Metagenomics and quarantine: searching for the unknown

Philippe Roumagnac and Emmanuel Fernandez

Centre de coopération internationale en recherche agronomique pour le développement (CIRAD)
UMR BGPI, TA A-54/K, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex 5, France
Email: philippe.roumagnac@cirad.fr

« Procedure having the purpose to prevent the introduction and/or spread of quarantine pests, or to limit the economic impact of regulated non-quarantine pests\(^1\). The word comes from the Italian (seventeenth century Venetian) language, quarantena, meaning forty day period.»

CIRAD sugarcane quarantine in Montpellier covers the main three quarantine operations: plant material transfers, disease detection, and elimination of pests and diseases.

A broad cataloging and study of viruses is fundamental for conducting safe quarantines.

Disease detection is one of the main quarantine operations: safe quarantine ideally must detect very small quantities of pathogen and all the variants of the same pathogen.

However...

... a major challenge remains by using the classical detection tools: detecting latent diseases and identifying new, unknown, imperceptible and asymptomatic viruses that could be associated with emerging diseases in a near future.

We aim at applying the promising “Ecogenomics” approach\(^2\) to studying quarantine double-stranded RNA viruses, a hallmark of RNA virus infection: sampling of quarantine sugarcane plants, tagged-RT-PCR and 454 pyrosequencing.

This approach is expected to link the quarantine double-stranded RNA viruses to their specific plant.

This approach could be useful:

- to decipher the imperceptible and asymptomatic part of the virus diversity
- to discover potentially emerging viruses, at a very early stage
- to assess the rate of viral co-infections
- to estimate spatial distributions of the viruses detected in the quarantine greenhouse

\(^2\) Roossinck et al. Ecogenomics: Using massively parallel pyrosequencing to understand virus ecology. Molecular Ecology. *In press*