Potential shortfall of pyramided transgenic cotton for insect resistance management

Brévault Thierry, Heuberger Shannon, Zhang Min, Ellers-Kirk Christa, Ni Xinzhi, Masson Luke, Li Xianchiun, Tabashnik Bruce E., Carrière Yves. 2013. Potential shortfall of pyramided transgenic cotton for insect resistance management. Proceedings of the National Academy of Sciences of the United States of America, 110 (15) : pp. 5806-5811.

Journal article ; Article de revue à facteur d'impact
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.

Télécharger (734kB)


Liste HCERES des revues (en SHS) : oui

Thème(s) HCERES des revues (en SHS) : Economie-gestion; Psychologie-éthologie-ergonomie

Abstract : To delay evolution of pest resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt), the "pyramid" strategy uses plants that produce two or more toxins that kill the same pest. In the United States, this strategy has been adopted widely, with two-toxin Bt cotton replacing one-toxin Bt cotton. Although two-toxin plants are likely to be more durable than one-toxin plants, the extent of this advantage depends on several conditions. One key assumption favoring success of two-toxin plants is that they kill insects selected for resistance to one toxin, which is called "redundant killing." Here we tested this assumption for a major pest, Helicoverpa zea, on transgenic cotton producing Bt toxins Cry1Ac and Cry2Ab. Selection with Cry1Ac increased survival on two-toxin cotton, which contradicts the assumption. The concentration of Cry1Ac and Cry2Ab declined during the growing season, which would tend to exacerbate this problem. Furthermore, analysis of results from 21 selection experiments with eight species of lepidopteran pests indicates that some cross-resistance typically occurs between Cry1A and Cry2A toxins. Incorporation of empirical data into simulation models shows that the observed deviations from ideal conditions could greatly reduce the benefits of the pyramid strategy for pests like H. zea, which have inherently low susceptibility to Bt toxins and have been exposed extensively to one of the toxins in the pyramid before two-toxin plants are adopted. For such pests, the pyramid strategy could be improved by incorporating empirical data on deviations from ideal assumptions about redundant killing and cross-resistance. (Résumé d'auteur)

Mots-clés Agrovoc : Gossypium, Protéine bactérienne, Biopesticide, Résistance aux organismes nuisibles, Plante transgénique, Génie génétique, Bacillus thuringiensis, Toxine bactérienne, Helicoverpa zea, Tolérance aux ravageurs

Mots-clés géographiques Agrovoc : Arizona

Classification Agris : F30 - Plant genetics and breeding
H10 - Pests of plants

Champ stratégique Cirad : Axe 1 (2005-2013) - Intensification écologique

Auteurs et affiliations

  • Brévault Thierry, CIRAD-PERSYST-UPR SCA (FRA) ORCID: 0000-0003-0159-3509
  • Heuberger Shannon, University of Arizona (USA)
  • Zhang Min, University of Arizona (USA)
  • Ellers-Kirk Christa, University of Arizona (USA)
  • Ni Xinzhi, USDA (USA)
  • Masson Luke, National Research Council (CAN)
  • Li Xianchiun, University of Arizona (USA)
  • Tabashnik Bruce E., University of Arizona (USA)
  • Carrière Yves, University of Arizona (USA)

Source : Cirad - Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-04-13 ]