BIOLUBRICANT AND BIOFUEL FROM SUNFLOWER OIL

G. VAITILINGOM, A. LIENNARD, D. PIOCH, P. LOZANO

Physico-chemistry and Bioenergy Laboratory CIRAD Montpellier, France

SUMMARY

- VEGETABLE OILS
- NEAT VEGETABLE OILS AS FUELSResearch workApplied results
- ADAPTATION TO EXISTING HARDWARE
 Esters
 Catalytic cracking
 Blends
- WHICH SOLUTION ?

CIRAD PARTNERS

National, international research & develop. cent.

Universities

Farmer's organizations

Private comp., agricult., forestry manufacture

N G Os

Funding agencies

Centre for International Cooperation in Agricultural Research for Development

- Food security
- Rational natural resources management
- Contribute to rural development tropical and subtropical areas
- R & D projects, experiments
- Training
- Scientific and technical journals

Agronomy, veterinary, forestry, agrifood, economic and social fields.

VEGETABLE OILS/WORLD

Total oils & fats ~ 110 Veg oils ~ 85 Soybean + palm oils ~ 50% of total oils Food uses ~ 80%

DIFFERENT CROP SYSTEMS

Soybean:

annual crop

(US, Brazil)

highly mechanized

cake (animal feed)

Oil palm:

perennial crop

(Malaysia, Indonesia)

hand harvested

palm kernel oil (Highly priced lauric)

AGRICULT. AND ECONOMIC SPECIFICITY

PRICES VEG. OILS (WORLD MARKET) > GAS OIL (DIESEL)

STILL POSSIBLE TO COMPET / LOCAL SPECIFIC CONDITIONS

TREND IN RELATIVE WORLD PRICES COCONUT OIL / DIESEL FUEL

V. O. as fuels can compet only under specific local conditions

CHEMICAL COMPOSITION OF VEGETABLE OILS

Fatty acid composition of triglycerides

lodine Value (IV) = Total unsaturated fatty acids

COMPOSITION OF TRIGLY CERIDES

C = C

	COCONUT	PALM	COTTON	RAPESEED	SUNFLOW	SOYBEAN
Major Fatty Acids	C12:0 C14:0	C16:0 C18:1	C16:0 C18:2	C18:1	C18:2	C18:2
Saturated Triglycerides (% W)	96	59	5	2	3	4
lodine Value	12	50	110	111	132	135

PHYSICO-CHEMICAL PROPERTIES OF DIESEL FUEL AND VEGETABLE OIL

Hydrocarbons (w%)

Glycerides (w%)

Oxygen content (w%)

Temp. Distillation 10% (℃)

Temp. Distillation 90% (℃)

Flash point (\mathfrak{C})

Heat Value (kJ/kg)

Ignition Delay (degr)

Cetane Number

Diesel Fuel Sunflower

≈ 100

0

≈ **0**

205

350

52

42 083

10.4

50

0

≈ **100**

10.8

256

none

316

37 750

11.1

34

VARIOUS PHENOMENA IN AN ENGINE

BEHAVIOR OF VEGETABLE OILS AS FUEL

	Coconut	Palm	Sunflower	Linseed
lodine Value	12	50	130	196
Spray Specific Area (cm²/ml)	1000	950	890	840
Kevap 450℃ (10 ⁻⁵ mm²/s)	245	110	70	55
(Evaporation – Pyrolysis)				
Ignition Delay (°V)	6.8	7.9	8.6	10.1

⇒ High saturated FA content

Low lodine Value better quality

Coconut > Palm > Cotton > Sunflower > Peanut > Soybean > Rapeseed > Linseed

UNSATURATION OF OILS (IODINE VALUE)

MAJOR DRAWBACKS OF VEG. OILS AS FUELS

SLOW EVAPORATION - PYROLYSIS

High molecular weight TG

Lower ID / Gasoil

INDIRECT INJECTION

HIGER TEMPERATURE IN COMB. CHAMBER

COKING

Slow evaporation

Phospholipids?

HIGHER TEMPERATURE IN COMBUST. CHAMBER

LOW TEMPERATURE PROPERTIES

Storage, cold start, filter, pump

High viscosity, phospholipids

DEGUMMING STEP NECESSARY

MINOR COMPONENTS / THERMOGRAVIMETRY

- In the Model Crude Oil, all together the 3 minor components have no adverse effect
- **♦** On the contrary at 400°C, weight loss is +25% / TG
- High Specific Area, High Evaporation Rate

EXAMPLE OF SUNFLOWER OIL

INDIRECT INJECTION ENGINE

(NOT ADAPTED)

	CO g/kWh	HC. g/kWh	NO _x g/kWh
Diesel fuel	2.3	0.6	6.6
Sunflower	1.9	0.5	6.4
EUR oct 98I			
ISO 8178 C1	6.5	1.3	9.2

DIRECT INJECTION ENGINE

(ADAPTATED)

New design of combustion chamber Thermal insulation of piston and liner New injector type

	Torque 1500 rpm (Nm)	SP. Fuel consum. (g/KMh)	Efficiency (%)
Sunflower	410	247	39
Gasoil	403	217	38

LONG TERM TEST (1000 h)

Wear, Crankcase Lubricant
Drainage as for gasoil

FULL WARRANTY FROM ENGINE MANUFACTURER

FLOW SHEET DIAGRAM FOR VEGETABLE OIL REFINING

WAYS FOR USING VEGETABLE OILS AS FUELS: ADVANTAGES AND DRAWBACKS

			AD	APTATION O		
Biomass	Technical	Number of	Spark	Diesel direct	Diesel indirect	Best uses
Available	way	components	ign. inject.		inj.	
		required				
Vac Oil	Veg. oil	1	/	Heavy	Light	A few big diesel engines, cars
Veg. Oil only	Cracking	1	No	No	No	All engines
	Blend	2 or more	/	Upon/case	Upon/case	All diesel
Veg. Oil + Alcohol	Ester	2	/	Light	Light	All diesel

