

Landscape characterization of Rift Valley Fever risk areas using very high spatial resolution imagery : case study in the Ferlo area, Senegal.

V.Soti^{1,2,3}, V.Chevalier¹, J.Maura¹, D.Sow⁵, A. Begue², C.Lelong², R. Lancelot⁴, A. Tran^{1,2}

1: Cirad, AGIRs ;2: Cirad, UMR TETIS; 3: Cirad, UPR SCA ; 4: Cirad, UMR15; 5: ISRA, Dakar, Sénégal

Atelier AW-IPM

4-5 Octobre 2011, Montpellier

I. Study context II. Image Processing III. Landcape analysis IV. Conclusions

Outline

I. Study context

1.1 Study area

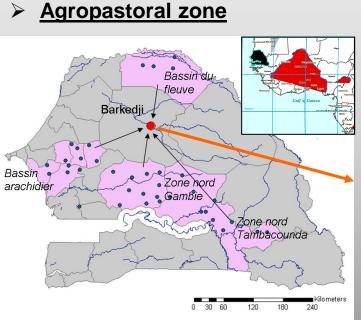
1.2 The Rift Valley Fever

1.3 Objectives and approach

II. Image processing

2.1 Water detection

2.2 Vegetation maps

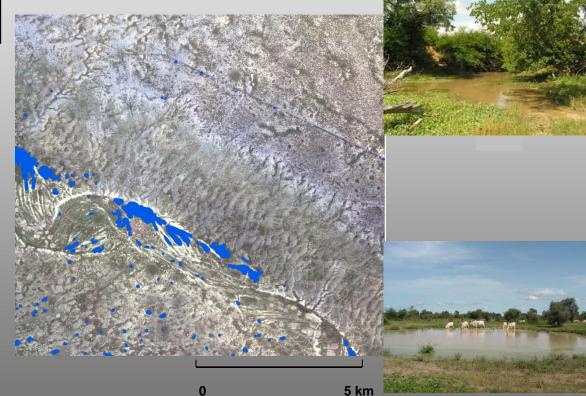

III. Landscape analysis

- 3.1 Definition of landscape indices
- 3.2 Extraction of landscape indices

3.2 Statistical analysis

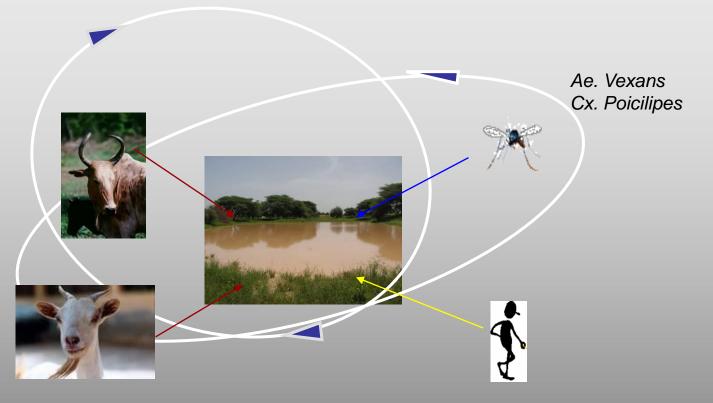
IV. Conclusions and perspectives

Study area



- Village d'origine des transhumants
- 👂 Barkedji

Sahelian climate :

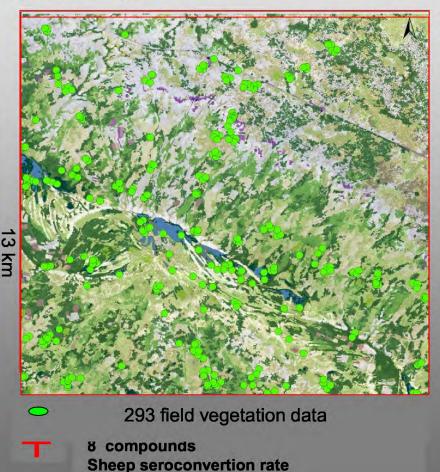

- Dry climate
- Low precipitation : 300 to 500 mm from July to October
- Shrubby vegetation

- A dense pond network
- Temporary ponds are flooded during the rainy season
- Ponds are not very deep
- A high variability of water level

IV. Conclusions

Cycle of RVFV Transmission

Aim of the study / landscape approach :


- Study the relationship between epidemiological data and landscape variables
- To identify landscape variables that can explain the RVF incidence in a pest control perspective

