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1. Introduction 

This project objective was the evaluation of the optical remote sensing potential (either by satellite, airplane or 
from in-situ platforms) to provide any information about oil-palm trees and groves physiological status. 
Especially, it focused on three agronomical indicators: 

1) the nutrient concentration, and the nutritional deficiencies, 
2) the canopy structure, through the LAI, 
3) the ganoderma disease presence, and severity level. 

In practical, it consists in the analysis of the optical properties of oil-palm trees at different scales, to establish 
whether there exists any relationship between, on one hand, their reflectance in the visible and near-infrared 
domains and, on the other hand, one of these three characteristics of oil-palm physiological status. 
Indeed, some field and satellite surveys were achieved to get data that are representative of the largest range 
of organic and mineral deficiencies, density and pruning management, and of ganoderma disease levels, to 
determine if this type of information is actually available in such kind of data. For the purpose of this project, 
innovative dedicated protocols of data acquisition experimentations were developed in the oil-palm context, 
using either the very high spatial resolution of imagery, either the very high spectral resolution of a field 
spectroradiometer.  

2. Test-sites 

 
This study was focused on three oil-palm groves managed by PT-SMART in Sumatra (Indonesia):  

1) Kandista, near SMART-RI station (Riau) 
2) Naga Mas and Naga Sakti trials (Riau) 
3) Padang Halaban Estate (Sumatra Utara) 

The two first sites were selected for the project considering the opportunity of having a documented variability 
of nutritional status through the existence of fertility trials (N, P, K, and Mg), or the availability of a large range 
of natural organic and mineral deficiencies (Fe, K, N, and Mg) due to poor sandy soils.  
The third one was selected on the basis of two criterions: 

a) a large variability of tree ages and sizes, density of plantation, management practices, and cultivars, 
resulting in various canopy structures and thus in a wide range of LAI values 

b) a widespread and intense contamination by the Ganoderma disease. 
 

Three field surveys, each during three months, were achieved over these sites by French MSc internship 
students (M. Lanore in 2006, F. Roussel in 2008, F. Dubertret in 2009) and their advisor, C. Lelong (CIRAD 
agent, staying herself two to three weeks in the fields), with the local support of J.-P. Caliman (head of Smart-
Ri), Prasetya and N.A. Sitorus (SMART-RI PHLE), A.R. Syakharosie (SMART-RI Libo), and the help of 
Indonesian Grd. Student internship/contactors ( D. A. Raharjo, N. A. Prabowo).  
1) The first survey (2006) was based in Kandista, Naga Mas, and Naga Sakti, and was dedicated to establish 

the protocols of measurements of hyperspectral reflectance data at the tree canopy level and at the leaf 
scale, along with foliar laboratory analyses. It was the first contact with the object of study and with the 
acquisition conditions, to fix the ideas to be developed during the project and test the feasibility of the 
experiments. It resulted in a large data base concerning nutrition deficiencies, ganoderma disease, and 
other characteristics (e.g. age, genetic selection). 

2) The second survey (2008) was based in Padang Halaban and was only dedicated to the LAI measurement 
of individual trees and of whole blocks, with different techniques and protocols, over the large range of 
variability available inside the estate. 

3) The last survey (2009) was also based in Padang Halaban and was dedicated to the acquisition of 
hyperspectral reflectance data of both canopies and leaves of sick trees only, plus sane individuals as a 
reference. 
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3. Remote sensing data 

 
3.1. Satellite images 
Two satellite images were acquired for this study, by Quickbird very high spatial resolution sensor, providing a 
multispectral dataset in four spectral bands (blue, green, red and near-infrared) at 2.5m spatial resolution per 
pixel, plus a panchromatic image at 0.6m/pixel. Those two products have been calibrated and merged using 
the Gram-Schmidt spectral pan-sharpening to provide a multispectral data-set in four bands at 0.6m/pixel. 
- The first one was shot over NagaMas and NagaSakti area in june 2004, covering 8km in latitude and 10km 

in longitude. Some of the blocks are masked by clouds and their shadows. Due to the context of the 
preliminary feasibility studies in this site, and a lack of time, this image was neither deeply processed nor 
analyzed. This is thus only a radiance data set, not orthorectified. 

