

Integrated approach for food quality

Dynamics and Biodiversity of microorganisms (fungi, bacteria, yeast) linked to origin and post harvest treatments on coffee beans

DURAND, Noël*, EL SHEIKHA, Aly**, SUAREZ-QUIROZ, Mirna-Leonor***, GONZALEZ-RIOS, Oscar***, **MEILE, Jean-Christophe***, NGANOU DONKENG, Nadège****, GALINDO-SCHORR, Sabine*, FONTANA Angélique*, PAVON, Carmen***, ESTRADA, Erik***, MACIA, Isabel*****, MARTINEZ, Amaury******, MONTET Didier*.

^{*.} UMR Qualisud (CIRAD, Université Montpellier II), 34095 Montpellier Cedex 5, France.

^{**.} Department of Food Science and Technology (Minufiya University, Faculty of Agriculture), 32511 Shibin El Kom, Egypt. ***. Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, 91860 Veracruz, Mexico.

^{****.} Department of Food Science and Nutrition, Food Microbiology laboratory, National School of Agro-Industrial Sciences, University of Ngaoundere, B.P. 455 ENSAI, Cameroon.

^{*****.} Universidad UNELLEZ, Guanare, Venezuela.

^{******.} Universidad UCB, Caracas, Venezuela.

Introduction

- This work aimed at studying the microbial flora associated to different methods of coffee processing
- Our objective is to understand the dynamics of microbial populations linked to post harvest treatments & origins of coffee production

 Large study realized on coffee samples from Mexico, Cameroon and Venezuela

Introduction

The microbial diversity associated with humid process (wash, semi-wash) and dry processing was evaluated on samples of *Coffea arabica L.* which were collected during different post harvest processing stages in Mexico

Dynamic of microbial populations according to three different post-harvest treatments

- > 3 farms (fincas) of Mexico
- on Coffea Arabica
- > 3 different treatments:

Andrade: mechanical humid process

Jocutla: humid process with fermentation under water

Zongolica: dry fermentation

Postharvest treatment: humid process

Harvest

<u>Depulping:</u> Using a pulping machine, which combines the use of friction and a water jet or with blades, separating the grain from the pulp

Pulping: After fermentation or mechanical pulping in aqueous medium, the grains are surrounded by a viscous mucilage which is eliminated by fermentation or by chemical action of lime, or water jets

Sun drying or artificial drying. Coffee is in parch

Dehulling: Before exportation, coffee is dehulled: the parchment is removed for washed coffee

Cherries

Depulped coffee

Demucilaginated or fermented coffee

Parchment coffee

Green coffee

Postharvest treatment: dry process

Coffee Cheries

Drying

Sun or artificial drying

Husk coffee

Before exportation, coffee is dehusked, husk is removed to obtain green coffee

Green coffee

Strategy

- The dynamics and biodiversity of microbial populations (fungi, yeast and bacteria) on coffee beans were monitored using PCR-DGGE (Polymerase Chain Reaction -Denaturing Gradient Gel Electrophoresis)
- Culture-independent method
- Global analysis of the microbial ecology at the molecular level (DNA)
- Provides a snapshot of the microflora composition
- Our objective is to understand the dynamics of microbial populations linked to post harvest treatments, origins of coffee production, by comparative analyses of DGGE fingerprints

Methods:

PCR-DGGE (Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis)

DGGE profiles = specific biological barecode

DGGE profiles analysis

DGGE migration

Comparative analysis of profiles linked to specific areas/treatments

Andrade: Mechanical Humid process

Fungi Yeast Bacteria

Jocutla: humid process with fermentation under water

Statistical analysis of DGGE Profiles (Humid Process Finca Jocutla Wash)

Fungi

Yeast

Zongolica: Dry process

Days of drying

Statisctical analysis of DGGE Profiles Dry process

Fungi

Yeast

Dynamics of microbial flora during coffee treatments

Number of species

Discrimination of Fincas

Mains Conclusions

- The technique used allow a qualitative and semi-quantitative monitoring of the biodiversity and dynamics of microbial populations along the different post-harvest coffee treatments
- We could differenciate the post-harvest steps by using microbial DGGE profiles for three different type of treatments
- ➤ The microbial flora structures evolves during treatments and can be subdivided into 3 main classes (field, process, drying)
- We could discriminate bewteen four different mexican fincas using DGGE profiles from green coffee samples
- Differences are probably due to the type of treatment as well as to the geographical origin

Perspectives

- Understanding the interactions between microorganisms associated with
 - > Flavour
 - **≻**OTA production

- Traceability of coffee (linked post-harvest treatment and geographical origin)
 - Determination of specific signatures
 - ➤ Identification of biological markers

Acknowledgements

UMR Qualisud, Montpellier, France

DURAND Noël

EL SHEIKHA Aly

MEILE Jean-Christophe

GALINDO-SCHORR Sabine

FONTANA Angélique

MONTET Didier

National School of Agro-Industrial Sciences, University of Ngaoundere, Cameroon

NGANOU DONKENG Nadège

ITV, VeraCruz, Mexico

SUAREZ-QUIROZ Mirna-Leonor GONZALEZ-RIOS Oscar PAVON Carmen ESTRADA Erik

Universidad UNELLEZ, Guanare, Venezuela

MACIA Isabel

Universidad UCB, Caracas, Venezuela

MARTINEZ Amaury

Acknowledgements

Questions?

Good

Methods

Double strand DNA of the same size from PCR

DNA lessrich in GC

One band = one strain or one clone

DNA mostrich in GC

Least concentrated in denaturing agents

Linear gradient of denaturings
Agents

(urea/formamide)

Most concentrated in denaturing agents

Repetability

10 samples from the same batch Coffee Ivory Coast

- > Extraction
- **Purification**
- **PCR**
- **DGGE**

Repetability

Group average

Method sensitivity

- 3 species of fungi at different concentrations:
 - > Aspergillus ochraceus, A. carbonarius, A. niger.
- Direct extractions on spores

Fungi/Concentration (spores/mL)	10 ⁷	10 ⁶	10 ⁵	10 ⁴	10 ³	10 ²
Aspergillus carbonarius	+	+	+	+	-	-
Aspergillus niger	+	+	+	+	-	-
Aspergillus ochraceus	+	+	+	+	-	-

Parche	Parch		
Café vert	Green Coffee		
Café parche	Parchment coffee		
Jus mulcilage	Mucilage water		
Café démucilaginé	Demucilaginated coffee		
Café dépulpé	Depulped Coffee		
Cerise	Cherry		

