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Abstract

Anthropogenic deforestation in tropical countries is responsible for a significant

part of global carbon dioxide emissions in the atmosphere. To plan efficient

climate change mitigation programs (such as REDD+, Reducing Emissions from

Deforestation and forest Degradation), reliable forecasts of deforestation and

carbon dioxide emissions are necessary. Although population density has been

recognized as a key factor in tropical deforestation, current methods of predic-

tion do not allow the population explosion that is occurring in many tropical

developing countries to be taken into account. Here, we propose an innovative

approach using novel computational and statistical tools, including R/GRASS

scripts and the new phcfM R package, to model the intensity and location of

deforestation including the effect of population density. We used the model to

forecast anthropogenic deforestation and carbon dioxide emissions in five large

study areas in the humid and spiny-dry forests of Madagascar. Using our

approach, we were able to demonstrate that the current rapid population

growth in Madagascar (+3.39% per year) will significantly increase the intensity

of deforestation by 2030 (up to +1.17% per year in densely populated areas).

We estimated the carbon dioxide emissions associated with the loss of above-

ground biomass to be of 2.24 and 0.26 tons per hectare and per year in the

humid and spiny-dry forest, respectively. Our models showed better predictive

ability than previous deforestation models (the figure of merit ranged from 10

to 23). We recommend this approach to reduce the uncertainty associated with

deforestation forecasts. We also underline the risk of an increase in the speed

of deforestation in the short term in tropical developing countries undergoing

rapid population expansion.

Introduction

Tropical forests provide various ecosystem services both

at the global and local scale (Kremen and Ostfeld 2005).

They contain more species than any other ecosystem on

emerged lands (Gibson et al. 2011) and are large carbon

sinks (Pan et al. 2011). Locally, tropical forests have the

capacity to regulate water supply and to provide high-

quality water to surrounding populations (Bradshaw et al.

2007). Thus, tropical deforestation is responsible not only

for a major decline in biodiversity (Gibson et al. 2011),

but also for a considerable proportion (6–17%) of global

carbon dioxide emissions that affect climate change

(IPCC 2007; Baccini et al. 2012) and is the first step

toward land desertification (Geist 2005; Xu et al. 2011).

Around 13 million hectares of tropical forest are defor-

ested each year around the world (FAO 2005). Within the

climate change mitigation framework, accurate forecasts

of deforestation and carbon dioxide emissions are essen-

tial for the application of the REDD+ Programme, which

aims at “Reducing Emissions from Deforestation and

forest Degradation” (Olander et al. 2008). The ability to

forecast deforestation and carbon emissions is determined

by the availability of reliable data sets, together with

progress in methodology, computation, and statistics

(Clark et al. 2001).
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Population density is recognized as one of the main

factors that determine deforestation intensity in the tro-

pics (L�opez-Carr 2004; L�opez-Carr et al. 2005). An

increase in population density leads to stronger pressure

on forests due to harvesting of wood for construction or

fuel, or through slash-and-burn for cattle grazing and

agriculture (Allen and Barnes 1985; Kaimowitz and

Angelsen 1998; Geist and Lambin 2001). Additionally, in

many tropical developing countries, especially in Africa,

the demographic transition is not over (the demographic

transition refers to the transition from high birth and

death rates to low birth and death rates as a country

develops from a preindustrial to an industrialized eco-

nomic system; Kingsley 1945). In these countries, death

rates have been decreasing but birth rates remain high.

The inevitable outcome is a population expansion charac-

terized by a high growth rate and a short doubling-time

(amount of time needed for a given population to dou-

ble) (United Nations 2011; Raftery et al. 2012). Several

authors have already tried to statistically estimate the rela-

tionship between population density and deforestation

intensity (Allen and Barnes 1985; Apan and Peterson

1998; Pahari and Murai 1999; Agarwal et al. 2005; L�opez-

Carr et al. 2008; Gorenflo et al. 2011). Most studies iden-

tified an increase in deforestation intensity with an

increase in population density but in several cases, the

effect was weak (Agarwal et al. 2005) or not statistically

significant (Apan and Peterson 1998; Gorenflo et al.

2011). Apart from the fact that many political,

socioeconomic and ecological factors that are different

from population density might explain deforestation

intensity (Geist and Lambin 2001), several methodological

problems arise when trying to estimate the effect of popu-

lation density on deforestation intensity.

A common pitfall of deforestation models is using spa-

tial explanatory factors such as distance to forest edge

(Gorenflo et al. 2011), or elevation (Apan and Peterson

1998; Agarwal et al. 2005) in association with population

density to predict the intensity of deforestation. The

effects of such spatial factors are usually highly significant

and of high magnitude compared to population density

for which available data are usually at a much coarser res-

olution (Agarwal et al. 2005). Elevation and distance to

forest edge, which are proxies for the accessibility of the

forest, are usually strongly negatively correlated with the

probability of deforestation (Apan and Peterson 1998;

Agarwal et al. 2005; Gorenflo et al. 2011). The problem is

that the predicted probabilities of deforestation at the

pixel scale determine the mean deforestation rate, that is,

the intensity of deforestation at the landscape scale. As a

consequence, when deforestation occurs, the progressive

decrease in the mean distance to forest edge leads to a

major increase in the mean deforestation rate at the

landscape scale. Inversely, when deforestation occurs, the

progressive increase in the mean elevation measurement

can lead to a decrease in the deforestation rate at the

landscape scale, even though the population density con-

tinues to increase. One possible way of overcoming this

problem is to separate the process determining the inten-

sity of deforestation (or “quantity” census Pontius and

Millones [2011]) from the process determining the loca-

tion (or “allocation” census Pontius and Millones [2011])

of the deforestation. This is the approach chosen by clas-

sic software that can be used to model and forecast defor-

estation, including CLUE-S (Verburg et al. 2002),

Dinamica EGO (Soares et al. 2002), GEOMOD (Pontius

et al. 2001), and Land Change Modeler (LCM) (Kim

2010). In the first step, these programs compute a “defor-

estation trend” by comparing land cover maps at two dif-

ferent dates. In the second step, they derive a transition

potential map (per-pixel probabilities of shifting from a

forest to a nonforest state, Eastman et al. (2005)) using

different statistical methods and spatial factors. However,

the “deforestation trend,” which determines the intensity

of deforestation in the future, is usually a simple mean

and is not related to dynamic explanatory variables such

as population density (Mas et al. 2007). Consequently, it

is impossible to forecast the effect of population expan-

sion in developing countries on deforestation and the

resulting carbon dioxide emissions using this statistic.