- The second one was shot over Padang Halaban Estate (PHLE) in june 2008, covering 8.5km in latitude 
and 9km in longitude, and comprising a lot of big clouds and their shadows that mask some areas (cf. 
Figure 1). GPS measurements of the altitude and geographical coordinates of a large sample of referable 
points in the estate allowed to produce a local Digital Terrain Model and thus to orthorectify the image. In 
addition, spectral measurements on invariant points were used to calibrate the data in reflectance using the 
indirect method. 
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Figure 1 : global view of the Quickbird image acquired over Padang Halaban Estate in june 2008. Top: true 

colour (blue-green-red) composition, bottom: false-colour (green-red-near infrared) composition. 
 
Figure 2 displays an example of zoom-in view inside several oil-palm blocks, and illustrates the gain in spatial 
information that allows the pan-sharpening providing multispectral images at the resolution of 0.6m/pixel. The 
individual trees are clearly identified, and separated. Even the shape of the tree crown and its shadow are 
distinguishable. Small details are observable and plot limits appear clearly. This level of details allow the 
understanding of colour heterogeneities seen in the basic image, like the variations of planting vs. canopy 
density, or the delimitation and discrimination of clearings due to missing tree(s) and smaller gaps due to tree 
crown reduction. It also makes the pixels spectrally purer. 
The counter part of this higher amount of information is the introduction of a wider range of spectral 
heterogeneity, especially for a single tree itself, mostly due to directional effects, shadowing contribution, and 
parasite signals, and an appearance of spatial incoherence of the reflectance. In this context, traditional 
methodologies of image signal processing are not suitable and we had to test several new directions to 
extract, for instance, the individual oil-palm tree mean reflectance. In the limited time dedicated for this project, 
no automatic processing was found performing to delimitate properly the oil-palm crown and we finally 
digitalized the trees as 9m diameter circles, with a computer-assisted photo interpretation referring to different 
scales to manage the centre location fixing. Considering the difficulty and time-consumption associated to this 
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processing, we are not able to provide an operational tool for that purpose, and this digitalization was only 
achieved on sampled trees useful for the methods development. Examples are shown at Figure 3.  
 

 

 

Figure 2 : zoom in the Quickbird image acquired over Padang Halaban Estate in june 2008, showing in false 
colours (green-red-near infrared) the gain of information from the basic multispectral data at 2.5m/pix (top) to 
the pan-sharpened multispectral data at 0.6m/pix (bottom). Individual oil-palm trees are clearly indentified. 
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Figure 3 : example of digitalized oil-palm tree crowns, respectively displayed in the basic multispectral image 
at 2.5m (top) and in the pan-sharpened multispectral image at 0.6m (bottom). 
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3.2. Hyperspectral Reflectance data 
The instrument used for the measurements of the oil-palm tree and leaf reflectance spectra was a field 
spectroradiometer called UNISPEC’2001, designed by PP-System. It acquires a spectrum in 256 wavelengths 
comprised between 303nm and 1131nm, with the help of a fibre-optics. 
We have acquired the spectra at two different scales: the canopy and the leaf, designing step by step an 
innovative protocol for each scale that was adapted to the oil-palm context. 
 
3.2.1. Tree canopy reflectance 
The fibre optics(FOV: 26°) is fixed with an incident angle of 40° on a home-made inertial device mounted on a 
wooden stick (perch) along with a cosine receptor dedicated to measure the solar diffuse incident light 
simultaneously with the reflected light to allow the reflectance computing. The operator climbs up thanks to 
scaffoldings to reach the top of the canopy and to maintain the fibre-optics at 1m above the canopy to get an 
integrated surface reflectance. Then he makes an acquisition close to the centre of the tree crown, and 
repeats the acquisition 6 times all around the tree (with the obligation to move the scaffoldings). These 
repetitions aim at avoiding the directional effects, decreasing the small local heterogeneities, and giving a 
mean spectrum of the total crown surface.  
 

  
Figure 4 : view of canopy-reflectance measurement operators climbed on scaffoldings to reach the top of the 

oil-palm canopy, and closer view of the fibre-optics mounted on the inertial device. 
 

