

Calibration of a vegetation index to monitor Eucalyptus plantation leaf area index with MODIS reflectance time-series

1 CIRAD, UMR Eco&Sols, Montpellier, France
2 CIRAD, UMR TETIS, Montpellier, France
3 National Institute for Space Research (INPE)
Remote Sensing Department, 12227-010 São José dos Campos, SP, Brasil
4 Faculty of Geo-Information Science and Earth Observation (ITC)
University of Twente, Enschede, The Netherlands
5 Department of Forestry and Environmental Sciences
North Carolina State University, Raleigh, NC 27695, United States
6 Departamento de Ciências Atmosféricas, IAG
Universidade de São Paulo, Brazil

XV SBSR, May 2011, Curitiba

Introduction

Eucalyptus plantations:

- Main hard-wood species planted in the world
- Present in most tropical and subtropical regions world-wide
- Rapid expansion
- Environmental impact and sustainability issues
- Very useful & interesting model for scientific questions about tree growth and tree plantation development (rotation length of 6-7 years, productivity of ~40 m3/ha/y)

Introduction

Eucalyptus plantation leaf area index (LAI)

- Critical variable: at the crossroads of carbon, nutrient and water balance of the ecosystem, linked to NPP and plantation productivity
- LAI is very sensitive in forest process-based models, but generally difficult to simulate (necessary to calibrate models)
- LAI is highly variable in time and space, and difficult and time-consuming to measure with the currently available destructive or optical field methods.

The development of a method allowing the simple retrieval of LAI time series from freely available satellite data is therefore of considerable interest.

Introduction

LAI is *linked with* reflectance in Red and Near Infrared (NIR) bands

The high **spatial** and **temporal** variability of LAI can be seen on a CBERS satellite time-series above a plantation

Objectives

- → Determine LAI quantitatively from Red and NIR reflectances
- → Estimate LAI since the planting date of the current rotation
- → Compare LAI-retrieval methods and their uncertainties, advantages, drawbacks
- → Design a specific, calibrated vegetation index

MODIS data extraction and filtering:

- 16-days composite image (MOD13Q1 product) since 2000 ☺
- ~250 m resolution for Red and NIR bands ③
- Extraction of best MODIS pixel per stand (see *le Maire et al. RSE 2011*)

MODIS data extraction and filtering:

- Quality check within MODIS product
- Acquisition geometries (sun and view angles, relative azimuth)
- Smoothing and interpolation with cubic spline for vegetation indices

Test of two methods for LAI retrieval (le Maire et al. 2011, RSE)

Vegetation index (VI)

- Choice of best type of vegetation index based on LAI measurements
- Calibration of the index based on satellite images (VI coefficients) and LAI measurements (regression VI vs. LAI)
- Calculation of LAI time-series from VI time-series
- Comparison between estimated and measured LAI (should be on a different dataset)

RTM inversion

- Choice of a forest radiative transfer model
- Inversion of the model: need of constraining the model for many variables because there are only 2 bands that are used
- Choice of the variables and parameters constrained in the model, and measurements of their values
- Once constrained, the model is inverted considering the acquisition geometry, RSR, etc.
- Comparison between estimated and measured LAI

Vegetation index (VI)

- GESAVI (Gilabert et al. 2002) was the best index among the ones that were tested
- It is a soil-adjusted vegetation index (based on soil line)
- It also uses a Z factor calibrated with the « maximum LAI » line

$$GESAVI = \frac{NIR - a*red - b}{red + Z}$$

RTM inversion

- The PROSAIL model was chosen for its recognized simplicity & efficiency
- PROSAIL= PROSPECT (leaf) + 4SAIL2 (canopy) + SOILSPECT (soil)

Field measurements

- → 20 destructive LAI measurements on 9 contrasted stands, in dry and wet seasons
- → Other measurements: SLA, leaf angles, chlorophyll, leaf reflectance, etc. for model inversion
- → Gap fraction measurements on 16 stands, both seasons (with fisheye pictures), for model inversion test (not presented here)

Results

Results

Results

Vegetation index (VI)

- Advantages:
 - Very easy to calibrate and apply
 - Robust, precise except for high LAI values
- Drawbacks:
 - needs a lot of LAI field measurements to calibrate the relationships on different conditions
 - needs other LAI data for a validation
 - needs visual interpretation of the NIR-Red scatter-plot

RTM inversion

- Advantages:
 - •Slightly better results than VI, for high LAI values & first years
 - •Takes into account geometry effects (e.g. sun angle varying with season)
 - •Takes into account confounding factors (leaf angle, crown cover, SLA, etc.)
- Drawbacks
 - •Requires many other measurements (no easier than LAI)
 - Uncertainty is still high

Based on these results, is it possible to construct a methodology which combines the advantages of these methods?

Method II

(1) the database

- Calibrate a VI on a large dataset created with the PROSAIL RTM
- Need to generate a set of model input combinations
- The distributions and correlations between these inputs must correspond to reality
- → use of the simulated dataset obtained on 16 stands to have a dataset of thousands of values of Red (measured), NIR (measured) and associated LAI (simulated)

Method II

(2) the index type

Most 2-bands VI with Red and NIR bands are constructed based on the model:

 $VI = \frac{aNIR + bRED + c}{dNIR + eRED + f}$

VI	а	b	С	d	е	f
DVI	1	-1	0	0	0	0
RVI	1	0	0	0	1	0
NDVI	1	-1	0	1	1	0
PVI	1	-B	-A	0	0	$\sqrt{1+B^2}$
SAVI	(1+L)	-(1+L)	0	1	1	L
TSAVI	В	-B ²	-A*B	В	1	-A*B+X(1+B²)
OSAVI	1	-1	0	1	1	Υ
GESAVI	1	-1.505	-0.034	0	1	0.0383

Rough index calibration = **find the parameters [a,...,f]** which minimize the squared difference between VI and LAI. This calibration is done on the synthetic database generated by PROSAIL

Results II

« EucVI » index

$$VI = \frac{aNIR + bRED + c}{dNIR + eRED + f}$$

VI	а	b	С	d	е	f
EucVI	4.95	-9.32	0.005	0.46	6.97	0.0911

Results II

Slight improvement compared to GESAVI

Does not reach inversion results: Other information not contained in Red and NIR reflectances are used in RTM inversion (stand age, acquisition geometry, etc.)

Note that the **measured** LAI is used here as an **independent validation** (like for RTM inversion)

Conclusion

- Both VI and RTM inversion are efficient methods for LAI estimations (RMSE<0.5), with only two bands
- RTM inversion gives better results than VI because it takes into account acquisition geometry, stand age, etc. which impact on other confounding factors
- VI are much more simple to apply; RTM can be used to calibrate a VI; VI is therefore a very simplified RTM inversion
- With MODIS data, LAI can be estimated since the planting date, which opens perspectives for data assimilation/forcing into ecophysiological process-based models (G'Day, 3PG,...)
- Further work is needed :
 - for small stands which do not have a MODIS pixel entirely contained in the stand
 - for the use of other bands (but with a resolution of 500 m)→ unmixing technique
 - to pay more attention to the first year of the rotation (before canopy closure)

Thank you for your attention!

For further informations:

- le Maire et al.. (2011). Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of Eucalyptus plantations. *Remote Sensing of Environment, 115*, 586-599
- Marsden et al. (2010). Relating MODIS vegetation index time-series with structure, light absorption and stem production of fast-growing Eucalyptus plantations. *Forest Ecology and Management, 259,* 1741-1753

... and XV SBSR proceedings