To accurately estimate the effect of population density

on deforestation intensity, repeated observations of land

cover change and population density are required over

long periods of time and at large spatial scales (Rama-

nkutty et al. 2007). For large forested areas, adjacent

satellite images may not be available for the same date,

and available satellite images acquired at the desired date

may not be suitable for the analysis of land cover change

if cloud cover is too dense (� 10%). For the same

reasons, the time period for observations of land cover

change might not be constant when using repeated obser-

vations over time. Consequently, the time interval for

observations of land cover change can differ dramatically

(by more than a year) from one observation to another

(Fig. 1). To avoid serious errors, these differences in the

time interval between land cover observations need to be

taken into account when estimating the annual deforesta-

tion rate (Puyravaud 2003). This is not possible using the

previously cited programs which estimate deforestation

intensity by comparing land cover maps at two fixed

dates (Pontius et al. 2001; Soares et al. 2002; Verburg

et al. 2002; Kim 2010).

In this study, we present a coherent framework and

new statistical tools to overcome these problems and to

accurately forecast deforestation and the resulting carbon

dioxide emissions while taking population expansion into
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account. As a case study, we used recent data on land

cover changes covering two time periods from five sites

in Madagascar’s tropical humid and spiny-dry forests.

Madagascar is widely known for its exceptional rates of

both diversity and endemism in many taxonomic groups

(Goodman and Benstead 2005), as well as for its low

percentage of remaining native forest cover (Achard et al.

2002; Harper et al. 2007) and high level of threat associ-

ated with rapid population growth (Raftery et al. 2012).

The method we present is simple, flexible, and overcomes

the abovementioned problems. To encourage the use of

this method, we provide a new R package (Ihaka and

Gentleman 1996) named phcfM (for “programme holis-

tique de conservation des forêts �a Madagascar”), which

includes functions for estimating the parameters of the

demographic and deforestation models. We also provide

associated R/GRASS scripts (Ihaka and Gentleman 1996;

Neteler and Mitasova 2008), which outline the necessary

steps for the modeling and forecasting procedures.

Materials and Methods

Definition of the study sites

The study focused on five areas in Madagascar (Table 1

and Fig. 2). Together, the study areas covered a total of

2,407,000 ha of tropical forest comprising 372,000 ha of

spiny-dry forest (with precipitation <1000 mm.year�1)

and 2,035,000 ha of humid forest (with precipitation

� 1000 mm.year�1). For each study area, the deforesta-

tion modeling approach (whose aim is to estimate

parameters for the deforestation model) used data cover-

ing the whole study area. The deforestation and carbon

dioxide emission forecasts (whose aim is to predict future

deforestation and carbon dioxide emissions) were based

on smaller project sites within each study area (Table 1

and Fig. 2). The study areas were selected based on the

two following requirements. First, the study area had to

be large enough to include sufficient data, in order to

enable modeling of deforestation. Second, the deforesta-

tion process (intensity and location) had to be a priori

homogeneous throughout the study area. The project sites

corresponded to potential future protected areas defined

by the Holistic Conservation Programme for Forests

(HCPF) in Madagascar. The HCPF is a REDD+ pilot

project implemented in the field by the GoodPlanet

Foundation and the World Wildlife Fund (WWF).

Mapping the past deforestation using
remote sensing techniques

For modeling the deforestation process, we needed obser-

vations of the past land cover change. We applied remote

sensing techniques to obtain maps of past deforestation

in the five study areas. For the remote sensing analysis,

we used 30 9 30 m spatial resolution Landsat TM (The-

matic Mapper) satellite images provided by the USGS

(United States Geological Survey, Reston, VA) through

GloVis (Global Visualization Viewer; Houska and John-

son 2012). Satellite images were selected with the aim of

covering as much of the recent deforestation that

occurred between 2000 and 2010. To obtain repeated

observations of land cover change over time, we selected

images for three different dates around 2000, 2005, and

2010. Depending on the availability of the Landsat TM

images and due to the need to select images with the low-

est possible cloud cover (<10%), we obtained a mosaic of

satellite images for each study area at each date t0, t1, and

t2 (Fig. S1) with different time intervals between observa-

tions (Figs. 1 and S1).

Using the satellite images at the three time points, a

multi-date supervised classification of the land cover

change was carried out following the methodology of

Grinand et al. (C. Grinand, G. Vieilledent, F. Rakotoma-

lala & R. Vaudry, in review). We used the Random For-

ests classification algorithm (Breiman 2001) available

through R software (Ihaka and Gentleman 1996). Ran-

dom forests efficiently manages the multi-modal spectral

signatures associated with Landsat TM images acquired at

several dates and in different seasons. We considered five

classes of land cover: forest (class F), nonforest including

rocks, crop land, and savanna (class P), wetland (class

W), cloud (class C), and shade (class S). These were con-

verted into seven classes of land cover change including

Figure 1. Satellite image mosaics and variable time interval between

observations. We denoted i the rank of the land cover observation, j

the index of the mosaic piece, and dij the date of the image for

observation i and the mosaic piece j. For the analysis of large forest

areas, adjacent satellite images (ij and ij ′) are not necessarily available

for the same date. Moreover, available satellite images acquired at

particular dates may not be usable for analysis of land cover change

because of a too dense cloud cover (�10%). Thus, the time interval

Ti,i+1,j between observations i and i + 1 for the mosaic piece j may

differ from Ti,i+1,j′ for the mosaic piece j ′ and in the same way, Ti,i+1,j
may differ from Ti+1,i+2,j. This must be taken into account to avoid

errors when estimating the mean deforestation rate (in%.year�1).
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deforestation (i.e., change in land cover from forest to

nonforest) between dates t0 and t1 (class FPP), deforesta-

tion between dates t1 and t2 (class FFP) and unchanged

land cover (FFF, PPP, CCC, SSS, and WWW). In the

humid forest, the forest class was defined as 10% or more

canopy cover for trees of 5 m or more in height. In the

spiny-dry forest, the same definition was used except that

the minimum height was set at 3 m. To build the classifi-

cation trees, a training data set representative of the seven

classes of land cover change was manually created by

visual interpretation of the Landsat images. A number of

additional data sets, including freely available QuickBird

images from GoogleEarthTM, and expert information were

used as reference materials to help interpretation. In addi-

tion to the three TM spectral bands one (blue-green,

450–520 nm), four (near infrared, 770–900 nm), and five

(mid-infrared, 1550-1750 nm), we used two spectral

normalized indexes (the Normalized Difference Vegeta-

tion Index [NDVI] and the Normalized Infra Red Index

[NIRI]) to build the regression trees from the training

data set. The classification trees were then used to classify

land cover changes and to obtain maps of past deforesta-

tion in all five study areas (Figs. 3 and S2).

