously by the model.

Concerning the scales, both the snow and the non-snow related facilities are located in a 25 x 15 spatial grid of 1 km² cells, which contains the actual geographical information of the area. Fifteen weather stations, named reference points, have been identified in order to represent the different snow conditions under alternative climate scenarios. A simulation is composed of 40 cycles, which are the winter seasons from 2011 to 2050. Each cycle consists of 126 days (time steps) that represent the 18 weeks from the 1st of December to the 6th of April. Summing up, every simulation takes into account 720 weeks and 5040 time steps.

Process overview and scheduling are captured in the UML sequence diagram (on the website), which shows the sequence of operations performed by each class. Every operation is then further described as activity diagram. Initially, the spatial units (patches) update their attributes and configure the tourism facilities presence as per selected development strategy. Each of the meta-economic agent is assigned with the investment needed to meet that configuration. The reference points read snow cover and temperature from the climate data which describe the selected climate projection. They also perform three kinds of forecasts concerning snow cover, at short and medium term, and snow security, at short term. Then, the snow facilities check those forecasts and store the information that they will subsequently pass to the tourists. Downhill and snowparks can decide to produce artificial snow. After that, the tourists, whose total amount is taken by the societal scenario, can check the destination in order to become visitors, if their
requirements are met. According to their behavior, they can check the forecasts and go to
the planning phase, in which they decide their day of arrival. If they are in the destination
they enter into a loop of operations which describe the use of the tourism facilities. Then,
every facility can check its own users and passes the information to the patches that can
visually describe the tourists density on the grid. The meta-economic agents calculate the
return associated to the facilities use and update their balance sheet. Finally, the tourists in
their last day of vacation calculate their overall satisfaction. If this is negative they exit
from the simulation, if it is positive they remain among the potential visitors and can plan
a further vacation.

Input data is provided in various forms. The spatial units are georeferenced, based on GIS
(geographical information system) layers concerning elevation, slope, aspect, land use and
a thematic differentiation in areas of the destination. The reference points are provided
with climate data in form of time series of snow cover and temperature, according to the
selected climate projection. Finally, the demographic data provides the total number of
tourist agents available for each of the 40 cycles during every simulation. Most of the
operations make use of submodels in form of simple algorithms and logical tests which
are presented in detail in the activity diagrams. Most of the parameters used in the activity
diagrams are calibrated on the case study, by means of field surveys. The rest are retrieved
from the literature. The model initialization represents the destination winter tourism
conditions in 2011 concerning the actual amount, type and spatial configuration of the
tourism facilities.

3.1 ABM Design Concepts

Emergence. Once the boundary conditions of possible futures are set by the 3 choices on
the scenarios for any model run, then the performance of the destination is a phenomenon
that emerges from the tourists’ behavior. This is numerically expressed in terms of tourist
attracted and money flow produced by each facility type and visualized on the spatial grid
at each time step in terms of tourists’ density.

Objectives. The tourists can choose whether to go or not to the destination, according to
their preferences about the destination supply and to the weather forecasts.

Prediction. Tourists’ expectations are based on the facilities available and their spatial
configuration in the destination and on the snow cover and security forecasts.

Sensing. The tourists are fully aware of the destination’s facilities and spatial attributes
before the vacation, but they perceive the environmental conditions of the facilities they
use only in loco.

Learning. Each day of their vacation the tourists calculate their satisfaction which depends
on the effective environmental conditions encountered in terms of snow cover and
tourists’ density, so that their availability to a subsequent vacation depends on the
memories of the previous one.

Adaptation. The tourists adapt by not visiting Auronzo again once their satisfaction goes
negative, in favor of other competing destinations.
Interaction. The tourists directly receive stimuli, through sensing, from the destination’s facilities and spatial attributes, which affect their eligibility to book their vacation. They also indirectly interact among each other with negative effects on their respective satisfaction, over certain density thresholds.

Stochasticity is used to reproduce variability in the various agents’ decision processes, primarily by means of normal distributions.

Observation. The model collects data on the economic performance of the eight types of facilities and on the spatially distributed tourist fruition of the destination.

4 Discussion and Conclusion

Our work is still in progress but it can already provide some interesting insights on the modeling of climate change and tourism. First of all, the scale of analysis and the level of detail represent a significant improvement in the climate change research, which is normally performed at a much higher level of spatial and temporal aggregation. This scale perfectly fits the crucial socioeconomic dynamics of local adaptation that have to be investigated. Second, to our knowledge this is one of the first attempts to formalize the supply structure of a winter tourism destination in classes by means of UML. The result is simple and clear but is able to represent complex interactions, for alternative development strategies, in a spatially explicit way. This conceptualization can eventually become a generic ontology, if it will be proved to fit the application to other case studies. Third, the simulation focuses on the feed-backs of the demand side of tourism, which is often missing in the existing tourism models. However, the tourists are the ultimate judges of a destination adaptation strategy, because they will decide the winners and losers of the future. This is why we regarded as fundamental to focus on their agency in an heterogeneous way, drawing from disciplines such as customer behavior, which could only be done by means of an agent-based approach. Fourth, the model development itself is a novelty because we integrated some of the main practices of the ABM community which are never found together but can mutually benefit each other.

The next steps of our work include the implementation of the UML model into a software for computer simulation. AuronzoWinSim will then be tested and refined, before being used in a participatory context with groups of local stakeholders, in two ways. Initially, it will support the collective discussion on possible adaptation and development strategies, and the criteria to assess their robustness. Secondly, it will incorporate the strategic adjustments proposed by the stakeholders.

References

3. Castellari, S., Climate change, impacts and adaptation strategies in the Alpine Space: some results from the INTERREG III B project ClimChAlp, Proceedings of the conference on Mountains as Early Indicators of Climate Change, Padova, Italy, 17-18 April 2008.

5. UNWTO, Climate change and tourism, Proceedings of the 1st International Conference on Climate Change and Tourism, Djerba, Tunisia, 9-11 April, 2003.

10. Regione Veneto, online database of the department of statistics, last access January, 2010. Available at http://statistica.regione.veneto.it/dati_settoriali_turismo.jsp.

