

# Rheological Characterization of raw yam tubers for potential industrial utilization

Otegbayo, B.O¹ (CFS)., Gibert, O., D.J²., Lopez-Montes, A³.

<sup>1</sup>Department of Food Science & Technology, Bowen University, Iwo, Osun State, Nigeria

<sup>2</sup>CIRAD, UMR OUALISUD, France, & <sup>3</sup> IITA, Ibadan, Nigeria.

Species





#### Introduction

Yams produce edible starchy storage tubers which are of cultural, economic and nutritional importance in Nigeria. It is a significant and highly prized crop in West and Central Africa but largely underutilized industrially

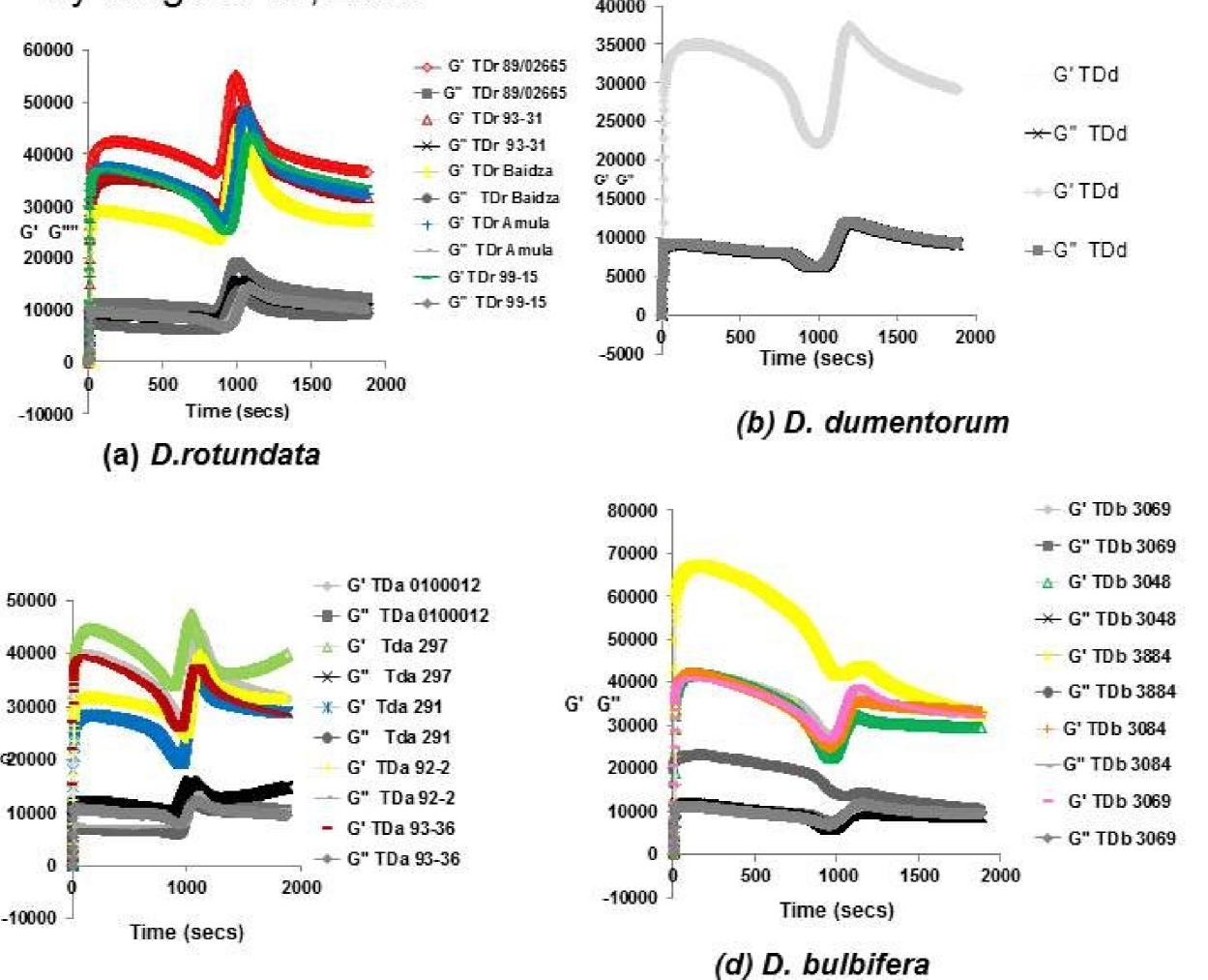
Rheological profile of the yam tubers (G', G'' Tan  $\delta$ ) may be used as a basis for understanding the changes that are taking place during tuber gelatinization, cooking and cooling of starches in vam.