Demographic modeling from population
census data

Using population census data in Madagascar, we built a

demographic model that was used first, to estimate popu-

lation density in the past and test the effect of population

density on deforestation intensity and second, to project

population density in the future and predict the future

deforestation and carbon dioxide emissions. The more

recent population census in Madagascar (RGPH: “recense-

ment g�en�eral de la population et de l’habitat”) was carried

out in 1993 at the Firaisana (town) level. A more recent

population census at the Fokontany (sub-town) level was

carried out between 2004 and 2009. For both censuses,

data were collected by the INSTAT (“Institut National de

la Statistique �a Madagascar”). Combining the two data

sets for the Fokontanys covering our study areas (Fig. 2),

we estimated a mean population growth rate using a sta-

tistical exponential model (eq. 1). We denoted Pk(t) the

population of the Firaisana k at time t (in years, yr). We

set t = 0 for the year 1993. We denoted q the annual

population growth rate so that dPk(t)/dt = qPk(t). We

denoted a0 the mean population of a Firaisana for the

year 1993. We added a random effect, bk, to account for

Table 1. Study area and characteristics of the project sites.

Id Study area Forest type SSA FSA SPS FPS Date ACDPS

1 Andapa Humid 2610 1011 271 216 2008 88

2 Fandriana Humid 1114 274 89 24 2010 40

3 Ivohibe Humid 1839 490 179 113 2010 73

4 Fort-Dauphin I Humid 887 260 83 54 2010 89

5 Fort-Dauphin II Spiny-dry 1248 372 227 122 2010 16

The identifiers correspond to those in Figure 2. Size of study areas (SSA), project sites (SPS), forest cover in the study area (FSA), and forest cover in

the project sites (FPS) are in thousands of hectares (91000 ha). The sizes of the forest areas are for the year in the last column. The mean above-

ground carbon density for the forest at the project site (ACDPS) is in Mg.ha�1 and was computed for the year 2010.

Figure 2. Location of study areas and project sites. The red line

delimits the five study areas. The project sites within each study area

are represented by colored polygons: dark green polygons for project

sites in the humid forest and light green polygons for project sites in

the spiny-dry forest.
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the statistical dependence of the observations at the Firai-

sana level and to obtain a better estimate of the mean pop-

ulation growth rate q (Verbeke and Molenberghs 2009).

PkðtÞ ¼ ða0 þ bkÞexpðqtÞexpðeitÞ
equivalent to logðPkðtÞÞ ¼ logða0 þ bkÞ þ qt þ eit

with eit �Normalð0;VÞ; bk �Normalð0;VbÞ
(1)

The Bayesian approach is particularly suitable for esti-

mating the parameters of such a hierarchical mixed-effects

model (Clark 2005). In this study, we chose this approach

over the maximum likelihood approach. But from a tech-

nical point of view, all the modeling work could also be

done using the maximum likelihood approach. We used

noninformative conjugated priors with large variances:

Inverse-Gamma (0.001, 0.001) for variances V and Vb and

Normal(0, 1.0 9 106) for parameters a0 and q. To do so,

we used the function demography() available in the

phcfM R package (see Appendices S5 and S6). We used

the mean posterior of the population growth rate q to

estimate the population Pj(t) of any Fokontany j at time t

using the data from the second population census at the

Fokontany level.

Modeling the intensity of deforestation
from population density

For a better representation of the deforestation process,

two sub-processes can be considered, a first one describing

the intensity of deforestation and a second one describing

the location of deforestation (Pontius and Millones 2011).

In a first step, we modeled the process determining the

intensity of deforestation. All the deforestation modeling

was done for each study area separately. Following several

previous studies on deforestation (Kaimowitz and Angel-

sen 1998; Agarwal et al. 2005; Gorenflo et al. 2011), we

assumed that the intensity of deforestation depended on

population density. We randomly sampled Q0 pixels cov-

ered by forest at date t0 and Q1 pixels covered by forest at

date t1. These pixels were sampled outside the areas

covered by clouds or shadows on the satellite images.

Using a Normal approximation for the Binomial confi-

dence interval at 95% and given a deforestation rate of

about 1.0%.year�1 (Achard et al. 2002), a minimum num-

ber of 38,000 observations is necessary to estimate the

intensity of deforestation with an uncertainty of less than

�0.1%.year�1. We set Q0 = Q1 = 20,000 and obtained a

total of 40,000 observations. We denoted Z the random

variable describing the deforestation process. We set zi = 0

if the pixel i was still covered by forest and zi = 1 if the

pixel had been deforested during the time interval Yi (in

years). The random variable Z follows a Bernoulli distribu-

tion with probability hi
′ (eq. 2). The parameter hi

′ was

expressed as a function of the annual deforestation rate hi
and of the time interval Yi for pixel i (Puyravaud 2003).

We tested the effect of the Fokontany population density

Di (in peop.km2) associated with pixel i on the intensity of

deforestation hi using a logistic regression (eq. 2). The

population density Di(t) at date t for pixel i was computed

using the demographic model assuming that every

pixel in one Fokontany had the same population density

equal to the population density at the Fokontany scale

(Di(t)=Pj(t)/areaj if i ∈ j).

pðZ ¼ ziÞ ¼ Bernoulliðh0iÞ
h0i ¼ 1� ð1� hiÞY1

logitðhiÞ ¼ b0 þ b1Di

(2)

We estimated the model parameters in a hierarchical

Bayesian framework using noninformative conjugated

priors with large variances: Normal(0, 1.0 9 106) for

Figure 3. Historical deforestation at project sites 1 and 5 in the

humid and spiny-dry forest. Patches of forest deforested between

dates t0 and t1 are in orange, while patches of forest deforested

between dates t1 and t2 are in red. Remaining forest is in dark green

(humid forest) and light green (spiny-dry forest).
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parameters b0 and b1. To do so, we used the function

deforestation() available in the phcfM R package (see

Appendices S5 and S6).