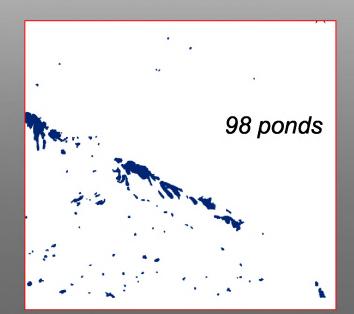
DATA

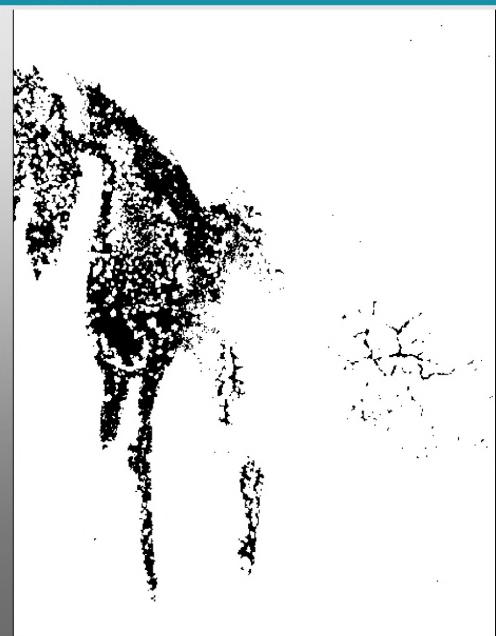
- 1) Satellite Image acquisition : Quickbird sensor
- 2) Sheep serologic incidence Data collected in 2003
- 3) Field vegetation surveys

(Bandem B, V, R, PIR)

IV. Conclusions

2.1 Pond map

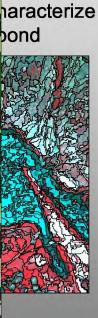

Spatial distribution of ponds


Water index -> NDWI :

 $[V \pm NIR] / [V + NIR]$

(Mac Feeter, 1996)

- 98 ponds or water bodies were detected.
- Smallest surface : 195 m²



III. Landcape analysis

IV. Conclusions

2.2) Vegetation maps

Methodology Step 1 Image segmentation Water Not vegetation Step 2 Bare soil) Butte Fields Supervised classification Vegetation Dense -Nearest neighbour classification algorithm -Selection of training sites (125 field data) -Vegetation map composed by 11 classes : D Forest Savanna D Grass Savanna D Shrub savanna Sparse S Forest Savanna Step 3 S Grass Savanna) S Shrub Savanna Water Accuracy assessment

uite

Cassia tora

	Sparse forest savana	Dense grass savana	Cassia tora	Culture	Bare soil	Sparse shrub savana	Laterite butte	Dense shrub savana	Dense forest sa∨ana	Sparse grass
Producer	0,65	1,00	0,44	0,54	0,98	0,50	0,80	0,99	0.89	0,99
User	0,88	0.31	1,00	1,00	0,44	0,99	1,00	1.00	0,87	0,77
Overall Accuracy	0,78	The Glob	al mean acc	uracy wa	s 78%	and Kann	a index o	f 075 whic	h corresp	ands to
KIA	0,75		eement betw							

3.1 Landscape variables definition

Areas with a high density of ponds are more at risk

(Chevalier, 2005)

Ponds covered with vegetation are habitats favourable to the mosquitoes, as breeding sites and rest areas

(Becker, 1989; Clements, 1999)

Vegetation is known having impacts on mosquitoes presence and displacement

(Clements, 1999)

) Water pond area

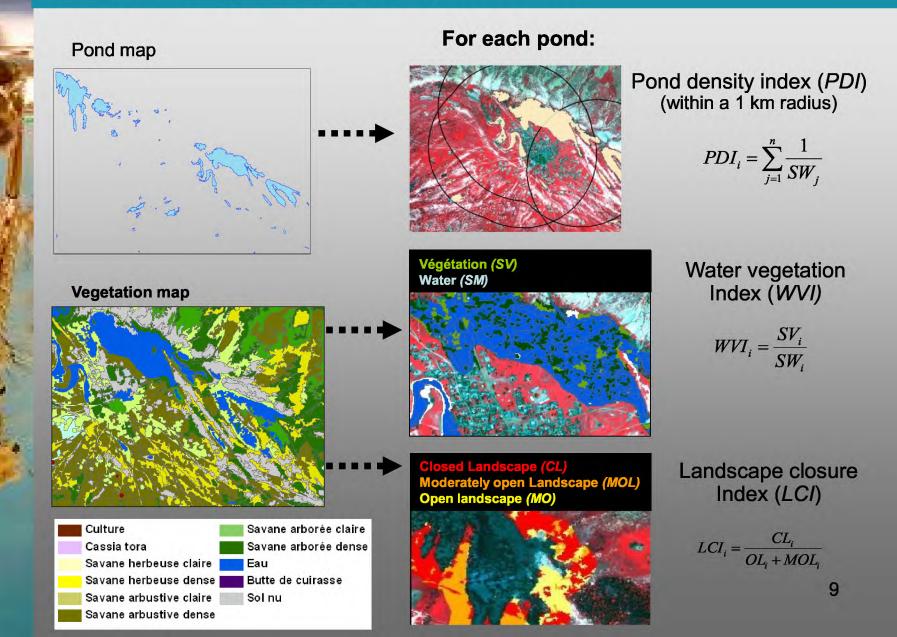
2) Pond location (inside/ outside the main stream)