Storage modulus (G') is a measure of deformation energy stored in the material during the shear process, It represents the elastic behavior of the sample. Loss modulus (G") is a measure of the deformation energy lost per cycle of sinusoidal deformation, it represents the viscous behavior of the material. Loss tangent (Tan  $\delta$ ) or damping factor (G"/G"), indicates the physical behavior of a system thus showing the ratio of the viscous and the elastic portion of the viscoelastic deformation.

Viscoelastic properties of raw tubers from four yam species; Dioscorea rotundata, D.alata, D.bulbifera and D. dumetorum were studied to determine their potential industrial utilization.

#### Materials and methods

#### Materials


Sixteen varieties of yam from four commonly cultivated species in Nigeria; *Dioscorea rotundata* (5), *D.alata* (5), *D.bulbifera* (5) and *D. dumetorum*(1) obtained from yam germplasm of International Institute of Tropical Agriculture (IITA)

#### Method

The viscoelastic characteristics of the raw yam tubers were determined by means of a rheometer using a modified method of Singh *et al.*, 2008. About 1mm thick slices of the samples were cut by means of ham cutter. Then a cork borer was used to cut out round slices which were used for the rheological analysis. The samples were then hermetically stored in plastic containers prior to rheological characterization using a Physica MCR 301 rheometer with a serrated flat probePP25 (25mm probe). The viscoelastic range for each yam variety were checked by normal force sweep (0.5 to 100N), strain sweep (0.01 to 100%)) prior to analysis at 3.5N, 7% strain and 1Hz frequency Isothermal for 1min at 35° C (7% strain, 1Hz and using FN 3.5N).

### Results

- •Rheological profile of the tubers are shown in Figs 1 a-d.
  G' of the tubers decreased initially during the heating period due to thermal softening as a result of loss of turgor, cellular disorganization loss structural integrity or tuber rigidity (Bu-Contreras and Rao, 2001 Otegbayo et al., 2005).
- •,After some time G' increased as a result of swelling of the starch granules, it indicates transition from the liquid system with dispersed particles to a system nearly packed with deformed particles, (Keetels et al, 1996).
- •After the maximum G' the G' decreased again due to reduced swelling of the granules as a result of crystalline melting and separation of amylose and amylopectin
- •In all the cultivars G' was higher than the G' indicating they behave like an elastic solid.
- D.rotundata had the highest G' among the four species but had the lowest gelatinization temperature (T  $_{\rm gel}$ ) and took a shorter time (867s-958s) to reach the G'max compared to other species (Table 1)
- •All the *D.bulbifera* cultivars started with very high initial G' before decreasing to a minimum and increasing to the G'<sub>max</sub> This is due to the strength and rigidity of the tubers. They tubers did not rupture or loose their structural integrity easily compared with other species neither did they show a distinct and clear gelatinization curve. This is very similar to what was reported about the profile of waxy potato cultivar by Singh et al., 2008.



ig 1: Rheological profile of yam tubers

(c) D. alata

Table 1: Gelatinization temperature, swelling power, storage modulus and time taken during oscillatory rheological profiling of raw yam tubers