Modeling the location of deforestation
using spatial explicative factors

Potential spatial factors driving the location of
deforestation

In a second step, we considered the sub-process deter-

mining the location of deforestation. The objective was to

identify the factors explaining why deforestation was

occurring at particular places. We modeled the probabil-

ity of deforestation at the pixel level using several spatial

factors that can be classified in different categories: (i)

landscape factors, (ii) transport factors, (iii) socioeco-

nomic factors, and (iv) land policy factors.

The landscape factors included the following: elevation

(in m), forest fragmentation index, the shortest distance

to forest edge (in m), and the shortest distance to previ-

ously deforested pixels (in m). The elevation data were

obtained from the SRTM (Shuttle Radar Topography

Mission). The fragmentation index was computed follow-

ing the method of Riitters et al. (2000) who identified five

forest classes: patch, transitional, perforated, edge, and

interior. To compute the dynamic landscape factors that

change with time (i.e., all landscape factors except eleva-

tion), we had to make the plausible assumption that the

forest boundary did not significantly change between the

dates of acquisition of the satellite images that made up

the mosaic (Fig. S1).

The transport factors included the following: the short-

est distance to the main road (in m) and the distance to

the nearest main town in the Fivondronana (in m). The

Fivondronana is an administrative entity grouping several

Firaisana. Generally speaking, the main roads connect the

main towns in each Fivondronana. These data were

derived from the FTM maps (“Foiben-Taosarintanin’i

Madagasikara”, Madagascar National Geographic Insti-

tute, http://www.ftm.mg).

The socioeconomic factors included the population

density (in peop.km2) at the Fokontany level, which was

obtained from the demographic model. Using data from

the ILO project in Madagascar (Improve Public Informa-

tion and Dialogue, http://www.ilo.cornell.edu), we also

included the following potential explanatory variables

defined at the Firaisana level: the percentage of poor, the

number of mines, the number of cattle, and the percent-

age of farmers who use chemical fertilizers.

Land policy was described by a logical variable indicat-

ing whether the forest pixel i was located in a protected

area. To determine this variable, we used the delimitation

of the SAPM (“Syst�eme d’Aires Naturelles Prot�eg�ees �a

Madagascar”) available at the Rebioma web-portal (http://

www.rebioma.net/). We only used the protected areas

managed by the ANGAP/MNP (Madagascar National

Parks) which were created before 2003.

Statistical approach for modeling the location of
deforestation

As for modeling the intensity of deforestation, we used a

logistic regression to model the probability of deforesta-

tion at the pixel scale (eq. 3). For the observations, we

only selected the Q1 pixels between date t1 and date t2 in

order to be able to compute the shortest distance to

previously deforested pixels between date t0 and date t1.

Explanatory variables were combined into a linear model.

We denoted Xi the vector of explanatory variables for

pixel i and c the vector of parameters. The probability of

deforestation for each pixel i was given by the value of

the latent variable di.

pðZ ¼ ziÞ ¼ Bernoulliðd0iÞ
d0i ¼ 1� ð1� diÞYi

logitðdiÞ ¼ Xic

(3)

We estimated the model parameters in a hierarchical

Bayesian framework using noninformative conjugated

priors with large variances: Normal(0, 1.0 9 106) for all

the parameters of the vector c. Once more, we used the

function deforestation(), which is available in the phcfM

R package.

Importance of variables and model selection

To measure the importance of each factor in determining

the spatial probability of deforestation, we compared the

deviance of the full model (including all the spatial

explanatory factors) with the deviance of the model

that included all the spatial variables except the factor

under consideration. The deviance of a model is defined

as D = �2 log(L), L being the likelihood of the model

(Spiegelhalter et al. 2002). The greater the difference in

deviance between the two models, the more important

the factor had in determining the probability of deforesta-

tion.

Using the full model, we also computed the credible

interval of each parameter based on the 95% quantiles of

the posterior distribution. If zero was included in this

interval, the parameter was considered to not significantly

differ from zero.

The approach we used to select variables for the final

model was based on both statistical and empirical criteria.

We selected the variables that were important in

determining the probability of deforestation (positive gain
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in deviance) and whose effects were significantly different

from zero. We rejected the variables whose effect was bio-

logically inconsistent with the deforestation process

(higher probability of deforestation in protected areas,

e.g., Gorenflo et al. 2011).

Forecasting deforestation using the
demographic and deforestation models

Methodology used to forecast deforestation

Using the demographic model and the best deforestation

model, we forecasted the deforestation in each study area

independently. We ran simulations only for the potential

REDD+ project sites in the study area, not for the whole

study area. The time step used for the simulation was

annual. The starting date (s0) for the simulation depended

on the date of the latest satellite image for each study

area. We forecasted the deforestation until year 2030. We

combined the process determining the intensity of defor-

estation and the process indicating the spatial location of

deforestation to forecast deforestation.

The first process determined the intensity of deforesta-

tion by computing a mean annual deforestation rate for

the project sites from the model described by equa-

tion (2), which accounts for mean population density.

The population of the Fokontanys at the project sites at

date s0 was computed using the demographic model

described by equation (1). The population density (in

peop.km2) at the Fokontany level was computed taking

into account the area (in km2) of the Fokontany. All

pixels in a given Fokontany were considered to have the

same population density. Then, the mean population

density at the project site was estimated based on the

forested pixels at the project site and was then used to

compute the mean annual deforestation rate h0 at date s0
at the project site. Given the total number of forested pix-

els at the project site, the annual deforestation rate h0 was
used to compute the number of pixels n1 likely to be

deforested between date s0 and date s1.

The second process determined the spatial location of

deforestation. Using the best model we estimated the

probability of deforestation di0 for each forested pixel i at

date s0 (eq. 3). To do so, we needed to compute the

landscape factors which varied with the forest delimita-

tion (the shortest distance to forest edge and the

fragmentation index) and with previous deforestation

(the shortest distance to previously deforested pixels) at

date s0. Every other spatial factor was assumed to remain

constant with time at the pixel scale. Given the probabil-

ity of deforestation di0 of each forested pixel, we simu-

lated deforestation for the n1 pixels with the highest

probability of deforestation.