3.2.2. Leaf reflectance 
The fibre optics is fixed on a leaf-clip (cf. Figure 5), allowing the use of an internal calibrated light source and a 
close measurement of the reflected light in a little spot of about 5 square millimetres. During the first 
experiments, and for all the deficient trees, 5 leaves were cut and measured: L1, L5, L9, L13, and L17 (cf. 
Figure 4), to encompass the main variability of composition and structure gradients through the canopy layers. 
After some preliminary spectral analysis, it appeared that ganoderma discrimination worked better on younger 
leaves and since then only L5 and L9 are cut to avoid too much destruction of the tree and to fasten the 
protocol. These leaves were selected due to several reasons: 
- stress symptoms are visible on at least one of those leaves, 
- they are young and are not covered by lichen (as old leaves are) that would interfere in the reflectance 

measurement, 
- they are located on the top of the tree and are visible from above, so the measurements can be closer to 

satellite remote sensing data, 
- they are located on opposite sides of the tree, whatever could be the angle between leaves, 
- they belong to two different but adjacent spires, 
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On each leaflet, a set of 40 spectral acquisitions are operated and average to provide the leaflet representative 
spectrum. These acquisitions are equally distributed inside an area of 5 square centimetres, at the first and the 
second third of the leaflet length and on both sides of its central nerve (cf. Figure 7). This protocol was 
established after a statistical analysis of the spectral variability and representativeness of a wider quantity of 
acquisitions scattered over the whole leaflet. Finally, these five leaflet spectra are averaged to provide the 
mean leaf spectrum. 
 
3.2.3. Database 
The database includes the tree canopy reflectance spectrum and the L5 and L9 (plus L1, L13, and L17 for the 
deficient trees and the trials) leaf reflectance spectra for all the trees which characteristics are listed in Table 1. 
 

Oil-palms with visible deficiency 

K (Kandista) 8 

Mg (Kandista) 5 

Fe (Kandista) 5 

N (Kandista) 5 

Oil-palm in a nutritional trial 
N and P (NM&NS) 12 (6 trials) 

Mg and K (NM&NS) 12 (6 trials) 

Identified genotypes 

1.5 times the standard mineral 
treatment (NM&NS) 

16 (8 different genotypes) 

0 times the standard mineral treatment 
(NM&NS) 

16 (8 different genotypes) 

Ganoderma disease attacked oil-
palm 

Different unidentified levels (Kandista) 6 

Sane trees (Kandista) 6 

Sane trees (PHLE) 36 

Level 1 (PHLE) 18 

Level 2 (PHLE) 38 

Level 3 (PHLE) 3 

Table 1 : List of sampled trees for reflectance spectrum measurements. 
 

 
3.3. LAI measurements 
LAI was measured at two different scales: the individual tree, and the block. Different tools were used to be 
compared or to help their calibration: the destructive method for the individual tree LAI evaluation, and LICOR-
LAI2000 Plant Canopy Analyser (LAI2000-PCA) measurements and hemispherical photographs acquisitions 
for the two different scales. 
 
3.3.1. Direct method, or destructive method 
32 trees were sampled, representing 4 vegetal material and 20 different plantation dates (years), as shown in 
the Table 2. The destructive method of the individual oil-palm tree LAI estimation consists in six steps. 
1.  the canopy projected area is estimated on the basis of the measurement of the mean distance from the 
stem to the leaf extremity and the stem perimeter to derive its diameter. The total number of leaves is also 
counted and the stem height is measured. 

2. 3 leaves of distant ages are cut, to encompass the possible but small variability of leaf area, and provide a 
value for the mean leaf area. 

3. one leaflet is cut each 6 leaflets, respectively on each side of the rachis (so a total of about 40 to 50 leaflets 
per leaf), and each one is numbered and associated with its insertion distance on the rachis. 

4.  the leaflet five specific widths and heights are measured for each leaflet, and the leaflet area is computed 
on the basis of Tailliez and Koffi (1992) geometrical model. 
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5. the total leaflet area is then estimated for each leaf with an interpolation for the unsampled leaflets 
depending on their location along the rachis, and is average over these three leaves to provide the mean leaf 
area.  

6. the mean leaf area is finally multiplied by the number of leaves in the tree and divided by the crown 
projected area to give the tree LAI. 