ESTERS FROM VEG. OILS

HYDROCARBONS FROM VEGETABLE OILS

One step process

Less than 1/4 of gas to run the process

Neat Energy yield (3 fuels) 86%

Various catalyst available (easy reactivation)

No hydrogen needed

Feed all types of engines for transportation

Electric power from gases (plant, village)

In many places:

price of Bio HC < price of Petro HC+Taxes

AUTARCIC SOLUTION FOR ISOLATED AREAS SAVING ON TRANSPORTATION COST

PARTNER FOR PILOTE AND LONG TERM ENG. TEST

VEGETABLE OILS AS FUELS;WHICH SOLUTION?

BIOMASS ENERGY LOCAL TECHNOLOGY AVAILABLE REQUIRED AVAILABLE OR AFFORDABLE VEG. OILS TYPE AND AMOUNT **TECHNICAL** SOLUTION(S) **ENERGY MARKET ECONOMIC & SOCIAL** & POLICY **ENVIRONMENT ASPECTS ESTIMATED** LOCAL MARKET RULES **PRODUCTION** COST(S) WORKABLE **SOLUTION** CIRAD-AMIS **PCBM**

PROSPECT

- Wide panel of Technical solutions
- Vegetable oils are and will be available
 World market (demand for cake encreases)
 Local oils to be valorized as well as used oils
- Economic side (cost)
 macro : policy/tax cut (world price too high)
 micro : can be profitable isolated regions (carriage x2)
 village, plant, island
- Environment : positive effect on C0₂ reduction
 Global impact to be estimated/each case
 Land management

RESEARCH TEAMS INVOLVED IN THE PROJECT

CIRAD - Physico-Chemistry-Bioenergy Team

Dr N.Chirat, Dr D.Pioch, Dr G.Vaitilingom

P.Lozano, A.Liennard

USDA - ARS Oil Chemical Research

Dr G.Knothe

SWRI - Engine & Vehicule Research Div.

Dr T.Ryan

Ecole Supérieure d'Energie et des Matériaux

Prof. J.Andrzejewski

Université Catholique Louvain

Unité de Thermodynamique et Turbomachines Prof. J.L Martin, Dr J.L Vanhemelryck Montpellier

France

Peoria

USA

San Antonio

USA

Orléans

France

Louvain La Neuve

Belgium

Special thanks to **ADEME** (French Agency for Energy) for funding the CIRAD work

SUMMARY

- VEGETABLE OILS
- NEAT VEGETABLE OILS AS FUELS
 Research work
 Applied results
- ADAPTATION TO EXISTING HARDWARE
 Esters
 Catalytic cracking
 Blends
- WHICH SOLUTION ?

SUMMARY

- VEGETABLE OILS
- NEAT VEGETABLE OILS AS FUELS

 Research work

 Applied results
- ADAPTATION TO EXISTING HARDWARE
 Esters

Catalytic cracking

Blends

WHICH SOLUTION ?

OIL PRESS 25 KG/H + DIESEL. ENGINE (COCONUT OIL)

PUMP 9KW IRRIGATION 50 M³/H, OUVEA (FUELED WHITH COCONUT OIL)

EL. GENERATOR 80 KVA (COCONUT OIL, OUVEA)

HATZ ENGINE
TO BE COUPLED
TO 7 KVA
GENERATOR
(FUELED WITH
COCONUT OIL, FIDJI)

CARS AND TRACTORS

RENAULT 21 250.10³ KM (SUNFLOWER OIL : STANDARD IDI ENGINE)

MASSEY-FERGUSSON
SUNFLOWER OIL
MODIFIED DI ENGINE

TOYOTA PICKUP (COCONUT OIL)

BEFORE ADAPTATION

PISTON NOZZLE

AFTER ADAPTATION

PISTON DESIGN (DIRECT INJECTION)

HATZ ENGINE (DIRECT INJECTION)

EL. POWER PLANT 600 KVA (COTON OIL, MALI)

EL. POWER PLANT 200KVA

(CRUDE COCONUT OIL; SEA WATER DESALTING, OUVEA)

BOILER - DRYIER ; SUGAR BEET, PLANT

BIOLUBRICANT FROM OLEIC SUNFLOWER OIL

CONVENTIONAL PETROLEUM MOTOR OIL

BIOLUBRICANT HELIANTHE

vehicle/engine	CLIO/F8Q	CLIO/F8Q	R19/F8Q	R19/F8Q		CLIO	/ F8Q	
Vehicle mileage	33395	38270	51098	65646	74691	79290	83797	88318
Drain oil	4828	4875	4401	4700	4599	4507	7251	4521
WEAR (ppm)								
Iron	35	43	24	18	37	28	25	30
Lead	1	5	2	18	4	2	3	4
Copper	1	1	1	2	3	2	1	2
Tin	2	2	2	2	8	6	6	5
Chromium	4	6	3	2	7	4	4	5
Aluminium	10	11	7	10	13	11	10	11
Nickel	1	2	1	1	2	2	1	3
Molybdenum	79	77	8	3	5	4	3	3
POLLUTION	POLLUTION							
Silicium (ppm)	12	13	7	15	12	11	10	12
Water (%)	0.09	<0.02	<0.02	<0.02	0	0	0	0
CARACTERISTIQUES DU PRODUIT								
Visco. @ 100 ℃	14.70	14.60	14.00	14.10				
Visco. @ 40 ℃	107.00	104.90	106.50	102.20	101	93	94	103
V.I.	140	142	131	139				
T.B.N.	9.00	9.20	8.40	12.50				