The deforestation process, including the computation

of the intensity of deforestation at the project site and the

computation of the probability of deforestation for each

forested pixel was repeated at each time step. Thus, we

obtained maps of future deforestation between 2010 and

2030.

Model performance in forecasting deforestation

A cross-validation procedure was used to evaluate the

performance of our approach in forecasting deforestation.

For each study area, we divided the data set made up of

the Q1 observations (from date t1 to date t2) into two,

using 70% of the observations as training data set and

30% of the observations as test data set. We estimated the

intensity of deforestation using the training data set in

addition to the Q0 observations from date t0 to t1. We fit-

ted the model for estimating the spatial probability of

deforestation using the training data set with observations

from date t1 to date t2 only, as we needed to compute the

distance to previously deforested pixels. Models were used

to predict deforestation based on the test data set. We

computed a confusion table comparing the predictions of

our modeling approach with the observations of the test

data set. Several indices were computed from the confu-

sion table (Appendix S7): overall accuracy (OA), the

figure of merit (FOM), sensitivity, specificity, the true

skill statistic (TSS), and Cohen’s Kappa (Pontius et al.

(2008), Liu et al. (2011)). The cross-validation procedure

was repeated 10 times and the mean and standard devia-

tion of each index was computed on the basis of the 10

repetitions.

Forecasting carbon dioxide emissions

Forecasts of carbon dioxide emissions were obtained by

overlaying maps of future deforestation with carbon maps

associated with the aboveground forest biomass. Carbon

maps (Figs. S3 and S4) of the Andapa and Fort-Dauphin

(humid and spiny-dry forest) project sites were obtained

from two previous studies (Asner et al. 2012; Vieilledent

et al. 2012). Aboveground carbon density (ACD, in

Mg.ha�1) was estimated for 83 forest plots based on tree

diameter inventories (Asner et al. 2012) and biomass

allometric models (Vieilledent et al. 2012). Airborne

LiDAR (Light Detection and Ranging) data and remote

sensing analysis of Landsat images were used to derive

the carbon maps for the Andapa and Fort-Dauphin pro-

ject sites. Altitude and the fraction of live photosynthetic

vegetation (PV) classes were used as explanatory variables

to estimate ACD at a resolution of 100 9 100 m (Asner

et al. 2012). In this study, the same classes of altitude

and NDVI were used to derive carbon maps for the
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Ivohibe and Fandriana project sites assuming that PV

and NDVI were equivalent indexes (both indexes range

between 0 and 1 and increase with an increase in the per-

centage of green live vegetation). For a forested pixel,

data missing on the carbon map due to clouds or shad-

ows on the Landsat image were replaced by an average

value of the ACD for the forested area in the correspond-

ing project site. To eliminate unrealistic impulsive noise

(also known as “salt and pepper” noise) on the ACD

maps, we smoothed the data spatially using a moving

average window of 3 9 3 pixels. The carbon maps were

obtained for the year 2010 (Asner et al. 2012). We used

the year 2010 as the starting date for forecasting defores-

tation and CO2 emissions (Figs. 5, S5, and S6). We

assumed no change in the carbon maps for the limited

period (20 years) we used to forecast deforestation and

CO2 emissions.

To forecast the CO2 emissions associated with defores-

tation at the project sites, we overlaid the future defores-

tation maps (Figs. 5, S5, and S6) with the carbon maps

(Figs. S3 and S4). We used the ratio of the atomic mass

of a CO2 molecule to the atomic mass of a carbon atom

to compute the emission of CO2 (1 Mg of C = 44/12 Mg

of CO2 equivalent).

Results

Intensity of the deforestation and
population growth rate

The mean annual deforestation rates varied considerably

between the study areas, that is from 0.47%.year�1 for the

Fort-Dauphin spiny-dry forest up to 2.45%.year�1 for the

Fandriana humid forest. Using the Firaisana population

census data for the five study areas and the exponential

population growth model (eq. 1), we estimated an annual

population growth rate of 3.39%.year�1 (Fig. 4). We

found a significant positive effect of population density

on the annual deforestation rate (Table 2), the latter

being relatively homogeneous over the five study areas

with values ranging from 0.010 to 0.026. The predicted

increase in population density should lead to an increase

in the annual deforestation rate in the long term. For

example, considering the Ivohibe project site, the mean

population density should increase from 14.18 peop.km2

in 2010 to 27.00 peop.km2 in 2030. Consequently, the

intensity of deforestation should increase from

0.94%.year�1 in 2010 to 1.30%.year�1 in 2030. Because

the population increase is exponential, the population

density is increasing even more dramatically in areas that

already have high population densities, leading to a

marked increase in the intensity of deforestation (see the

Fandriana study area in Table 2).

Main spatial factors affecting the location
of deforestation

Landscape variables appeared to be the main factors

explaining the probability of deforestation (Table 3). For-

est fragmentation was the main explanatory factor in

study areas 3 and 4 in the humid forest, but was less

explanatory in the spiny-dry forest. The distance to previ-

ously deforested patches was the main explanatory factor

in study areas 1 and 2 in the humid forest and was also a

strong explanatory factor in the spiny-dry forest. There

was a marked decrease in the probability of deforestation

with altitude in every study area in the humid forest, but

this effect was not apparent in the spiny-dry forest where

the landscape is much less mountainous. The distance to

forest edge was relatively less important than other land-

scape factors, except in the spiny-dry forest. This may be

due to the fact that the information associated with

the distance to forest edge is already partly included in

the fragmentation index. Regarding transport factors, the

probability of deforestation was poorly explained by the

distance to the main road whatever the study area,

whereas the distance to the main town was a strong

explanatory factor in the spiny-dry forest and in study

areas 2 and 3 in the humid forest (Table 3). There was a

lower probability of deforestation in protected areas in

study areas 3 and 4, but this effect was weaker than other

spatial factors and was not observed in study areas 1 and

5 (Table 3). This is probably due to the fact that land-

scape factors mask the effect of the land policy as pro-

tected areas are often located at higher altitudes, and in

places where the forest is less fragmented. Regarding

socioeconomic factors, we only used the effect of the pop-

ulation density for study areas 3 and 4 in the final mod-

els. With a few exceptions, the other socioeconomic

factors (the percentage of poor, the number of mines, the

number of cattle, and the percentage of farmers using

chemical fertilizers at the Firaisana level) generally had a

very weak effect on the probability of deforestation. Other

disadvantages of these socioeconomic factors are that they

are difficult to predict and that they were obtained at a

coarse spatial resolution at the Firaisana level. We conse-

quently decided not to use them in the final model we

used to forecast deforestation.