 

Genetic material Number of  
sampled trees 

Number of different plantation dates / number existing for the 
genetic material 

Socfindo 16 9 years/ 13 

Marihat 10 5 years / 7 

Dami 4 2 years / 4 

Costa Rica 2 1 year / 1 

Table 2 : Description of sampled trees for the LAI destructive measurements  
 
3.3.2. LAI2000-PCA 
For the estimation of the canopy LAI with the LICOR instrument called LAI2000-PCA, two devices are required 
(cf. Figure 8): one being fixed in an open area closed to the fields of interest and continuously acquiring the 
diffuse incident light (A), and the second being mobile and used for the diffuse light below the canopy (B). “A” 
acquisition are programmed each 15 seconds. The two data sets are then merged afterwards, using the 
dedicated C2000 software to associate each B acquisition to the closer A acquisition in time. 
 

 
Figure 8 : principle of the LAI2000-PCA measurements for an individual oil-palm tree 

 
A cap masks the lens of the instrument so that the field of view is only 45°, to discard the contribution of the 
operator (and of the tree stem for the individual tree measurements) during the acquisition.  
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1) For the estimation of the individual tree LAI, the operator places the stick of the instrument against the stem 
and turns around the stem in order to make 12 regularly spaced “B” acquisitions, covering the whole field of 
the tree crown (cf. Figure 8). This has been achieved for the 32 trees referenced in the Table 2, before the 
leaves were cut, plus 388 others scattered over the different blocks, so a total of 420 individual oil-palm trees 
were measured. 

 
2) For the estimation of a given block mean LAI, several protocols were imagined, tested on a given set of 
plots, and analyzed. Only the more relevant is detailed here, being the easiest to achieved, with 150 
acquisitions per block in average and about 90 minutes of work, and allowing fixing the block variability in 
any configuration of the canopy structure, including with the presence of large gaps (clearings). 40 blocks 
were measured that way. 

 

 

 
 
 
 
 
 
Left: location of the acquisition spots inside the 
plot (one each 40 steps). 
Above: location of the acquisitions inside this 
spot. The arrow figures the direction of the lens 
field of view. 

Figure 9 : illustration of the protocol followed for the estimation of a transect mean LAI with the LAI2000-PCA 
 
3.3.3. Hemispherical Photographs 
A Nikon Coolpix digital camera equipped with a fish-eye lens was used to acquire the hemispherical 
photographs in 360°. This camera must be horizontal, with its lens exactly at the zenith. Several pictures are 
acquired for the same object (either tree or transect), and processed simultaneously with the CanEye software 
to provide the mean gap-fraction and its standard deviation. 
1) For the individual trees, 6 pictures are acquired, regularly spaced all around the stem like for the LAI2000-

PCA measurements, for any of the 420 trees. 
2) For the transects, 1 picture is acquired at each location of a LAI2000-PCA “B” acquisition (4 for each 

acquisition spot, refer to the previous section), for each of the 40 blocks. 
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Figure 10 : Example of a set of 6 hemispherical photographs acquired for n individual oil-palm tree. 
 
 

4. Results for LAI estimation  

Among the 420 measured individual oil-palm trees, only 60 are actually visible on the satellite image, due to 
the presence of clouds and their shadow that mask parts or the image. These 60 trees were digitalized to 
extract their mean radiance in respectively the red and the near-infrared bands, to derived their mean 
Normalized Difference Vegetation Index NDVI=(RPIR-Rred)/(RPIR-Rred), known in remote sensing to be 
correlated to the LAI. Then, a relationship between the LAI and the NDVI was derived by cross-validation on a 
set of 40 individuals as the calibration data, and 20 individuals as the validation data, randomly selected by 28 
successive draw-lots. This modelling was achieved four times, using respectively the destructive LAI, the Lai 
obtained thanks to the gap-fraction estimated on the hemispherical photographs, the LAI2000-PCA LAI, and 
this later corrected by a clumping factor derived from the hemispherical photographs analysis. The model 
converges with a solution without a large error only for the basic LAI2000-PCA measurements. The final 
relationship is then the following: LAI(tree) = 21.3 x NDVI(tree) – 9.3, having a determination coefficient of 0.34, 
and a correlation coefficient of 0.58, with a root mean square error of 0.9. 
Among the 40 blocks measured with the transects, only 21 are visible in the satellite image. The mean NDVI of 
each of these blocks was thus computed on the basis of the mean reflectance in the red and the near infrared, 
respectively. A relationship was then derived between the LAI2000-PCA values and the NDVI: LAI(block) = 
25.16 x NDVI(block) – 11.6, having a determination coefficient of 0.57 and a correlation coefficient of 0.76, with 
a root mean square error of 0.5. No validation was performed on this relationship due to the small amount of 
samples. 
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Figure 11 : graphs displaying the measured LAI (with the LAI2000-PCA) as a function of the NDVI (derived 
from the satellite image) for the individual trees (left) and for the blocks (right). 

