

Total belowground carbon flow						
TE R	$TBCF = \Delta_{root} + R_{root} + P_{beglitter}$ $R = R \left[\left(P_{t} + P_{t} - A_{t} - A_{t} - A_{t} - A_{t} - B_{t} \right) \right]$					
$TBCF = \Delta_{root} + R_{soil} - P_{abglitter} + \Delta_{abglitter} + \Delta_{beglitter} + \Delta_{SOM} + E$						
				≈ 0		
	(kg _c m ⁻² y ⁻¹)	TBCF	FS	L	⊿root	
	Control	1.13 ± 0.18ª	1.24 ± 0.17 ^a	0.23 ± 0.02 ^a	0.12 ± 0.07 ^a	
	+ K	1.48 ± 0.25 ^b	1.45 ± 0.23 ^b	0.23 ± 0.01ª	0.26 ± 0.09 ^b	
	+ Na	1.36 ± 0.23 ^b	1.39 ± 0.22 ^b	0.23 ± 0.06 ^a	0.20 ± 0.04 ^c	
→ A higher amount of carbon is allocated belowground in the fertilized plots						
There was not significant difference between K and Na fertilization						
Differences in TBCF are less than differences in ANPP						
Nancy-Université Heart Poincara Heart Poinca						

Conclusions					
GPP was strongly enhanced by K fertilisation while Na has a much smaller effect					
→ K fertilization:					
 ✓ Higher GPP and lower C allocation belowground lead to an enhanced ANPP 					
A higher leaf life span account for a lower allocation to leaf growth					
 A higher ANPP and a lower in C allocation to leaf growth account for an enhanced wood production 					
Is there an effect on stomatal conductance? What is the water cost of the increase in productivity?					
→ Na fertilization					
✓ Stimulation of GPP, ANPP and wood production					
✓ But Na cannot fully substitute for K.					
\checkmark This is especially the case for leaf life span.					
Nancy-Université					