Model performance in forecasting
deforestation

The models performed well in forecasting deforestation

in all five study areas. Table 4 lists the mean values of

the five performance indices. The mean overall accu-

racy (OA) was very high (� 0.85) indicating a high

probability of correctly predicting either deforestation or
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absence-of-deforestation. Similarly, specificity (Spe), which

indicates the probability of correctly predicting the

absence-of-deforestation, was also very high (� 0.92).

However, due to the low deforestation rates (~1%.year�1),

a less reliable model that predicted no deforestation would

also have high overall accuracy and high specificity. It was

consequently necessary to use other indices that reflect the

probability of correctly predicting deforestation pixels.

The figure of merit (FOM), sensitivity (Sen), the true skill

statistic (TSS), and Cohen’s Kappa (K) were greater than

0.14, 0.31, 0.24, and 0.21, respectively, for models in the

humid forest. The values of the indices in the spiny-dry

forest were lower than those in the humid forest

(Table 4), indicating that the model was less efficient in

describing the process of deforestation in the spiny-dry

forest than in the humid forest. Nevertheless, the indices

were sufficiently high in the spiny-dry forest to enable

realistic forecasts of deforestation.

Amount of CO2 emissions associated with
deforestation

Figures 5, S5, and S6 show the deforestation forecasts for

2010–2030 for the five study areas with their associated

Table 2. Effect of population density on the annual deforestation rate.

Id Study area hp1 hp2 b0 b1 D̂2010 D̂2030 ĥ2010 ĥ2030

1 Andapa 0.87 0.98 �4.937 0.021* 8.65 16.48 0.85 1.00

2 Fandriana 2.40 2.45 �3.884 0.010* 37.28 70.99 2.94 4.11

3 Ivohibe 1.28 0.85 �5.032 0.026* 14.18 27.00 0.94 1.30

4 Fort-Dauphin I 1.16 1.20 �4.608 0.011* 18.16 34.57 1.20 1.42

5 Fort-Dauphin II 0.51 0.47 �5.773 0.022* 19.27 36.69 0.47 0.69

Analysis of past deforestation in the study area enabled a mean annual deforestation rate h (in %.year�1) to be computed for period p1 (roughly

2000–2005) and p2 (roughly 2005–2010). Combining the model for the intensity of deforestation (which linked the annual deforestation rate h

and the population density D [in peop.km2]: logit(h) = b0 + b1D), with the model of population growth with time (dP/dt = qP, with

q = 3.39%.year�1), we were able to estimate and forecast the mean population density (D̂) and the mean annual deforestation rate (ĥ) in 2010

and 2030 for the project sites. The effect of population density on the annual deforestation rate (parameter b1) in all the study areas was signifi-

cantly different from zero (see the asterisk indicating that zero was outside the 95% confidence interval of the parameter) and of the same order

of magnitude (~0.02).

Figure 4. Demographic model from population census data. The exponential model was fitted on the population census data from the RGPH

(“recensement g�en�eral de la population et de l’habitat”) for Firaisana in 1993 combined with a more recent population census data acquired

between 2004 and 2009 for Fokontany. In the figure on the left, the delimitation of Firaisana (black lines) and Fokontanys (gray lines) covering

our study areas (red lines) are represented on the map of Madagascar. In the figure on the right, population growth in each Firaisana is

represented by two gray dots connected by a gray line. The mean exponential growth population model is represented by a plain black line. The

mean population growth rate was estimated to be 3.39%.year�1. The 95% confidence envelop including the Firaisana variability is represented

by dashed black lines.
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CO2 emissions. Comparing the deforestation forecast with

past deforestation (Figs. 3 and S2), future deforestation

would be expected near places where deforestation was

already high in the past. The amount of CO2 emissions

associated with deforestation was mainly explained by

two processes. First, it depended on the level of ACD in

future deforestation areas. For example, in the Fort-

Dauphin humid forest, CO2 emissions should increase

exponentially (Fig. S6) because deforestation will spread

toward mid-elevation areas with much higher ACD

(Fig. S3). This result highlights the importance of spatial-

izing both ACD and deforestation to obtain accurate

predictions of CO2 emissions associated with deforesta-

tion. Second, the amount of CO2 emissions depended on

the annual deforestation rate. The low level of CO2 emis-

sions after 20 years of deforestation in the spiny-dry

forest (Fig. 5) was due both to a low mean ACD (16

Mg.ha�1, Table 1) and to a low mean annual deforesta-

tion rate (0.49%.year�1, Table 2). The increase in the

annual deforestation rate associated with the population

growth rate led to an increase in the amount of CO2

emitted each year and contributed to the exponential

emissions of CO2 with time (Fig. S6 and S7). For the

407,000 hectares of humid forest in the project sites in

Table 3. Importance and selection of variables.

Variable/SA

SA1 SA2 SA3 SA4 SA5

I S V I S V I S V I S V I S V

Intercept N* �1.9868 P 0.0569 N* �0.7740 N* �1.4409 N* �2.1219

Landscape

frag. index 46 524 212 23 9

trans. N �0.2122 N* �0.6513 N* �0.7965 N �0.2172 N �0.2941

perf. N* �0.4928 N* �1.0662 N* �1.4010 N* �0.4284 N* �0.5822

edge N* �0.6215 N* �1.3934 N* �1.7412 N �0.4058 N �0.4431

int. N* �1.1724 N* �1.7805 N* �2.0465 N* �0.5060 N* �0.6839

dist. dpatch 140 N* �3.78E-3 165 N* �2.06E-3 22 N* �9.58E-4 584 N* �2.26E-3 105 N* �3.01E-4