 

 
Figure 12 : Map of the mean block LAI of Padang Halaban Estate in june 2008. 

 
The relationship obtained for the blocks was then applied to any of the blocks contained in the image, to 
provide the whole estate LAI map (cf. Figure 12 ). This product is very easy to obtain from any new satellite 
acquisition, but is not fully validated. To be operational, additional measurements should be performed 
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following the same transect protocol, to validate the derived LAI value on several blocks that were not used in 
the calibration of the relationship. This map allows for instance to quickly analysing the interblock variability of 
LAI, to be related to any agronomical data (e.g. soil, planting density, topography, and so on) to be 
understood, or to comparing different plantations. 
 
The relationship obtained for the individual trees was applied to any of the trees digitalized in a test-block: 
Blok5-Divisi5 (Socfindo genetic material, planted in 1996) (cf. Figure 13). 2748 oil-palm trees were manually 
digitalized using photo-interpretation: this is far from an operational tool and other techniques have to be 
developed to make it easier and quicker to perform. But this is a very useful product, giving with a good 
precision the local values of LAI and thus displaying the intra block heterogeneity, to be analysed for precision 
farming for instance. 
 

 
Figure 13 : Map of the oil-palm tree LAI in Blok5-Divisi5 of Padang Halaban Estate in june 2008. 

 
So, we studied the robustness of this relationship, calibrated on objects being the whole trees, if applied to 
single pixels of 2.5m in dimension, i.e. objects smaller than the one it was designed for. Figure 13 shows the 
result of the application of the model to each pixel of the block, and for pixels over-sampled to the size of a 
tree (ie. 9m/pix). It shows that the variability and heterogeneity areas are stable from one map to the other, 
and that LAI values are quite well preserved even if a little bit overestimated closed to missing trees. This 
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overestimation is even more critical when dealing with over-sampled pixels at 9m, along with the loss of spatial 
information too: this sampling is thus definitely not valuable. Therefore, the individual tree relationship between 
LAI and NDVI can be reasonably applied to each pixel of an image, making the process considerably quicker 
and more operational, even if it should be more validated to be transferable. It was thus applied over the whole 
image, as presented at Figure 14, to provide a LAI map at 2.4m resolution. 
 

 

Figure 14 : LAI map at 2.5m spatial resolution of Padang Halaban Estate in june 2008 
 
This map (cf. Figure 14) shows the limit of this application in the tropical areas, were the cloud cover is difficult 
to avoid and thus a large part of the plantation might be missing in the map. But this is also a digital product 
that can be integrated in a Geographical Information System of the plantation. It allows the fast and accurate 
location of any problem affecting the canopy density or the accurate identification of the under producing 
focuses, and can help the stratification of a field sampling. In addition, it can be integrated in a functioning 
model to estimate the yield at the tree scale. 

5. Results on nutrition deficiency 

This work lays on the observation that strong and isolated deficiencies provoke a noticeable change in the 
spectral signature of the oil-palm leaf. Figure 15, for instance, shows the reflectance measured during this 
project on oil-palm leaves that present a single deficiency, established by the foliar analysis, compared to a 
leaf without any deficiency. A strong decrease of the absorption in the green to red domain (520-670nm), 
corresponding to a higher reflectance, clearly appears, sign of a fainter photosynthetic activity. Also, the shape 
of the absorption band in this domain is very different from one deficiency to another, with a shifting of the 
green maximum around 550nm and a variation of slopes. So, it might be possible to detect or even to 
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discriminate the different deficiencies, especially if they are pure. Nevertheless, the problem is: how to 
decipher this information to provide an efficient diagnostic tool? And will it be performing also when the 
deficiencies are mixed, which most often occurs? 

 
Figure 15 : Reflectance spectra of oil-palm leaves affected by a single nutritionnal deficiency. 

