Water withdrawal from deep soil layers: a key strategy to sustain growth during dry seasons in tropical *Eucalyptus* plantations.

M. Christina¹,

Y. Nouvellon^{1,2}, J.P. Laclau^{1,3}, J.P Bouillet^{1,2},

R. Duursma⁴, J. L. Stape⁵, G.R. Lambais², G. Le Maire¹

- 1 CIRAD, Montpellier, France
- 2 USP, Piracicaba, Brazil
- 3 UNESP, Botucatu, Brazil
- 4 UWS, Penrith, Australia
- 5 NCSU, Raleigh, USA

Context: Carbon and water balance in managed *Eucalyptus* plantations in Brazil (Nouvellon et al. AGU 2013 Poster)

Context: deep root profiles in *Eucalyptus* plantations

→ Many deep roots have been recently observed in tropical *Eucalyptus* plantations (Christina et al. 2011, Laclau et al. 2013)

Material & Methods

Site description

Mathias Christina, S

-Site: EUCFLUX project, Itatinga, state of Sao Paulo, Brazil

- \rightarrow 200ha *Eucalyptus grandis* plantations since Nov. 2009.
- \rightarrow 4 plots of 365 trees including border trees.

Francisco, Dec

- → Eddy-flux tower: Latent heat flux measurements + meteorological data.
- → Soil water contents: probes down to 10m depth over the whole rotation cycle.
- → MAESPA parameterization: inventory, leaf area, LAD, LID, capacity for photosynthesis,...

Material & Methods

Eco-physiological model: MAESPA (Duursma and Medlyn 2012)

Results – model predictions

Time course of soil water contents

Time course of latent heat flux

Results

Time course of daily water uptake over the first half of rotation cycle in commercial *Eucalyptus* plantation

→ Successive drying of deep soil layers during each dry season

Results

Components of water balance in our *Eucalyptus* plantation

Water flux (mm)	Rainy (JanJun. 2010)	Dry (JulSep. 2010)	Rainy (Oct. 2010-Jun. 2011)	Dry (JulSep. 2011)	Rainy (Oct. 2011-Jun. 2012)	Dry (JulSep. 2012)
Surface root WU (0-1m)	139	57	469	50	813	81
Deep root WU (1-6m)	2	106	315	69	317	155
Very deep root WU (>6m)	0	0	4	172	16	37
Total WU	141	163	788	291	1146	273
Precipitation	690	102	1638	41	1367	115
Deep drainage	476	151	473	130	58	7

- → Deep water uptake plays a major role during dry seasons
- → No water seepage below roots layer after 2 years of growth

Results

Contribution of deep roots to water balance in our plantation

- \rightarrow Annually, deep water withdrawal (<6m) represents a low proportion of total water use (0, 15% and ~5%, for the 1st, 2nd and 3rd year)
- → Deep water withdrawal (<6m) is a high component of tree water loss during the dry season.
- → Large amount of water uptake in deep soils at 1.5 years (~50%). The soil between 6 and 10m is dried up.

Discussion

Belowground root growth strategy

- → Amazonian forests and *Eucalyptus* plantations explore a considerable volume of soil with limited carbon cost (<10% below 1m, Christina et al. 2011, Nepstad, 1994).
- → Functional equilibrium hypothesis whereby plants adapt their strategies of root biomass allocation to edaphic and climatic variations does not seem to apply in fast-growing tropical plantations

Rapid exploration of deep soil layers by tropical forests = territorial strategy?

- → Effect of root front decrease in depth
- → Constant root biomass and surface area
- → No feed-back on C allocation (LAI, and root biomass) in the model.

Discussion

What would happen with a slower root growth in depth? a model analysis...

→ Strong increase in water seepage (= recharge of water table)

→ Strong decrease in GPP during the second year of growth, particularly during the dry season.

Perspective: effect of forest management on water resources

→ What is the influence of rotation duration on water storage in deep soils and water seepage?

Modeling contrasting *Eucalyptus* rotation cycle durations

Optimizing the trade-off between forest productivity and water resources preservation

And more:

- → Influence of rain frequency and quantity on root uptake patterns
- → Influence of fertilization on root growth
- → C sequestration in deep soil layer ?
- \rightarrow ...

