Model-based design of integrated horticultural systems: contributions using multiobjective optimization methods

MM. Ould Sidi, F. Lescourret
PSH INRA Avignon
I. Grechi
Hortsys CIRAD Montpellier
Plan

• Introduction
• The developed model
• The optimization problem
• The proposed approach
• Results
• Conclusion and prospects
Introduction

The Integrated Fruit Production:

- economical requirements
- Organoleptic and health quality of fruits
- environment preservation:

 Reduce the use of pesticides

Adaptation of production processes to improve crop quality and environment safety:

- Rational chemical control
- Integration of alternative methods
The developed model

- Pruning
- N Fertilization

Stem
- Rosettes growth
- Growing Shoots growth

Leaf area of the tree

Fruit growth

N° fruits

Thinning

N° shoots

% growing shoots

max growth of shoots

Intrinsic rate of pop increase

Intra-specific competition coef

Fall and damages

Aphids’ growth

emigration

mortality

predation

Ladybird release

quality (RI)

Fruit growth

N° fruits

Insecticides

emigration

mortality

predation

Ladybird release
The optimization problem

• **Decision variables**
 - ✓ Pruning
 - ✓ Nitrogen supply
 - ✓ Pesticides characteristics
 - ✓ Winter oil characteristics
 - ✓ Released ladybirds number

• **Criteria**
 - ✓ Fresh mass
 - ✓ Yield
 - ✓ Refractometric index
 - ✓ Selling price
 - ✓ Total quantity of ladybird instars released
 - ✓ Number of insecticide applications
 - ✓ Total number of aphids
 - ✓ Number of growing shoots per tree
 - ✓ Proportion of growing shoots > 30cm
The proposed approach

The proposed approach involves a series of steps: initialization, evaluation, selection, reproduction, and stopping. The evaluation step is highlighted, indicating the choice of individuals and the evaluation of their fitness. The evaluation module aggregates criteria according to the decision-maker's preferences.

Features considered in the evaluation include:
- Pruning intensity
- Nitrogen supply (g/100g)
- Initial decay rate of the winter oil (day⁻¹)
- Initial mortality rate of bloom insecticide (day⁻¹)
- Initial mortality of season insecticide (day⁻¹)
- Decay rate of insecticides (day⁻¹)
- Effectiveness duration (day)
- Number of ladybirds larvae by mean shoot

The model of peach-green aphid-ladybird interactions is shown, with criteria such as 'Bad' and 'Good' and the parameter ranges inf and sup.
The proposed approach

<table>
<thead>
<tr>
<th>Season</th>
<th>first « No treatment »</th>
<th>second « Conventional »</th>
<th>third « Organic* »</th>
<th>fourth « Integrated »</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Full bloom</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Winter</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

The table below shows the values for the proposed approach:

<table>
<thead>
<tr>
<th></th>
<th>Mfr</th>
<th>Yield</th>
<th>SP</th>
<th>RI</th>
<th>nGS</th>
<th>pGS30</th>
<th>INS</th>
<th>TotN_LA</th>
<th>TotN_APH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR_ECO</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PR_DR</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ENV_ECO</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Results
Results

![Diagram showing productive-durable relationship with labels for ANIT, CONV, BOL, and INTG]
Results

Productive-durable

- ANIT
- CONV
- BDL
- INTG

\[p\text{GS30} \]

SP

INS
Results
Results
Conclusion & perspectives

• An evolutionary algorithm to design technical scenarios for integrated fruit production
• Exploring a wide search space and identifying potentially interesting and feasible solutions

• Reformulate the optimization problem
• Design and test new protection strategies
• Develop a non-aggregative approach based on the concept of Pareto dominance.
• Compare theses two approaches
Thank you for your attention!