Minimum G' Maximum Time taken to Time taken

| Cultivar     | temp (T <sub>gel</sub> ) oC | power  | (G' <sub>min</sub> )<br>(Pa) | G'(G' <sub>max</sub> )<br>(Pa) | swell<br>(Pa) | for gel<br>rutpure<br>(Pa) (Pa) |
|--------------|-----------------------------|--------|------------------------------|--------------------------------|---------------|---------------------------------|
| D.dumetorum  |                             |        |                              |                                |               |                                 |
|              | 83.5                        | 4,400  | 22,600                       | 37,000                         | 1030          | 1220                            |
| D.rotundata  |                             |        |                              |                                |               |                                 |
| TDr 89/02665 | 75.3                        | 18,300 | 36,700                       | 55,000                         | 867           | 989                             |
| TDr 93-31    | 76.2                        | 17,600 | 30,500                       | 48,100                         | 886           | 1020                            |
| TDr 99-15    | 79.8                        | 18,600 | 25,000                       | 43,600                         | 958           | 1100                            |
| TDr Baidza   | 76.7                        | 21,000 | 23,800                       | 44,800                         | 895           | 1030                            |
| TDr Amula    | 78.6                        | 20,000 | 20,000                       | 48,000                         | 934           | 1070                            |
| D.alata      |                             |        |                              |                                |               |                                 |
| TDa 291      | 80.9                        | 13,900 | 21,000                       | 36,000                         | 980           | 1090                            |
| TDa 297      | 75                          | 9000   | 34,500                       | 47,000                         | 901           | 1060                            |
| TDa 001/0012 | 81                          | 16,000 | 28,000                       | 44,000                         | 987           | 1111                            |
| TDa 92-2     | 87.5                        | 14,500 | 25,000                       | 39,800                         | 1010          | 1111                            |
| TDa 93-36    | 80.1                        | 11,400 | 25,600                       | 37,000                         | 963           | 1140                            |
| D. bulbifera |                             |        |                              |                                |               |                                 |
| TDb 3069     | 81.6                        | 8,700  | 28,000                       | 36,700                         | 994           | 116                             |
| TDb 3084     | 82                          | 8,100  | 23,900                       | 32,000                         | 1000          | 115                             |
| TDb 3884     | 84.3                        | 1,000  | 42,000                       | 43,000                         | 10500         | 1210                            |
| TDb 3048     | 82.5                        | 8,100  | 26,900                       | 35,500                         | 10100         | 1170                            |
| TDb 3059     | 81.6                        | 10,900 | 27,600                       | 38,500                         | 994           | 1170                            |







(a) (b) (C

(a ) D. rotundata, (b) D.bulbifera (c) D. alata

#### Conclusions

- *D. rotundata* cultivars generally had a lower gelatinization temperature (T <sub>gel</sub>) (75.3oC-79.8oC) and took a shorter time (867s-958s) to reach the G'max compared to other species. This temperature can be an index of their gelatinization or pasting temperatures.
- it may be stated that among D.rotundata and D.alata, the higher the  $G'_{max}$  the lower the T  $_{gel}$  this can be a very useful indicator in the industrial utilization of the starches from these yam tubers.
- •Thus a high initial G' may indicate a yam tuber with strong and rigid structure.
- The difference in height between the minimum G'(the G' after the loss of structural integrity) and the G'<sub>max</sub> can indicate the swelling power of the starch in the tubers.

#### Literatures cited

Bu-Contreras, R and Rao, M.A. (2001). Influence of heating conditions and starch on the storage modulus of Russet Burbank and Yukon Gold potatoes. J. Sci. Food Agric. 81, 1504-1511

Keetels, C.J.A.M., van Vilet, T and Walstra, P. (1996). Gelation retrogradation of concentrated starch systems: 1. Food Hydrocolloids. Vol. 10 (3), 343-353.

Otegbayo, B.O., Aina, J.O., Bokanga, M. and Asiedu, R. (2005). Microstructure of boiled tubers and its implication in the assessment of Textural quality in boiled yam. Journal of Texture Studies. Vol. 36. (3), 324-322.

Singh, J., Kaur, L., McCarthy, O.J., Moughan, P.J and Singh, H. (2008). Rheological and textural characteristics of raw and par-cooked Taewa (Maori potatoes) of New Zealand.

## Acknowledgments

- •This project was funded by AWARD-AGROPOLIS FONDATION
- African Women in Development (AWARD)





Bowen University for part sponsorship