alt. 78 N* �9.88E-4 75 N* �8.79E-4 40 N* �1.05E-3 75 N* �1.18E-3 24 P*

dist. fedge 0 P 7 P* 82 N* �6.89E-3 45 N* �5.45E-3 34 N* �3.11E-3

Transport

dist. road 0 N 2 P 3 P* 6 N* �6.20E-6 29 P*

dist. town 0 N 188 N* �2.57E-5 26 N* �2.26E-5 0 P 305 N* �4.85E-5

Land policy

prot. area 2 8 7 0

pres. P* N* �0.3081 N* �0.4199 P

Socioeconomy

pop. dens. 13 N* 53 N* 9 P* 3.66E-3 4 P* 3.58E-3 9 N*

perc. poor 12 N* 5 N* 15 N* 4 N* 5 P*

nb. cattle 1 N 36 P* 4 N* 6 P 27 N*

nb. mines 4 N* 9 N* 12 N* 0 P 6 N*

perc. chem 1 N 29 N* 1 N 16 P* 23 N*

For each study area (from SA1 to SA5), we estimated the relative importance (column I) of the variables in determining the probability of defores-

tation. The importance of a variable is expressed in points of deviance gained when the variable is included in the model. Column S indicates the

sign (N for negative, P for positive) of the effect of each variable and an asterisk indicates that the effect is significantly different from zero at a

threshold of 5%. Column V lists the parameter values for the variables selected in the final model.

Table 4. Performance of the model in forecasting deforestation.

Id Study area OA FOM Sen Spe TSS K

1 Andapa 93 (0.2) 14 (1.4) 41 (3.4) 94 (0.1) 35 (3.5) 21 (2.2)

2 Fandriana 85 (0.3) 20 (1.0) 31 (1.2) 93 (0.2) 24 (1.4) 25 (1.5)

3 Ivohibe 94 (0.3) 23 (2.4) 41 (2.9) 97 (0.2) 38 (3.0) 34 (3.2)

4 Fort-Dauphin I 93 (0.3) 22 (1.6) 32 (2.1) 97 (0.1) 29 (2.2) 32 (2.2)

5 Fort-Dauphin II 96 (0.1) 10 (1.1) 18 (1.9) 98 (0.1) 16 (2.0) 16 (1.9)

Six performance indices were computed: overall accuracy (OA), figure of merit (FOM), sensitivity (Sen), specificity (Spe), true skill statistic (TSS),

and Cohen’s Kappa (K). A cross-validation procedure in which the data set was divided into training data (70%) and test data (30%) was used to

compute the indices. The table lists the mean values and standard deviation of the indices for 10 repeated cross-validations.
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2010, a total of 18,201,512 tons of CO2 should be emitted

between year 2010 and year 2030, corresponding to

2.24 T.ha�1.year�1. For the spiny-dry forest project site,

the emission rate should be 0.26 T.ha�1.year�1.

Discussion

Comparison with other approaches used to
model and forecast deforestation

Statistical methods and predictive performances of the

programs which can be used to forecast deforestation

(CLUE-S, Dinamica EGO, GEOMOD and LCM) were

compared in several recent studies (Mas et al. 2007; Kim

2010; P�erez-Vega et al. 2012). Here, we briefly present the

statistical and practical advantages of our approach over

these programs. In this study, we used logistic regressions

to model both the intensity of deforestation and the loca-

tion of deforestation. Logistic regression has the

advantage of being simple and is frequently used in ecol-

ogy to handle binary data (Hilborn and Mangel 1997).

Thus, our approach should not involve any serious prob-

lems of understanding regarding the statistical assump-

tions and the interpretation of the model parameters. In

comparison, the Multilayer Perceptron (MLP) model

proposed by LCM is often described as a black box,

which makes incorporation of expert knowledge rather

difficult. It is also not suitable for multi-scenario prospec-

tive modeling as the relationship between the explanatory

variables and deforestation cannot be easily modified

(Kim 2010; P�erez-Vega et al. 2012). Moreover, the perfor-

mance of the MLP in predicting deforestation was no bet-

ter than the logistic regression in the study by Kim

(2010). Another advantage of logistic regression is that

the model is flexible: explanatory variables can be contin-

uous or categorical and nonlinear relationships between

variables and the deforestation rate can be estimated

using polynomials. In comparison, Dinamica EGO and

Figure 5. Forecast of anthropogenic deforestation and carbon dioxide emissions. Forecasts are shown for the Andapa project site in the humid

forest (top figure) and for the Fort-Dauphin II project site in the spiny-dry forest (bottom figure). Patches of deforestation and carbon dioxide

emissions for the period 2010–2020 are in orange and for the period 2020–2030, in red. The forest remaining in 2030 is in dark green. Carbon

dioxide emissions correspond to the loss of aboveground biomass due to deforestation and do not include belowground biomass or soil carbon.
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GEOMOD need to transform the continuous covariates

into categorical data to compute the transition probability

maps. Although logistic regression is available in CLUE-S

and in LCM, it is only to model the location of deforesta-

tion, not the intensity of deforestation. Because population

density is a key factor for the intensity of deforestation in

developing countries (Allen and Barnes 1985; Kaimowitz

and Angelsen 1998; Pahari and Murai 1999; Geist and

Lambin 2001; L�opez-Carr 2004; Agarwal et al. 2005;

L�opez-Carr et al. 2005), it is important to include this var-

iable in the model and to modify the intensity of deforesta-

tion as a function of population growth. None of the

available programs offers this possibility (Mas et al. 2007).

Our approach also includes a step for model selection

where both statistical criteria and empirical knowledge can

be used to select the variables to be included into the

model. In this sense, our approach is similar to the one

proposed in Dinamica EGO where the weights of evidence

can be edited. The incorporation of expert knowledge can

corroborate or contradict the purely statistical approach in

order to obtain a more realistic model. In our method,

the use of scripts for the R (Ihaka and Gentleman 1996)

and GRASS GIS (Neteler and Mitasova 2008) open-source

software ensures maximum flexibility (see Appendix S5

and S6). The use of these programs is facilitated by the

existence of numerous educational tutorials (Crawley

2007; Neteler and Mitasova 2008). Moreover, minimal

changes should be required to adapt the scripts to the dif-

ferent contexts found in the tropical world. Another

advantage of our approach is that deforestation analysis

can be performed for large forest areas, that is at the sub-

national or national scale (whereas CLUE-S software is

more appropriate for small regional areas for example)

and for a long period of time with repeated land cover

observations. This is possible for two reasons. First, our

approach takes advantages of the computational efficiency

of R and GRASS GIS. Second, the phcfM R package we

developed allows the parameters of a logistic regression

model to be estimated taking into account the variable

time intervals between land cover observations (see

Appendices S5, S6, and S8). Handling such data is not

possible when using the four programs cited above.

