Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations?

Epron Daniel, Laclau Jean-Paul, Almeida Julio C.R., Gonçalves José Leonardo M., Ponton Stéphane, Sette Junior Carlos Roberto, Delgado Rojas Juan Sinforiano, Bouillet Jean-Pierre, Nouvellon Yann. 2012. Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations?. Tree Physiology, 32 (6) : pp. 667-679.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.

Télécharger (1MB)

Quartile : Q1, Sujet : FORESTRY

Abstract : Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO2 efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (?13C) of stem wood ?-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (PW) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and PW, but to a lesser extent compared with K fertilization. Neither K nor Na affected ?13C of stem wood ?-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on PW resulted from drastic changes in carbon allocation. (Résumé d'auteur)

Mots-clés Agrovoc : Eucalyptus grandis, Croissance, Plantations, Engrais minéral, Sodium, Potassium, Zone tropicale, Fertilisation, Fertilité du sol, Cycle du carbone, Gaz à effet de serre, Dioxyde de carbone, Allométrie, Teneur en matière organique, Matière organique du sol

Mots-clés géographiques Agrovoc : Sao Paulo

Classification Agris : K10 - Forestry production
F62 - Plant physiology - Growth and development
P01 - Nature conservation and land resources
F04 - Fertilizing

Champ stratégique Cirad : Axe 1 (2005-2013) - Intensification écologique

Auteurs et affiliations

  • Epron Daniel, CIRAD-PERSYST-UMR Eco&Sols (FRA)
  • Laclau Jean-Paul, CIRAD-PERSYST-UMR Eco&Sols (BRA) ORCID: 0000-0002-2506-214X
  • Almeida Julio C.R., University of Taubaté (BRA)
  • Gonçalves José Leonardo M., Universidade de São Paulo (BRA)
  • Ponton Stéphane, INRA (FRA)
  • Sette Junior Carlos Roberto, UFG (BRA)
  • Delgado Rojas Juan Sinforiano, Universidade de São Paulo (BRA)
  • Bouillet Jean-Pierre, CIRAD-PERSYST-UMR Eco&Sols (BRA)
  • Nouvellon Yann, CIRAD-PERSYST-UMR Eco&Sols (BRA)

Source : Cirad - Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-04-21 ]