 
To answer to these questions, several chemiometrics methodologies were tested on the whole data set of leaf 
reflectance acquired in the fields and associated to foliar analysis providing the whole description of organic 
and mineral composition of the leaf. The tested methods include, for instance, partial least square regressions, 
principal component analysis, factorial discriminant analysis, stepwise procedure, multiple linear regressions.  
Different levels of data pre-processing were also tested: raw spectra, filtered spectra, derivative spectral, and 
50 descriptive variables derived from the spectra (e.g. local extremes, feature area, slopes, curvature indices, 
spectral indices...). Best results were obtained on the second derivative spectra pre-processed by the 
Savitsky-Golay filter. 
No model of [K], [Mg], or [Fe] prediction converged to a solution: it is thus impossible to estimate the 
concentration in these three components. 
For [N] and [P], the best model was obtained using the partial least-square regression (PLS) as a 
concentration predictive tool, using five components, and resulting in a linear combination of the reflectance in 
98 spectral bands. The root mean square error remaining with the model of prediction of [P] is 0.02%. At this 
date, no information was provided by the agronomists on the [P] level considered as a deficiency to evaluate if 
this error is acceptable or not, so we couldn’t conclude on the potential use of this relationship. For [N], the 
root mean square error is 0.34% (so about 10% of relative error), which is quite accurate in a general point of 
view. Nevertheless, as communicated by agronomists, the acceptable nitrogen concentration in oil-palm 
leaves is about 2.9%, while it is considered as stressed when it reaches 2.7%. The oil-palm nitric stress 
threshold is thus of 0.2%, which is lower than the reached 0.34%. Therefore, it is possible to estimate [N] 
based on reflectance data, but not accurate enough to detect a deficiency or a stress. 
 
Another direction of research was to evaluate the possibility to detect a nutritional deficiency, whatever the 
cause. The PLS was then used as a first step in a discrimination analysis, consisting in a factorial discriminant 
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2) The resulting model for the 4 status classification is a linear discriminant analysis applied on the 7-latent-
variables-PLS scores. It presents almost 94% of global accuracy, and no failure dedetection like shown in the 
confusion matrix (cf. Table 3). The resulting model thus allows a very good discrimination between the 
healthy and the sick trees, with only 2% of error, corresponding to “false alarm” that means that a healthy 
tree is found sick. In this case, results are very good because no sick tree is missed, which is the most 
important issue in the context of disease control. It is thus even better than the previous model considering 
only sane and sick status. Even though, these false alarms concern only two individuals that are classified as 
lightly attacked by the disease; it is possible that the visual symptoms on which was based the ground-truth 
diagnostic were not yet observed while the reflectance spectrum already features some changes compared 
to healthy individuals. In this case, our field estimation of the Ganoderma level of attack was wrong while the 
hyperspectral reflectance analysis is already able to detect the disease. However, this should be confirmed 
with a sampling and chemical analysis of some stem tissues before a strong conclusion. On the other hand, 
these two oil palms did not show any nutritional or water deficiency that could be visually detectable and that 
could have been a source of modification of the reflectance independent of Ganoderma attack. Errors 
occurring in the determination of disease severity only corresponds to shifts from level 1 to level 2 and 
inversely. Considering that the limit between these two scores for in situ evaluation is very fuzzy, these errors 
can be either due to the classification or to the field diagnosis, which is impossible to argue without a 
chemical proof. Even in the case of an actual classification error, these misclassifications are very few and it 
allows a good confidence in the overall results. The cross validation process also insures the stability of the 
model.  

 
The convolution of the transfer functions respectively determined by the eigenvectors of the LDA and the 

PLSR hence transposes the second derivative reflectance of any newly sampled tree, initially measured as a 

vector � �������� in the space defined by the 202 wavebands, into new coordinates (x,y) such as: 
�	, ��  �  ���,� ��,����,�

���,�� �   � ��,� � ��,�� � �����,� � ����,�� �  � �������� 

where ai,j are the PLSR coefficients, and bm,n are the LDA coefficients. The first coordinate x then allows 
estimating the tree degree of sickness (cf. Figure 7):  

- if x< –2, the tree is healthy; 
- if x > 6 or 7, the tree is dramatically sick, almost dead; 
- if –2 < x <6, the threshold between Level1 and Level2 of disease severity is fuzzier and lays between 

1.2 and 1.5. 
It might still need some improvements to be able to fix the exact edge between Level1 and Level2, but let us 
remember that even in the field or in the laboratory this limit is not very well defined too. 