Baseline deforestation scenarios for the
REDD+ Programme

One of the most challenging aspects in designing the

REDD+ Programme is estimating the baseline scenarios

(Obersteiner et al. 2009). These scenarios describe the

amount of CO2 emissions for a particular forest area

under “business-as-usual” development. By describing the

future emission pathway without any conservation and

development measures, baseline scenarios are crucial for

determining the success in reducing deforestation and

CO2 emissions (Olander et al. 2008). Using our approach,

we obtained relatively high model performance in com-

parison with other studies and we reduced the uncertainty

associated with the baseline scenario. The FOM was

greater than or equal to 14% in the humid forest and 10%

in the spiny-dry forest. In a study analyzing 13 models of

land change, Pontius et al. (2008) showed that the FOM

was strongly positively correlated with the observed net

change (indeed, the lower the deforestation rate, the more

difficult it is to forecast the exact location of the defor-

ested pixels). When the net change was � 2.5%, the FOM

was � 7.5% and when the net change was � 10%, the

FOM was � 15%. Kim (2010) also compared the values

of the FOM obtained using GEOMOD and LCM software

in a deforestation study in Bolivia: the highest value of the

FOM he obtained was 8%. In this study, for equivalent

net change values, we obtained much higher FOM values.

The relatively good performance of our model was con-

firmed by the values obtained for the TSS (from 0.16 to

0.38) and the Kappa statistics (from 0.16 to 0.34). In

comparison, using GEOMOD software in Mexico, Guerre-

ro et al. (2008) found lower Kappa values (from �0.03 to

0.29). Finally, we estimated mean CO2 emissions of 2.24

and 0.26 T.ha�1.year�1, respectively, for the humid and

spiny-dry forests of Madagascar. Reducing the uncertainty

associated with baseline scenario is essential for financial

efficiency given the limited resources dedicated to the

REDD+ Programme and also to avert the risk of artificial

inflation of avoided deforestation and CO2 emissions

(Obersteiner et al. 2009). Olander et al. (2008) presented

the essential characteristics of a good method for establish-

ing baseline scenarios including feasibility, accuracy, trans-

parency, comprehensiveness, and flexibility. Here, we

present such a method using open-source and free

software, while sharing data and computer scripts so that

our study can be easily extended to the rest of Madagascar

and to other tropical developing countries.

Association between people and
deforestation in Madagascar

Estimated deforestation rates ranged from 0.47%.year�1

for the Fort-Dauphin spiny-dry forest to 2.45%.year�1 for

the Fandriana humid forest. These regional deforestation

rates are of the same order of magnitude compared to

previous estimates for the whole of Madagascar. Achard

et al. (2002) estimated annual deforestation rates of

between 1.4% and 4.7% for Madagascar for the period

1990–1997 and Harper et al. (2007) estimated rates of

0.8%, 0.7%, and 1.2% for humid, spiny, and dry forest,

respectively, for the period 1990–2000. These values iden-

tify Madagascar as one of the hot spots of deforestation
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compared to other tropical countries (Achard et al.

2002). This study shows that the deforestation rates vary

considerably from one region to another and that the use

of sub-national deforestation models is preferable to a

national model.

While estimating the parameters of the deforestation

intensity model, we found a significant positive effect of

population density on the annual deforestation rate. The

population density effect was relatively homogeneous over

the five study areas with values ranging from 0.010 to

0.026. The increasing intensity of deforestation that

accompanies increasing population density is usually hard

to estimate if the population density is associated with

other explanatory variables in statistical models. For exam-

ple, Gorenflo et al. (2011) and Apan and Peterson (1998)

found that the effects of population density were generally

of limited statistical significance and of low magnitude in

Madagascar and in the Philippines. This could be

explained by the fact that the population density is often

observed at a coarser resolution than other explanatory

variables such as landscape variables (elevation, distance to

forest edge, distance to roads and towns, etc.). One possi-

ble way to overcome this problem is to use hierarchical

Bayesian spatial models to account for heterogeneity in

data resolution (Agarwal et al. 2005). Nevertheless, fitting

such models is computationally much more demanding

than fitting more standard models and such models are

not easily accessible to the scientific community. As shown

in this study, another possible approach is to separate the

process determining the intensity of deforestation from

the process determining the location of deforestation and

to include the population density in the first process.

Using this approach, we were able to estimate a significant

effect of population density on the intensity of deforesta-

tion with a rather high magnitude for our study areas.

Using hierarchical Bayesian spatial models, Agarwal et al.

(2005) also found a significant effect of population density

on the probability of deforestation. This result was previ-

ously observed at the global scale using simple correlation

models (Pahari and Murai 1999). Even though the rela-

tionship between population density and deforestation

may be complex depending on the socioeconomic and

political context, as outlined by Gastineau and Sandron

(2006) and Geist and Lambin (2001), the significant effect

of population density on deforestation in poor developing

tropical countries, where people’s livelihoods depend to a

great extent on forest resources, can hardly be questioned.

For the five study areas in Madagascar, we estimated an

annual population growth rate of 3.39%.year�1. This

regional result is slightly above the national population

growth estimated by the United Nations which places

Madagascar in the top 25 of the countries with the highest

population growth rate, with a value of 2.66%.year�1 for

the period 2010–2015 (United Nations 2011). This sug-

gests that the population of Madagascar will double in the

next 25 years, that is, from 21 million in 2011 to about 40

million in 2045. Concerning our five study areas, the high

population growth rate (3.39%.year�1) should lead to a

significant increase in the annual deforestation rate of

more than 1%.year�1 between 2010 and 2030 in densely

populated areas. To conclude, based on the example of

Madagascar, we would like to emphasize the risk of an

increase in the speed of deforestation in the short term in

tropical developing countries facing rapid demographic

expansion. The risk is particularly high for Africa (United

Nations 2011; Raftery et al. 2012) where the total popula-

tion will probably not start to decrease before 2050

(Raftery et al. 2012).
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