(Chevalier et al., 2005)

3) Pond density Index (PDI) (radius = 1 km)

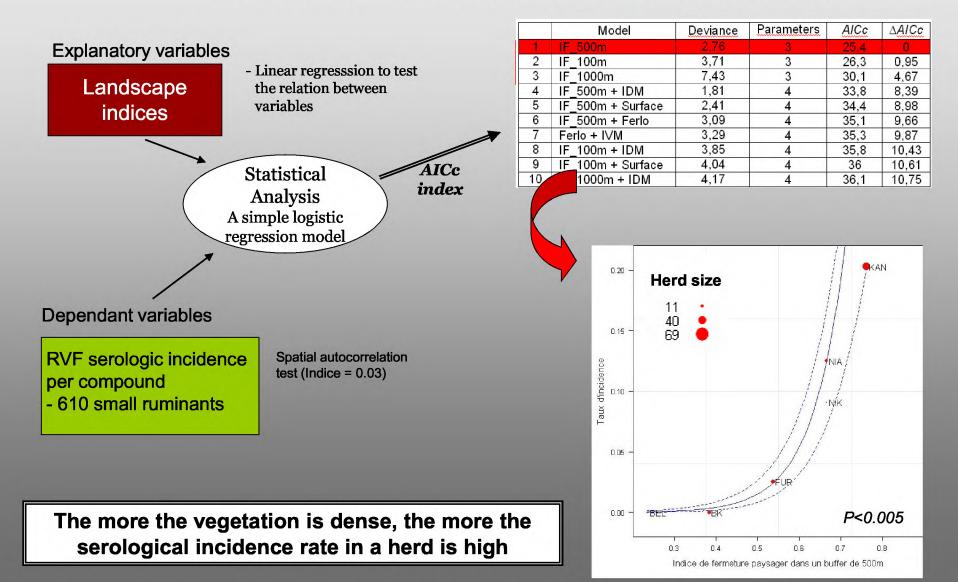
(Ba Yamar et al. 2005)

4) Water Vegetation Index (WVI)


Landscape Closure Index (LCI)

5) LCI - 100 m
6) LCI - 500 m
7) LCI - 1000 m

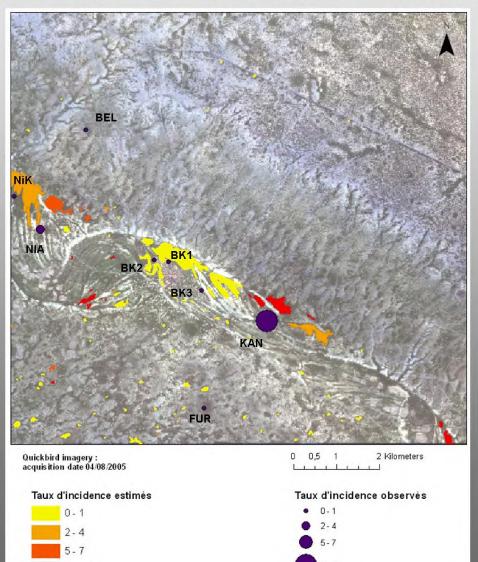
(Ba Yamar et al.2005) 8


IV.Conclusions

3.2 Landscape variables calculation

3.3 Statistical analysis

Relations between landcape variables and serologic incidence



8 - 14

IV.Conclusions

3.3 Statistical analysis

Risk map of RVF serological incidence

8-14

- A spatial heterogeneity of the RVF risk transmission
- The RVF risk transmission is greater in the main stream of the Ferlo river
- Notes a significant effect of the « vegetation density in a 500 m radius around the pond » on the RVF transmission risk
- -> 500 m = coincides with the dispersion scale of mosquitoes (*Ba Yamar et al., 2005*), but also with the average distance between the pond and the location of compounds_(*Pin-Diop, 2007*).
- □ A low number of observations
- An indirect index (data on mosquito abundance were not available)
- -> More field surveys are required to confirm the results

IV.Conclusions

Conclusions and perspectives

* Conclusions

- Quickbird imagery : potentialities to characterize the habitat of the insects with a low dispersal capacity
- Vegetation influence on the spatial heterogeneity of the disease distribution
- Importance of the landscape structure (habitat connectivity) on the disease risk transmission.

* Perspectives

- Test of a vegetation index (e.g. NDVI)
- Test of imagery with lower spatial resolution with lower costs (e.g. SPOT5)
- Provide regional RVF transmission risk maps as a support for decision makers

Thanks for your attention