

ANTIOXIDANT CAPACITY OF POWDERED POLYPHENOL EXTRACTS OBTAINED AT PILOT PLANT SCALE FROM JUSTICIA SECUNDA LEAVES USED AS NATURAL MEDICINE

EMMANUEL N. KOFFI¹, PAUL R. LOZANO¹, FELIX A. ADJE², YVES-ALAIN BEKRO³, YVES F. LOZANO¹*

INTRODUCTION

Justicia secunda Vahl., a native tropical herb originated from South America, is cultivated by village people in tropical countries to prepare medicinal beverages. In Côte d'Ivoire, water-extracts of plant leaves were traditionally homemade to cure various illnesses such as anaemia or hypertension.

A pilot plant coupled-process was developed, mimicking the traditional recipes using plant leaves, to prepare functional and active polyphenol concentrated extracts with antioxidant properties. For better stability and longer shelf-life, the end-product was turned into powder, using comparatively 2 drying technology.

EXTRACTION-STABILISATION PROCESSING

The substrate

• Fresh leaves of J. secunda were harvested around Yamoussoukro area (centre area of Côte d'Ivoire). They were dried locally at 30 °C during day time, under an open-sided shed...

The pilot plant scale process

- Ultrasound-Assisted water-Extraction UAE (1.25kg dried) leaves, 100 L acidified water 0.01N citric acid, 30min, 40 kHz), was used to extract water-soluble compounds within a reduced maceration time.
- Membrane clarification and concentration of the crude filtrate obtained was made at room temperature, using Cross Flow Microfiltration - **CFM** (industrial P19-60 ceramic membrane) coupled to Reverse Osmosis – **RO** (industrial SW30-2540 membrane).
- End-product stabilisation was obtained by drying the concentrated RO extract into powder, using Spray-Drying or Freeze-Drying.

RESULTS and DISCUSSION

Analysis

- Total Polyphenol Contents TPC were determined at λ =760 nm using to the Folin-Ciocalteu method. Total Flavonoid Content - TFC was determined by HPLC-DAD peak surface ratio.
- AntiOxidant Capacity AOC was measured using 2 methods i) the Oxygen Radical Absorbance Capacity assay (ORAC), using the AAPH radical to degrade fluorescein in the presence of the protective antioxidant leafextract sample. Fluorescence kinetic was followed at λ =485nm and 535nm (emission and excitation wavelengths), and ii) the Trolox Equivalent Antioxidant Capacity (**TEAC**) using the ABTS°+ radical discoloration kinetic at λ = 734 nm.
- HPLC-DAD polyphenol analysis showed a 25-peak profile at λ=325 nm. Peaks 4, 10, 13, 17-20, and 22-25 displayed in their UV-vis spectra the 2 specific absorption bands for flavone-type compounds (300-400nm and 240-285nm). They represented 42% of the total polyphenol peak area recorded.

Two major flavonoid compounds (peaks 17 and 22) accounted for 64% of the total peak surface of the flavone-type compounds. Their chemical structures were determined by LC-SM² and NMR analysis.

Peak 17: luteolin 7-O-[β-glucopyranosyl-(1 \rightarrow 2)- Peak 22: luteolin 7-O-[β-apiofuranosyl- β -rhamnosyl-(1 \rightarrow 6)] β-glucopyranoside (1→2)] β-xylopyranoside

Leaf maceration by UAE UAE pilot plant **Raw Filtration** Crude **Extracted** Cloth tissue **Filtrate** leaves **CFM CFM** CFM CFM + RO pilot plants P 19-60 / 0,2µm **Permeate** Retentate RO RO **Purified** SW30-2540 Concentrate Water Drying Freeze-drying // Spray-drying Powder 2 Powder 1

Extraction and concentration process

The coupled-process applied, lead to concentrated (28 times) water-extracts and dried end-products,. Concentration factors of TPC, TFC and AOC (15 - 21) were slightly lower than the volume reduction factor (28), showing that this process preserved the quality of the concentrated extracts obtained.

Processed co-products	TPC *, a	TFC **, a	AOC ***, a	
			ORAC	ABTS
UA crude extract	650	230	260	218
CFM permeate	620	207	250	200
RO concentrate	10330	3150	4690	3810
UA/RO Concentration Factor	17	15	21	19
UA/RO Vol. Reduction Factor		28		

•µmol.g⁻¹ acid gallic equivalent, ** µmol.g⁻¹ quercetin equivalent, •*** µmol.g⁻¹ trolox equivalent, a : average std deviation = ± 5%

Drying effect on AOC of powders 1 and 2

RO concentrates were dried into powders, using comparatively spraydrying and freeze-drying. Recovery of polyphenol contents (TPC, TFC) and of AOC in powders, were generally better than 70%: freeze-drying gave better recovery yields (>90%) than did spray-drying (71-78%).

_						
	Extract		RO Concentrate	Powder 1	Powder 2	
_	TPC	Content *	10330	9540	7310	
		Recovery	-	93.3%	70.7%	
	TFC	Content **	3150	2895	2470	
		Recovery	-	91.9%	78.4%	
	AOC	Content ***	4690	4255	3670	
	(ORAC)	Recovery	_	90.7%	78.2%	

CONCLUSION

A pilot plant scale eco-friendly and multi-step process allows producing powders of natural polyphenol compounds with interesting antioxidant capacities. The optimised processing conditions, including reduced operation time and membrane concentration at room temperature of water-extracts of *J. secunda* leaves, lead to end-products as concentrated liquids or powders, with little AOC losses of extracted polyphenol compounds. The powder form of leaf water-extracts could be a potential advantage for preservation of its quality during storage and marketing of this traditional medicine at the village level in tropical countries.

REFERENCES

- Meng, L., Lozano, Y., Bombarda, I., Gaydou, E., and Li, B., Anthocyanin and flavonoid production from *Perilla frutescens*: pilot plant scale processing including cross-flow microfiltration and reverse osmosis. Journal of Agricultural and Food Chemistry, 54(12), (2006), 4297-4303. • Adjé, A. F., Lozano, F. Y., Le Guernevé, C., Lozano, R. P., Meudec, E., Adima, A. A., and Gaydou, E., Phenolic acid and flavonol water extracts of *Delonix regia* red flowers. Industrial Crop and Products, 37, (2012), 303-310.
- Emmanuel N. Koffi, Christine Le Guernevé, Paul R. Lozano, Emannuelle Meudec, Félix A. Adjé, Yves-Alain Bekro, Yves F. Lozano, Polyphenol extraction and characterisation of Justicia secunda Vahl. leaves for traditional medicinal uses. Industrial Crop and Products, (2013),
- accepted for publication, DOI: 10.1016/j.indcrop.2013.06.001.

AFFILIATION

- 1 CIRAD, UMR-110, INTREPID (INTensification Raisonnée et Ecologique pour une Plsciculture Durable), TA B 110-16, 73 rue J.F. Breton, 34098 Montpellier cedex 5, France. Email address: yves.lozano@cirad.fr
- 2 Institut National Polytechnique Houphouët-Boigny (INP-HB), Laboratoire de Procédés Industriels de Synthèse de
- l'Environnement et des Energies Nouvelles (LAPISEN), Equipe Polyphénols, BP 1093, Yamoussoukro, Côte d'Ivoire. 3 Université Nanguy Abrogoua (UNA), Laboratoire Environnement et Biologie Aquatique, BP 801, Abidjan 02, Côte d'Ivoire.

http://umr-intrepid.cirad.fr/principaux-projets/alimentalg-microalgues-pour-la-pisciculture