 
 

   Classification result 

 Level 0 1 2 3 % of good classification 

A
ct

ua
l s

ta
tu

s 0 34 2 0 0  94 % 

1 0 16 2 0  89 % 

2 0 2 36 0  95 % 

3 0 0 0 3  100 % 
Table 3 : Confusion matrix for the classification of oil-palm trees in the 4-level classification. 
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Figure 17 : Representation of oil-palm trees in the plane defined by the two first eigenvectors of PLS-DA: 

healthy palms are displayed in diamond, Level 1 in square, Level 2 in triangle, and Level 3 in circle symbols. It 
appears obvious that the first PLS-DA component (abscissa) is an indicator of disease severity, and some 

thresholds can be fixed to classify any new individual. 
 
Sampled trees in the field were digitalized in the multispectral image, and the same statistical procedures were 
applied to their reflectance in 4 bands, testing several types of filtering, derivative levels, and PLS models 
before the DA. But no model converged, either to detect the disease or to discriminate between the different 
levels of severity. It proves the need of hyperspectral data for providing a diagnostic on the disease. 
 

7. Conclusions 

This project showed that multi- or hyperspectral optical remote sensing data can provide with some 
information on the oil-palm physiological status in some conditions.  
1) It is possible to estimate the LAI of either an individual tree or of a whole block using multispectral imagery 
at very high spatial resolution (<1m) like Quickbird data, with root mean square errors of 0.9 (~20% of relative 
error) and 0.4 (~4% of relative error), respectively. It lays on a relationship between the NDVI, extracted from 
the image, and LAI, that can be applied pixel per pixel. 
2) A statistical model, applied on preprocessed hyperspectral data acquired in the fields at the tree canopy 
scale, allows the discrimination of ganoderma-infested trees from sane trees (~98% of accuracy) and even the 
classification of a sick tree into three levels of disease severity (~94% of accuracy). It thus gives a near-
operational diagnostic tool, that will be transferred to PT-SMART during the stay of Doni Artanto Raharjo on 
March 2012. But it is not possible to make this discrimination on the basis of a 4-band multispectral image like 
those acquired by Quickbird. 
3) A validated model gives the nitrogen and the phosphorus concentrations in the oil-palm leaf based on its 
hyperspectral reflectance spectrum measured in the field (or laboratory). Errors on these estimated 
concentrations are respectively 0.34% (~10% of relative error) and 0.02 (~relative error). But it seems to be 
insufficiently robust to be used as a predictor of stress in the context of oil-palm management. This information 
is not reachable at the oil-palm scale, and definitely not from 4-band multispectral imagery. 
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4) No information can be extracted out of hyperspectral data, or out of multispectral images, about the mineral 
concentration in oil palm trees of leaves. 
 
In conclusion, this study clearly shows the feasibility of developing some non-destructive tools, cheaper than 
stem tissue or leaflet chemical analyses, and faster to be applied at larger scale, but it still needs some 
validation and improvement to be actually and efficiently operational. Indeed, present measurements using 
field spectroradiometer on top of oil palm canopies is still very hard to set up and somehow dangerous, 
especially when dealing with mature and older trees. It might also be long to perform with a good quality. 
Acquiring such hyperspectral data from the air would be of major interest to cover a larger area in less time 
and better conditions. It also pushes for further improvements towards remote sensing applications such as 
airborne or satellite-borne images analysis. In addition, imagery would add the spatial information, and thus 
the opportunity to map quickly the location of attacked trees for disease control or to estimate the 
nitrogen/phosphorus lower concentrations. Nevertheless, the use of imagery is not yet close to operational. 
New dedicated models would then have to be calibrated for airborne or satellite-borne hyperspectral images, 
taking into account the imaging specificities (mainly the transfer of scales from trees to canopy). The 
automatization of the tree segmentation in an image would have to be developed with adapted enhanced 
image processing tools. The experiments show that simple multispectral images, with only 4 spectral bands, 
are not efficient to provide any information neither on nutrition nor on ganoderma status. And, finally, even if 
airborne hyperspectral images are available, they are still very expensive and depend of very good, stable, 
without wind, and clear from clouds atmospheric conditions that are very difficult to fulfil in Indonesia. Satellite-
borne hyperspectral data at a spatial resolution small enough to identify the individual oil-palm trees, on their 
part, won’t be available before 2020 or later! 
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